diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:29:01 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 16:29:01 +0000 |
commit | 35a96bde514a8897f6f0fcc41c5833bf63df2e2a (patch) | |
tree | 657d15a03cc46bd099fc2c6546a7a4ad43815d9f /src/livarot/float-line.cpp | |
parent | Initial commit. (diff) | |
download | inkscape-35a96bde514a8897f6f0fcc41c5833bf63df2e2a.tar.xz inkscape-35a96bde514a8897f6f0fcc41c5833bf63df2e2a.zip |
Adding upstream version 1.0.2.upstream/1.0.2upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/livarot/float-line.cpp | 916 |
1 files changed, 916 insertions, 0 deletions
diff --git a/src/livarot/float-line.cpp b/src/livarot/float-line.cpp new file mode 100644 index 0000000..9a19729 --- /dev/null +++ b/src/livarot/float-line.cpp @@ -0,0 +1,916 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/** @file + * Implementation of coverage with floating-point values. + *//* + * Authors: + * see git history + * Fred + * + * Copyright (C) 2018 Authors + * Released under GNU GPL v2+, read the file 'COPYING' for more information. + */ + +#ifdef faster_flatten +# include <cmath> // std::abs(float) +#endif +#include <cstdio> +#include "livarot/float-line.h" +#include "livarot/int-line.h" +#include <cstdio> + +FloatLigne::FloatLigne() +{ + s_first = s_last = -1; +} + + +FloatLigne::~FloatLigne() += default; + +/// Reset the line to empty (boundaries and runs). +void FloatLigne::Reset() +{ + bords.clear(); + runs.clear(); + s_first = s_last = -1; +} + +/** + * Add a coverage portion. + * + * \param guess Position from where we should try to insert the first + * boundary, or -1 if we don't have a clue. + */ +int FloatLigne::AddBord(float spos, float sval, float epos, float eval, int guess) +{ +// if ( showCopy ) printf("b= %f %f -> %f %f \n",spos,sval,epos,eval); + if ( spos >= epos ) { + return -1; + } + + float pente = (eval - sval) / (epos - spos); + +#ifdef faster_flatten + if ( std::abs(epos - spos) < 0.001 || std::abs(pente) > 1000 ) { + return -1; + epos = spos; + pente = 0; + } +#endif + + if ( guess >= int(bords.size()) ) { + guess = -1; + } + + // add the left boundary + float_ligne_bord b; + int n = bords.size(); + b.pos = spos; + b.val = sval; + b.start = true; + b.other = n + 1; + b.pente = pente; + b.s_prev = b.s_next = -1; + bords.push_back(b); + + // insert it in the doubly-linked list + InsertBord(n, spos, guess); + + // add the right boundary + n = bords.size(); + b.pos = epos; + b.val = eval; + b.start = false; + b.other = n-1; + b.pente = pente; + b.s_prev = b.s_next = -1; + bords.push_back(b); + + // insert it in the doubly-linked list, knowing that boundary at index n-1 is not too far before me + InsertBord(n, epos, n - 1); + + return n; +} + +/** + * Add a coverage portion. + * + * \param guess Position from where we should try to insert the first + * boundary, or -1 if we don't have a clue. + */ +int FloatLigne::AddBord(float spos, float sval, float epos, float eval, float pente, int guess) +{ +// if ( showCopy ) printf("b= %f %f -> %f %f \n",spos,sval,epos,eval); + if ( spos >= epos ) { + return -1; + } + +#ifdef faster_flatten + if ( std::abs(epos - spos) < 0.001 || std::abs(pente) > 1000 ) { + return -1; + epos = spos; + pente = 0; + } +#endif + + if ( guess >= int(bords.size()) ) { + guess=-1; + } + + float_ligne_bord b; + int n = bords.size(); + b.pos = spos; + b.val = sval; + b.start = true; + b.other = n + 1; + b.pente = pente; + b.s_prev = b.s_next = -1; + bords.push_back(b); + + n = bords.size(); + b.pos = epos; + b.val = eval; + b.start = false; + b.other = n - 1; + b.pente = pente; + b.s_prev = b.s_next = -1; + bords.push_back(b); + + InsertBord(n - 1, spos, guess); + InsertBord(n, epos, n - 1); +/* if ( bords[n-1].s_next < 0 ) { + bords[n].s_next=-1; + s_last=n; + + bords[n].s_prev=n-1; + bords[n-1].s_next=n; + } else if ( bords[bords[n-1].s_next].pos >= epos ) { + bords[n].s_next=bords[n-1].s_next; + bords[bords[n].s_next].s_prev=n; + + bords[n].s_prev=n-1; + bords[n-1].s_next=n; + } else { + int c=bords[bords[n-1].s_next].s_next; + while ( c >= 0 && bords[c].pos < epos ) c=bords[c].s_next; + if ( c < 0 ) { + bords[n].s_prev=s_last; + bords[s_last].s_next=n; + s_last=n; + } else { + bords[n].s_prev=bords[c].s_prev; + bords[bords[n].s_prev].s_next=n; + + bords[n].s_next=c; + bords[c].s_prev=n; + } + + }*/ + return n; +} + +/** + * Add a coverage portion. + * + * \param guess Position from where we should try to insert the last + * boundary, or -1 if we don't have a clue. + */ +int FloatLigne::AddBordR(float spos, float sval, float epos, float eval, float pente, int guess) +{ +// if ( showCopy ) printf("br= %f %f -> %f %f \n",spos,sval,epos,eval); +// return AddBord(spos,sval,epos,eval,pente,guess); + if ( spos >= epos ){ + return -1; + } + +#ifdef faster_flatten + if ( std::abs(epos - spos) < 0.001 || std::abs(pente) > 1000 ) { + return -1; + epos = spos; + pente = 0; + } +#endif + + if ( guess >= int(bords.size()) ) { + guess=-1; + } + + float_ligne_bord b; + int n = bords.size(); + b.pos = spos; + b.val = sval; + b.start = true; + b.other = n + 1; + b.pente = pente; + b.s_prev = b.s_next = -1; + bords.push_back(b); + + n = bords.size(); + b.pos = epos; + b.val = eval; + b.start = false; + b.other = n - 1; + b.pente = pente; + b.s_prev = b.s_next = -1; + bords.push_back(b); + + InsertBord(n, epos, guess); + InsertBord(n - 1, spos, n); + +/* if ( bords[n].s_prev < 0 ) { + bords[n-1].s_prev=-1; + s_first=n-1; + + bords[n-1].s_next=n; + bords[n].s_prev=n-1; + } else if ( bords[bords[n].s_prev].pos <= spos ) { + bords[n-1].s_prev=bords[n].s_prev; + bords[bords[n-1].s_prev].s_next=n-1; + + bords[n-1].s_next=n; + bords[n].s_prev=n-1; + } else { + int c=bords[bords[n].s_prev].s_prev; + while ( c >= 0 && bords[c].pos > spos ) c=bords[c].s_prev; + if ( c < 0 ) { + bords[n-1].s_next=s_first; + bords[s_first].s_prev=n-1; + s_first=n-1; + } else { + bords[n-1].s_next=bords[c].s_next; + bords[bords[n-1].s_next].s_prev=n-1; + + bords[n-1].s_prev=c; + bords[c].s_next=n-1; + } + + }*/ + return n - 1; +} + +/** + * Add a coverage portion by appending boundaries at the end of the list. + * + * This works because we know they are on the right. + */ +int FloatLigne::AppendBord(float spos, float sval, float epos, float eval, float pente) +{ +// if ( showCopy ) printf("b= %f %f -> %f %f \n",spos,sval,epos,eval); +// return AddBord(spos,sval,epos,eval,pente,s_last); + if ( spos >= epos ) { + return -1; + } + +#ifdef faster_flatten + if ( std::abs(epos - spos) < 0.001 || std::abs(pente) > 1000 ) { + return -1; + epos = spos; + pente = 0; + } +#endif + + int n = bords.size(); + float_ligne_bord b; + b.pos = spos; + b.val = sval; + b.start = true; + b.other = n + 1; + b.pente = pente; + b.s_prev = s_last; + b.s_next = n + 1; + bords.push_back(b); + + if ( s_last >= 0 ) { + bords[s_last].s_next = n; + } + + if ( s_first < 0 ) { + s_first = n; + } + + n = bords.size(); + b.pos = epos; + b.val = eval; + b.start = false; + b.other = n - 1; + b.pente = pente; + b.s_prev = n - 1; + b.s_next = -1; + bords.push_back(b); + + s_last = n; + + return n; +} + + + +// insertion in a boubly-linked list. nothing interesting here +void FloatLigne::InsertBord(int no, float /*p*/, int guess) +{ +// TODO check if ignoring p is bad + if ( no < 0 || no >= int(bords.size()) ) { + return; + } + + if ( s_first < 0 ) { + s_first = s_last = no; + bords[no].s_prev = -1; + bords[no].s_next = -1; + return; + } + + if ( guess < 0 || guess >= int(bords.size()) ) { + int c = s_first; + while ( c >= 0 && c < int(bords.size()) && CmpBord(bords[c], bords[no]) < 0 ) { + c = bords[c].s_next; + } + + if ( c < 0 || c >= int(bords.size()) ) { + bords[no].s_prev = s_last; + bords[s_last].s_next = no; + s_last = no; + } else { + bords[no].s_prev = bords[c].s_prev; + if ( bords[no].s_prev >= 0 ) { + bords[bords[no].s_prev].s_next = no; + } else { + s_first = no; + } + bords[no].s_next = c; + bords[c].s_prev = no; + } + } else { + int c = guess; + int stTst = CmpBord(bords[c], bords[no]); + + if ( stTst == 0 ) { + + bords[no].s_prev = bords[c].s_prev; + if ( bords[no].s_prev >= 0 ) { + bords[bords[no].s_prev].s_next = no; + } else { + s_first = no; + } + bords[no].s_next = c; + bords[c].s_prev = no; + + } else if ( stTst > 0 ) { + + while ( c >= 0 && c < int(bords.size()) && CmpBord(bords[c], bords[no]) > 0 ) { + c = bords[c].s_prev; + } + + if ( c < 0 || c >= int(bords.size()) ) { + bords[no].s_next = s_first; + bords[s_first].s_prev =no; // s_first != -1 + s_first = no; + } else { + bords[no].s_next = bords[c].s_next; + if ( bords[no].s_next >= 0 ) { + bords[bords[no].s_next].s_prev = no; + } else { + s_last = no; + } + bords[no].s_prev = c; + bords[c].s_next = no; + } + + } else { + + while ( c >= 0 && c < int(bords.size()) && CmpBord(bords[c],bords[no]) < 0 ) { + c = bords[c].s_next; + } + + if ( c < 0 || c >= int(bords.size()) ) { + bords[no].s_prev = s_last; + bords[s_last].s_next = no; + s_last = no; + } else { + bords[no].s_prev = bords[c].s_prev; + if ( bords[no].s_prev >= 0 ) { + bords[bords[no].s_prev].s_next = no; + } else { + s_first = no; + } + bords[no].s_next = c; + bords[c].s_prev = no; + } + } + } +} + +/** + * Computes the sum of the coverages of the runs currently being scanned, + * of which there are "pending". + */ +float FloatLigne::RemainingValAt(float at, int pending) +{ + float sum = 0; +/* int no=firstAc; + while ( no >= 0 && no < bords.size() ) { + int nn=bords[no].other; + sum+=bords[nn].val+(at-bords[nn].pos)*bords[nn].pente; +// sum+=((at-bords[nn].pos)*bords[no].val+(bords[no].pos-at)*bords[nn].val)/(bords[no].pos-bords[nn].pos); +// sum+=ValAt(at,bords[nn].pos,bords[no].pos,bords[nn].val,bords[no].val); + no=bords[no].next; + }*/ + // for each portion being scanned, compute coverage at position "at" and sum. + // we could simply compute the sum of portion coverages as a "f(x)=ux+y" and evaluate it at "x=at", + // but there are numerical problems with this approach, and it produces ugly lines of incorrectly + // computed alpha values, so i reverted to this "safe but slow" version + + for (int i=0; i < pending; i++) { + int const nn = bords[i].pend_ind; + sum += bords[nn].val + (at - bords[nn].pos) * bords[nn].pente; + } + + return sum; +} + + +/** + * Extract a set of non-overlapping runs from the boundaries. + * + * We scan the boundaries left to right, maintaining a set of coverage + * portions currently being scanned. For each such portion, the function + * will add the index of its first boundary in an array; but instead of + * allocating another array, it uses a field in float_ligne_bord: pend_ind. + * The outcome is that an array of float_ligne_run is produced. + */ +void FloatLigne::Flatten() +{ + if ( int(bords.size()) <= 1 ) { + Reset(); + return; + } + + runs.clear(); + +// qsort(bords,bords.size(),sizeof(float_ligne_bord),FloatLigne::CmpBord); +// SortBords(0,bords.size()-1); + + float totPente = 0; + float totStart = 0; + float totX = bords[0].pos; + + bool startExists = false; + float lastStart = 0; + float lastVal = 0; + int pending = 0; + +// for (int i=0;i<bords.size();) { + // read the list from left to right, adding a run for each boundary crossed, minus runs with alpha=0 + for (int i=/*0*/s_first; i>=0 && i < int(bords.size()) ;) { + + float cur = bords[i].pos; // position of the current boundary (there may be several boundaries at this position) + float leftV = 0; // deltas in coverage value at this position + float rightV = 0; + float leftP = 0; // deltas in coverage increase per unit length at this position + float rightP = 0; + + // more precisely, leftV is the sum of decreases of coverage value, + // while rightV is the sum of increases, so that leftV+rightV is the delta. + // idem for leftP and rightP + + // start by scanning all boundaries that end a portion at this position + while ( i >= 0 && i < int(bords.size()) && bords[i].pos == cur && bords[i].start == false ) { + leftV += bords[i].val; + leftP += bords[i].pente; + +#ifndef faster_flatten + // we need to remove the boundary that started this coverage portion for the pending list + if ( bords[i].other >= 0 && bords[i].other < int(bords.size()) ) { + // so we use the pend_inv "array" + int const k = bords[bords[i].other].pend_inv; + if ( k >= 0 && k < pending ) { + // and update the pend_ind array and its inverse pend_inv + bords[k].pend_ind = bords[pending - 1].pend_ind; + bords[bords[k].pend_ind].pend_inv = k; + } + } +#endif + + // one less portion pending + pending--; + // and we move to the next boundary in the doubly linked list + i=bords[i].s_next; + //i++; + } + + // then scan all boundaries that start a portion at this position + while ( i >= 0 && i < int(bords.size()) && bords[i].pos == cur && bords[i].start ) { + rightV += bords[i].val; + rightP += bords[i].pente; +#ifndef faster_flatten + bords[pending].pend_ind=i; + bords[i].pend_inv=pending; +#endif + pending++; + i = bords[i].s_next; + //i++; + } + + // coverage value at end of the run will be "start coverage"+"delta per unit length"*"length" + totStart = totStart + totPente * (cur - totX); + + if ( startExists ) { + // add that run + AddRun(lastStart, cur, lastVal, totStart, totPente); + } + // update "delta coverage per unit length" + totPente += rightP - leftP; + // not really needed here + totStart += rightV - leftV; + // update position + totX = cur; + if ( pending > 0 ) { + startExists = true; + +#ifndef faster_flatten + // to avoid accumulation of numerical errors, we compute an accurate coverage for this position "cur" + totStart = RemainingValAt(cur, pending); +#endif + lastVal = totStart; + lastStart = cur; + } else { + startExists = false; + totStart = 0; + totPente = 0; + } + } +} + + +/// Debug dump of the instance. +void FloatLigne::Affiche() +{ + printf("%lu : \n", (long unsigned int) bords.size()); + for (auto & bord : bords) { + printf("(%f %f %f %i) ",bord.pos,bord.val,bord.pente,(bord.start?1:0)); // localization ok + } + + printf("\n"); + printf("%lu : \n", (long unsigned int) runs.size()); + + for (auto & run : runs) { + printf("(%f %f -> %f %f / %f)", + run.st, run.vst, run.en, run.ven, run.pente); // localization ok + } + + printf("\n"); +} + + +int FloatLigne::AddRun(float st, float en, float vst, float ven) +{ + return AddRun(st, en, vst, ven, (ven - vst) / (en - st)); +} + + +int FloatLigne::AddRun(float st, float en, float vst, float ven, float pente) +{ + if ( st >= en ) { + return -1; + } + + int const n = runs.size(); + float_ligne_run r; + r.st = st; + r.en = en; + r.vst = vst; + r.ven = ven; + r.pente = pente; + runs.push_back(r); + + return n; +} + +void FloatLigne::Copy(FloatLigne *a) +{ + if ( a->runs.empty() ) { + Reset(); + return; + } + + bords.clear(); + runs = a->runs; +} + +void FloatLigne::Copy(IntLigne *a) +{ + if ( a->nbRun ) { + Reset(); + return; + } + + bords.clear(); + runs.resize(a->nbRun); + + for (int i = 0; i < int(runs.size()); i++) { + runs[i].st = a->runs[i].st; + runs[i].en = a->runs[i].en; + runs[i].vst = a->runs[i].vst; + runs[i].ven = a->runs[i].ven; + } +} + +/// Cuts the parts having less than tresh coverage. +void FloatLigne::Min(FloatLigne *a, float tresh, bool addIt) +{ + Reset(); + if ( a->runs.empty() ) { + return; + } + + bool startExists = false; + float lastStart=0; + float lastEnd = 0; + + for (auto runA : a->runs) { + if ( runA.vst <= tresh ) { + if ( runA.ven <= tresh ) { + if ( startExists ) { + if ( lastEnd >= runA.st - 0.00001 ) { + lastEnd = runA.en; + } else { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + lastStart = runA.st; + lastEnd = runA.en; + } + } else { + lastStart = runA.st; + lastEnd = runA.en; + } + startExists = true; + } else { + float cutPos = (runA.st * (tresh - runA.ven) + runA.en * (runA.vst - tresh)) / (runA.vst - runA.ven); + if ( startExists ) { + if ( lastEnd >= runA.st - 0.00001 ) { + if ( addIt ) { + AddRun(lastStart, cutPos, tresh, tresh); + } + AddRun(cutPos,runA.en, tresh, runA.ven); + } else { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + if ( addIt ) { + AddRun(runA.st, cutPos, tresh, tresh); + } + AddRun(cutPos, runA.en, tresh, runA.ven); + } + } else { + if ( addIt ) { + AddRun(runA.st, cutPos, tresh, tresh); + } + AddRun(cutPos, runA.en, tresh, runA.ven); + } + startExists = false; + } + + } else { + + if ( runA.ven <= tresh ) { + float cutPos = (runA.st * (runA.ven - tresh) + runA.en * (tresh - runA.vst)) / (runA.ven - runA.vst); + if ( startExists ) { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + } + AddRun(runA.st, cutPos, runA.vst, tresh); + startExists = true; + lastStart = cutPos; + lastEnd = runA.en; + } else { + if ( startExists ) { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + } + startExists = false; + AddRun(runA.st, runA.en, runA.vst, runA.ven); + } + } + } + + if ( startExists ) { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + } +} + +/** + * Cuts the coverage a in 2 parts. + * + * over will receive the parts where coverage > tresh, while the present + * FloatLigne will receive the parts where coverage <= tresh. + */ +void FloatLigne::Split(FloatLigne *a, float tresh, FloatLigne *over) +{ + Reset(); + if ( a->runs.empty() ) { + return; + } + + for (auto runA : a->runs) { + if ( runA.vst >= tresh ) { + if ( runA.ven >= tresh ) { + if ( over ) { + over->AddRun(runA.st, runA.en, runA.vst, runA.ven); + } + } else { + float cutPos = (runA.st * (tresh - runA.ven) + runA.en * (runA.vst - tresh)) / (runA.vst - runA.ven); + if ( over ) { + over->AddRun(runA.st, cutPos, runA.vst, tresh); + } + AddRun(cutPos, runA.en, tresh, runA.ven); + } + } else { + if ( runA.ven >= tresh ) { + float cutPos = (runA.st * (runA.ven - tresh) + runA.en * (tresh-runA.vst)) / (runA.ven - runA.vst); + AddRun(runA.st, cutPos, runA.vst, tresh); + if ( over ) { + over->AddRun(cutPos, runA.en, tresh, runA.ven); + } + } else { + AddRun(runA.st, runA.en, runA.vst, runA.ven); + } + } + } +} + +/** + * Clips the coverage runs to tresh. + * + * If addIt is false, it only leaves the parts that are not entirely under + * tresh. If addIt is true, it's the coverage clamped to tresh. + */ +void FloatLigne::Max(FloatLigne *a, float tresh, bool addIt) +{ + Reset(); + if ( a->runs.empty() <= 0 ) { + return; + } + + bool startExists = false; + float lastStart = 0; + float lastEnd = 0; + for (auto runA : a->runs) { + if ( runA.vst >= tresh ) { + if ( runA.ven >= tresh ) { + if ( startExists ) { + if ( lastEnd >= runA.st-0.00001 ) { + lastEnd = runA.en; + } else { + if ( addIt ) { + AddRun(lastStart,lastEnd,tresh,tresh); + } + lastStart = runA.st; + lastEnd = runA.en; + } + } else { + lastStart = runA.st; + lastEnd = runA.en; + } + startExists = true; + } else { + float cutPos = (runA.st * (tresh - runA.ven) + runA.en * (runA.vst - tresh)) / (runA.vst - runA.ven); + if ( startExists ) { + if ( lastEnd >= runA.st-0.00001 ) { + if ( addIt ) { + AddRun(lastStart, cutPos, tresh, tresh); + } + AddRun(cutPos, runA.en, tresh, runA.ven); + } else { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + if ( addIt ) { + AddRun(runA.st, cutPos, tresh, tresh); + } + AddRun(cutPos, runA.en, tresh, runA.ven); + } + } else { + if ( addIt ) { + AddRun(runA.st, cutPos, tresh, tresh); + } + AddRun(cutPos, runA.en, tresh, runA.ven); + } + startExists = false; + } + + } else { + + if ( runA.ven >= tresh ) { + float cutPos = (runA.st * (runA.ven - tresh) + runA.en * (tresh - runA.vst)) / (runA.ven - runA.vst); + if ( startExists ) { + if ( addIt ) { + AddRun(lastStart,lastEnd,tresh,tresh); + } + } + AddRun(runA.st, cutPos, runA.vst, tresh); + startExists = true; + lastStart = cutPos; + lastEnd = runA.en; + } else { + if ( startExists ) { + if ( addIt ) { + AddRun(lastStart,lastEnd,tresh,tresh); + } + } + startExists = false; + AddRun(runA.st, runA.en, runA.vst, runA.ven); + } + } + } + + if ( startExists ) { + if ( addIt ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + } +} + +/// Extract the parts where coverage > tresh. +void FloatLigne::Over(FloatLigne *a, float tresh) +{ + Reset(); + if ( a->runs.empty() ) { + return; + } + + bool startExists = false; + float lastStart = 0; + float lastEnd = 0; + + for (auto runA : a->runs) { + if ( runA.vst >= tresh ) { + if ( runA.ven >= tresh ) { + if ( startExists ) { + if ( lastEnd >= runA.st - 0.00001 ) { + lastEnd = runA.en; + } else { + AddRun(lastStart, lastEnd, tresh, tresh); + lastStart = runA.st; + lastEnd = runA.en; + } + } else { + lastStart = runA.st; + lastEnd = runA.en; + } + startExists = true; + + } else { + + float cutPos = (runA.st * (tresh - runA.ven) + runA.en * (runA.vst - tresh)) / (runA.vst - runA.ven); + if ( startExists ) { + if ( lastEnd >= runA.st - 0.00001 ) { + AddRun(lastStart, cutPos, tresh, tresh); + } else { + AddRun(lastStart, lastEnd, tresh, tresh); + AddRun(runA.st, cutPos, tresh, tresh); + } + } else { + AddRun(runA.st, cutPos, tresh, tresh); + } + startExists = false; + } + + } else { + if ( runA.ven >= tresh ) { + float cutPos = (runA.st * (runA.ven - tresh) + runA.en * (tresh - runA.vst)) / (runA.ven - runA.vst); + if ( startExists ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + startExists = true; + lastStart = cutPos; + lastEnd = runA.en; + } else { + if ( startExists ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } + startExists = false; + } + } + } + + if ( startExists ) { + AddRun(lastStart, lastEnd, tresh, tresh); + } +} + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |