diff options
Diffstat (limited to 'src/2geom/affine.h')
-rw-r--r-- | src/2geom/affine.h | 244 |
1 files changed, 244 insertions, 0 deletions
diff --git a/src/2geom/affine.h b/src/2geom/affine.h new file mode 100644 index 0000000..470d5fc --- /dev/null +++ b/src/2geom/affine.h @@ -0,0 +1,244 @@ +/** + * \file + * \brief 3x3 affine transformation matrix. + *//* + * Authors: + * Lauris Kaplinski <lauris@kaplinski.com> (Original NRAffine definition and related macros) + * Nathan Hurst <njh@mail.csse.monash.edu.au> (Geom::Affine class version of the above) + * Michael G. Sloan <mgsloan@gmail.com> (reorganization and additions) + * Krzysztof KosiĆski <tweenk.pl@gmail.com> (removal of boilerplate, docs) + * + * This code is in public domain. + */ + +#ifndef LIB2GEOM_SEEN_AFFINE_H +#define LIB2GEOM_SEEN_AFFINE_H + +#include <boost/operators.hpp> +#include <2geom/forward.h> +#include <2geom/point.h> +#include <2geom/utils.h> + +namespace Geom { + +/** + * @brief 3x3 matrix representing an affine transformation. + * + * Affine transformations on elements of a vector space are transformations which can be + * expressed in terms of matrix multiplication followed by addition + * (\f$x \mapsto A x + b\f$). They can be thought of as generalizations of linear functions + * (\f$y = a x + b\f$) to vector spaces. Affine transformations of points on a 2D plane preserve + * the following properties: + * + * - Colinearity: if three points lie on the same line, they will still be colinear after + * an affine transformation. + * - Ratios of distances between points on the same line are preserved + * - Parallel lines remain parallel. + * + * All affine transformations on 2D points can be written as combinations of scaling, rotation, + * shearing and translation. They can be represented as a combination of a vector and a 2x2 matrix, + * but this form is inconvenient to work with. A better solution is to represent all affine + * transformations on the 2D plane as 3x3 matrices, where the last column has fixed values. + * \f[ A = \left[ \begin{array}{ccc} + c_0 & c_1 & 0 \\ + c_2 & c_3 & 0 \\ + c_4 & c_5 & 1 \end{array} \right]\f] + * + * We then interpret points as row vectors of the form \f$[p_X, p_Y, 1]\f$. Applying a + * transformation to a point can be written as right-multiplication by a 3x3 matrix + * (\f$p' = pA\f$). This subset of matrices is closed under multiplication - combination + * of any two transforms can be expressed as the multiplication of their matrices. + * In this representation, the \f$c_4\f$ and \f$c_5\f$ coefficients represent + * the translation component of the transformation. + * + * Matrices can be multiplied by other more specific transformations. When multiplying, + * the transformations are applied from left to right, so for example <code>m = a * b</code> + * means: @a m first transforms by a, then by b. + * + * @ingroup Transforms + */ +class Affine + : boost::equality_comparable< Affine // generates operator!= from operator== + , boost::multipliable1< Affine + , MultipliableNoncommutative< Affine, Translate + , MultipliableNoncommutative< Affine, Scale + , MultipliableNoncommutative< Affine, Rotate + , MultipliableNoncommutative< Affine, HShear + , MultipliableNoncommutative< Affine, VShear + , MultipliableNoncommutative< Affine, Zoom + > > > > > > > > +{ + Coord _c[6]; +public: + Affine() { + _c[0] = _c[3] = 1; + _c[1] = _c[2] = _c[4] = _c[5] = 0; + } + + /** @brief Create a matrix from its coefficient values. + * It's rather inconvenient to directly create matrices in this way. Use transform classes + * if your transformation has a geometric interpretation. + * @see Translate + * @see Scale + * @see Rotate + * @see HShear + * @see VShear + * @see Zoom */ + Affine(Coord c0, Coord c1, Coord c2, Coord c3, Coord c4, Coord c5) { + _c[0] = c0; _c[1] = c1; + _c[2] = c2; _c[3] = c3; + _c[4] = c4; _c[5] = c5; + } + + /** @brief Access a coefficient by its index. */ + inline Coord operator[](unsigned i) const { return _c[i]; } + inline Coord &operator[](unsigned i) { return _c[i]; } + + /// @name Combine with other transformations + /// @{ + Affine &operator*=(Affine const &m); + // implemented in transforms.cpp + Affine &operator*=(Translate const &t); + Affine &operator*=(Scale const &s); + Affine &operator*=(Rotate const &r); + Affine &operator*=(HShear const &h); + Affine &operator*=(VShear const &v); + Affine &operator*=(Zoom const &); + /// @} + + bool operator==(Affine const &o) const { + for(unsigned i = 0; i < 6; ++i) { + if ( _c[i] != o._c[i] ) return false; + } + return true; + } + + /// @name Get the parameters of the matrix's transform + /// @{ + Point xAxis() const; + Point yAxis() const; + Point translation() const; + Coord expansionX() const; + Coord expansionY() const; + Point expansion() const { return Point(expansionX(), expansionY()); } + /// @} + + /// @name Modify the matrix + /// @{ + void setXAxis(Point const &vec); + void setYAxis(Point const &vec); + + void setTranslation(Point const &loc); + + void setExpansionX(Coord val); + void setExpansionY(Coord val); + void setIdentity(); + /// @} + + /// @name Inspect the matrix's transform + /// @{ + bool isIdentity(Coord eps = EPSILON) const; + + bool isTranslation(Coord eps = EPSILON) const; + bool isScale(Coord eps = EPSILON) const; + bool isUniformScale(Coord eps = EPSILON) const; + bool isRotation(Coord eps = EPSILON) const; + bool isHShear(Coord eps = EPSILON) const; + bool isVShear(Coord eps = EPSILON) const; + + bool isNonzeroTranslation(Coord eps = EPSILON) const; + bool isNonzeroScale(Coord eps = EPSILON) const; + bool isNonzeroUniformScale(Coord eps = EPSILON) const; + bool isNonzeroRotation(Coord eps = EPSILON) const; + bool isNonzeroNonpureRotation(Coord eps = EPSILON) const; + Point rotationCenter() const; + bool isNonzeroHShear(Coord eps = EPSILON) const; + bool isNonzeroVShear(Coord eps = EPSILON) const; + + bool isZoom(Coord eps = EPSILON) const; + bool preservesArea(Coord eps = EPSILON) const; + bool preservesAngles(Coord eps = EPSILON) const; + bool preservesDistances(Coord eps = EPSILON) const; + bool flips() const; + + bool isSingular(Coord eps = EPSILON) const; + /// @} + + /// @name Compute other matrices + /// @{ + Affine withoutTranslation() const { + Affine ret(*this); + ret.setTranslation(Point(0,0)); + return ret; + } + Affine inverse() const; + /// @} + + /// @name Compute scalar values + /// @{ + Coord det() const; + Coord descrim2() const; + Coord descrim() const; + /// @} + inline static Affine identity(); +}; + +/** @brief Print out the Affine (for debugging). + * @relates Affine */ +inline std::ostream &operator<< (std::ostream &out_file, const Geom::Affine &m) { + out_file << "A: " << m[0] << " C: " << m[2] << " E: " << m[4] << "\n"; + out_file << "B: " << m[1] << " D: " << m[3] << " F: " << m[5] << "\n"; + return out_file; +} + +// Affine factories +Affine from_basis(const Point &x_basis, const Point &y_basis, const Point &offset=Point(0,0)); +Affine elliptic_quadratic_form(Affine const &m); + +/** Given a matrix (ignoring the translation) this returns the eigen + * values and vectors. */ +class Eigen{ +public: + Point vectors[2]; + double values[2]; + Eigen(Affine const &m); + Eigen(double M[2][2]); +}; + +/** @brief Create an identity matrix. + * This is a convenience function identical to Affine::identity(). */ +inline Affine identity() { + Affine ret(Affine::identity()); + return ret; // allow NRVO +} + +/** @brief Create an identity matrix. + * @return The matrix + * \f$\left[\begin{array}{ccc} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 1 \end{array}\right]\f$. + * @relates Affine */ +inline Affine Affine::identity() { + Affine ret(1.0, 0.0, + 0.0, 1.0, + 0.0, 0.0); + return ret; // allow NRVO +} + +bool are_near(Affine const &a1, Affine const &a2, Coord eps=EPSILON); + +} // end namespace Geom + +#endif // LIB2GEOM_SEEN_AFFINE_H + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |