diff options
Diffstat (limited to 'src/2geom/bezier-clipping.cpp')
-rw-r--r-- | src/2geom/bezier-clipping.cpp | 1163 |
1 files changed, 1163 insertions, 0 deletions
diff --git a/src/2geom/bezier-clipping.cpp b/src/2geom/bezier-clipping.cpp new file mode 100644 index 0000000..e7bbcc3 --- /dev/null +++ b/src/2geom/bezier-clipping.cpp @@ -0,0 +1,1163 @@ +/* + * Implement the Bezier clipping algorithm for finding + * Bezier curve intersection points and collinear normals + * + * Authors: + * Marco Cecchetti <mrcekets at gmail.com> + * + * Copyright 2008 authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + + + + +#include <2geom/basic-intersection.h> +#include <2geom/choose.h> +#include <2geom/point.h> +#include <2geom/interval.h> +#include <2geom/bezier.h> +#include <2geom/numeric/matrix.h> +#include <2geom/convex-hull.h> +#include <2geom/line.h> + +#include <cassert> +#include <vector> +#include <algorithm> +#include <utility> +//#include <iomanip> + +using std::swap; + + +#define VERBOSE 0 +#define CHECK 0 + + +namespace Geom { + +namespace detail { namespace bezier_clipping { + +//////////////////////////////////////////////////////////////////////////////// +// for debugging +// + +void print(std::vector<Point> const& cp, const char* msg = "") +{ + std::cerr << msg << std::endl; + for (size_t i = 0; i < cp.size(); ++i) + std::cerr << i << " : " << cp[i] << std::endl; +} + +template< class charT > +std::basic_ostream<charT> & +operator<< (std::basic_ostream<charT> & os, const Interval & I) +{ + os << "[" << I.min() << ", " << I.max() << "]"; + return os; +} + +double angle (std::vector<Point> const& A) +{ + size_t n = A.size() -1; + double a = std::atan2(A[n][Y] - A[0][Y], A[n][X] - A[0][X]); + return (180 * a / M_PI); +} + +size_t get_precision(Interval const& I) +{ + double d = I.extent(); + double e = 0.1, p = 10; + int n = 0; + while (n < 16 && d < e) + { + p *= 10; + e = 1/p; + ++n; + } + return n; +} + +void range_assertion(int k, int m, int n, const char* msg) +{ + if ( k < m || k > n) + { + std::cerr << "range assertion failed: \n" + << msg << std::endl + << "value: " << k + << " range: " << m << ", " << n << std::endl; + assert (k >= m && k <= n); + } +} + + +//////////////////////////////////////////////////////////////////////////////// +// numerical routines + +/* + * Compute the binomial coefficient (n, k) + */ +double binomial(unsigned int n, unsigned int k) +{ + return choose<double>(n, k); +} + +/* + * Compute the determinant of the 2x2 matrix with column the point P1, P2 + */ +double det(Point const& P1, Point const& P2) +{ + return P1[X]*P2[Y] - P1[Y]*P2[X]; +} + +/* + * Solve the linear system [P1,P2] * P = Q + * in case there isn't exactly one solution the routine returns false + */ +bool solve(Point & P, Point const& P1, Point const& P2, Point const& Q) +{ + double d = det(P1, P2); + if (d == 0) return false; + d = 1 / d; + P[X] = det(Q, P2) * d; + P[Y] = det(P1, Q) * d; + return true; +} + +//////////////////////////////////////////////////////////////////////////////// +// interval routines + +/* + * Map the sub-interval I in [0,1] into the interval J and assign it to J + */ +void map_to(Interval & J, Interval const& I) +{ + J.setEnds(J.valueAt(I.min()), J.valueAt(I.max())); +} + +//////////////////////////////////////////////////////////////////////////////// +// bezier curve routines + +/* + * Return true if all the Bezier curve control points are near, + * false otherwise + */ +// Bezier.isConstant(precision) +bool is_constant(std::vector<Point> const& A, double precision) +{ + for (unsigned int i = 1; i < A.size(); ++i) + { + if(!are_near(A[i], A[0], precision)) + return false; + } + return true; +} + +/* + * Compute the hodograph of the bezier curve B and return it in D + */ +// derivative(Bezier) +void derivative(std::vector<Point> & D, std::vector<Point> const& B) +{ + D.clear(); + size_t sz = B.size(); + if (sz == 0) return; + if (sz == 1) + { + D.resize(1, Point(0,0)); + return; + } + size_t n = sz-1; + D.reserve(n); + for (size_t i = 0; i < n; ++i) + { + D.push_back(n*(B[i+1] - B[i])); + } +} + +/* + * Compute the hodograph of the Bezier curve B rotated of 90 degree + * and return it in D; we have N(t) orthogonal to B(t) for any t + */ +// rot90(derivative(Bezier)) +void normal(std::vector<Point> & N, std::vector<Point> const& B) +{ + derivative(N,B); + for (size_t i = 0; i < N.size(); ++i) + { + N[i] = rot90(N[i]); + } +} + +/* + * Compute the portion of the Bezier curve "B" wrt the interval [0,t] + */ +// portion(Bezier, 0, t) +void left_portion(Coord t, std::vector<Point> & B) +{ + size_t n = B.size(); + for (size_t i = 1; i < n; ++i) + { + for (size_t j = n-1; j > i-1 ; --j) + { + B[j] = lerp(t, B[j-1], B[j]); + } + } +} + +/* + * Compute the portion of the Bezier curve "B" wrt the interval [t,1] + */ +// portion(Bezier, t, 1) +void right_portion(Coord t, std::vector<Point> & B) +{ + size_t n = B.size(); + for (size_t i = 1; i < n; ++i) + { + for (size_t j = 0; j < n-i; ++j) + { + B[j] = lerp(t, B[j], B[j+1]); + } + } +} + +/* + * Compute the portion of the Bezier curve "B" wrt the interval "I" + */ +// portion(Bezier, I) +void portion (std::vector<Point> & B , Interval const& I) +{ + if (I.min() == 0) + { + if (I.max() == 1) return; + left_portion(I.max(), B); + return; + } + right_portion(I.min(), B); + if (I.max() == 1) return; + double t = I.extent() / (1 - I.min()); + left_portion(t, B); +} + + +//////////////////////////////////////////////////////////////////////////////// +// tags + +struct intersection_point_tag; +struct collinear_normal_tag; +template <typename Tag> +OptInterval clip(std::vector<Point> const& A, + std::vector<Point> const& B, + double precision); +template <typename Tag> +void iterate(std::vector<Interval>& domsA, + std::vector<Interval>& domsB, + std::vector<Point> const& A, + std::vector<Point> const& B, + Interval const& domA, + Interval const& domB, + double precision ); + + +//////////////////////////////////////////////////////////////////////////////// +// intersection + +/* + * Make up an orientation line using the control points c[i] and c[j] + * the line is returned in the output parameter "l" in the form of a 3 element + * vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized. + */ +// Line(c[i], c[j]) +void orientation_line (std::vector<double> & l, + std::vector<Point> const& c, + size_t i, size_t j) +{ + l[0] = c[j][Y] - c[i][Y]; + l[1] = c[i][X] - c[j][X]; + l[2] = cross(c[j], c[i]); + double length = std::sqrt(l[0] * l[0] + l[1] * l[1]); + assert (length != 0); + l[0] /= length; + l[1] /= length; + l[2] /= length; +} + +/* + * Pick up an orientation line for the Bezier curve "c" and return it in + * the output parameter "l" + */ +Line pick_orientation_line (std::vector<Point> const &c, double precision) +{ + size_t i = c.size(); + while (--i > 0 && are_near(c[0], c[i], precision)) + {} + + // this should never happen because when a new curve portion is created + // we check that it is not constant; + // however this requires that the precision used in the is_constant + // routine has to be the same used here in the are_near test + assert(i != 0); + + Line line(c[0], c[i]); + return line; + //std::cerr << "i = " << i << std::endl; +} + +/* + * Make up an orientation line for constant bezier curve; + * the orientation line is made up orthogonal to the other curve base line; + * the line is returned in the output parameter "l" in the form of a 3 element + * vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized. + */ +Line orthogonal_orientation_line (std::vector<Point> const &c, + Point const &p, + double precision) +{ + // this should never happen + assert(!is_constant(c, precision)); + + Line line(p, (c.back() - c.front()).cw() + p); + return line; +} + +/* + * Compute the signed distance of the point "P" from the normalized line l + */ +double signed_distance(Point const &p, Line const &l) +{ + Coord a, b, c; + l.coefficients(a, b, c); + return a * p[X] + b * p[Y] + c; +} + +/* + * Compute the min and max distance of the control points of the Bezier + * curve "c" from the normalized orientation line "l". + * This bounds are returned through the output Interval parameter"bound". + */ +Interval fat_line_bounds (std::vector<Point> const &c, + Line const &l) +{ + Interval bound(0, 0); + for (size_t i = 0; i < c.size(); ++i) { + bound.expandTo(signed_distance(c[i], l)); + } + return bound; +} + +/* + * return the x component of the intersection point between the line + * passing through points p1, p2 and the line Y = "y" + */ +double intersect (Point const& p1, Point const& p2, double y) +{ + // we are sure that p2[Y] != p1[Y] because this routine is called + // only when the lower or the upper bound is crossed + double dy = (p2[Y] - p1[Y]); + double s = (y - p1[Y]) / dy; + return (p2[X]-p1[X])*s + p1[X]; +} + +/* + * Clip the Bezier curve "B" wrt the fat line defined by the orientation + * line "l" and the interval range "bound", the new parameter interval for + * the clipped curve is returned through the output parameter "dom" + */ +OptInterval clip_interval (std::vector<Point> const& B, + Line const &l, + Interval const &bound) +{ + double n = B.size() - 1; // number of sub-intervals + std::vector<Point> D; // distance curve control points + D.reserve (B.size()); + for (size_t i = 0; i < B.size(); ++i) + { + const double d = signed_distance(B[i], l); + D.push_back (Point(i/n, d)); + } + //print(D); + + ConvexHull p; + p.swap(D); + //print(p); + + bool plower, phigher; + bool clower, chigher; + double t, tmin = 1, tmax = 0; +// std::cerr << "bound : " << bound << std::endl; + + plower = (p[0][Y] < bound.min()); + phigher = (p[0][Y] > bound.max()); + if (!(plower || phigher)) // inside the fat line + { + if (tmin > p[0][X]) tmin = p[0][X]; + if (tmax < p[0][X]) tmax = p[0][X]; +// std::cerr << "0 : inside " << p[0] +// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; + } + + for (size_t i = 1; i < p.size(); ++i) + { + clower = (p[i][Y] < bound.min()); + chigher = (p[i][Y] > bound.max()); + if (!(clower || chigher)) // inside the fat line + { + if (tmin > p[i][X]) tmin = p[i][X]; + if (tmax < p[i][X]) tmax = p[i][X]; +// std::cerr << i << " : inside " << p[i] +// << " : tmin = " << tmin << ", tmax = " << tmax +// << std::endl; + } + if (clower != plower) // cross the lower bound + { + t = intersect(p[i-1], p[i], bound.min()); + if (tmin > t) tmin = t; + if (tmax < t) tmax = t; + plower = clower; +// std::cerr << i << " : lower " << p[i] +// << " : tmin = " << tmin << ", tmax = " << tmax +// << std::endl; + } + if (chigher != phigher) // cross the upper bound + { + t = intersect(p[i-1], p[i], bound.max()); + if (tmin > t) tmin = t; + if (tmax < t) tmax = t; + phigher = chigher; +// std::cerr << i << " : higher " << p[i] +// << " : tmin = " << tmin << ", tmax = " << tmax +// << std::endl; + } + } + + // we have to test the closing segment for intersection + size_t last = p.size() - 1; + clower = (p[0][Y] < bound.min()); + chigher = (p[0][Y] > bound.max()); + if (clower != plower) // cross the lower bound + { + t = intersect(p[last], p[0], bound.min()); + if (tmin > t) tmin = t; + if (tmax < t) tmax = t; +// std::cerr << "0 : lower " << p[0] +// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; + } + if (chigher != phigher) // cross the upper bound + { + t = intersect(p[last], p[0], bound.max()); + if (tmin > t) tmin = t; + if (tmax < t) tmax = t; +// std::cerr << "0 : higher " << p[0] +// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; + } + + if (tmin == 1 && tmax == 0) { + return OptInterval(); + } else { + return Interval(tmin, tmax); + } +} + +/* + * Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating + * intersection points the new parameter interval for the clipped curve + * is returned through the output parameter "dom" + */ +template <> +OptInterval clip<intersection_point_tag> (std::vector<Point> const& A, + std::vector<Point> const& B, + double precision) +{ + Line bl; + if (is_constant(A, precision)) { + Point M = middle_point(A.front(), A.back()); + bl = orthogonal_orientation_line(B, M, precision); + } else { + bl = pick_orientation_line(A, precision); + } + bl.normalize(); + Interval bound = fat_line_bounds(A, bl); + return clip_interval(B, bl, bound); +} + + +/////////////////////////////////////////////////////////////////////////////// +// collinear normal + +/* + * Compute a closed focus for the Bezier curve B and return it in F + * A focus is any curve through which all lines perpendicular to B(t) pass. + */ +void make_focus (std::vector<Point> & F, std::vector<Point> const& B) +{ + assert (B.size() > 2); + size_t n = B.size() - 1; + normal(F, B); + Point c(1, 1); +#if VERBOSE + if (!solve(c, F[0], -F[n-1], B[n]-B[0])) + { + std::cerr << "make_focus: unable to make up a closed focus" << std::endl; + } +#else + solve(c, F[0], -F[n-1], B[n]-B[0]); +#endif +// std::cerr << "c = " << c << std::endl; + + + // B(t) + c(t) * N(t) + double n_inv = 1 / (double)(n); + Point c0ni; + F.push_back(c[1] * F[n-1]); + F[n] += B[n]; + for (size_t i = n-1; i > 0; --i) + { + F[i] *= -c[0]; + c0ni = F[i]; + F[i] += (c[1] * F[i-1]); + F[i] *= (i * n_inv); + F[i] -= c0ni; + F[i] += B[i]; + } + F[0] *= c[0]; + F[0] += B[0]; +} + +/* + * Compute the projection on the plane (t, d) of the control points + * (t, u, D(t,u)) where D(t,u) = <(B(t) - F(u)), B'(t)> with 0 <= t, u <= 1 + * B is a Bezier curve and F is a focus of another Bezier curve. + * See Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping. + */ +void distance_control_points (std::vector<Point> & D, + std::vector<Point> const& B, + std::vector<Point> const& F) +{ + assert (B.size() > 1); + assert (!F.empty()); + const size_t n = B.size() - 1; + const size_t m = F.size() - 1; + const size_t r = 2 * n - 1; + const double r_inv = 1 / (double)(r); + D.clear(); + D.reserve (B.size() * F.size()); + + std::vector<Point> dB; + dB.reserve(n); + for (size_t k = 0; k < n; ++k) + { + dB.push_back (B[k+1] - B[k]); + } + NL::Matrix dBB(n,B.size()); + for (size_t i = 0; i < n; ++i) + for (size_t j = 0; j < B.size(); ++j) + dBB(i,j) = dot (dB[i], B[j]); + NL::Matrix dBF(n, F.size()); + for (size_t i = 0; i < n; ++i) + for (size_t j = 0; j < F.size(); ++j) + dBF(i,j) = dot (dB[i], F[j]); + + size_t l; + double bc; + Point dij; + std::vector<double> d(F.size()); + for (size_t i = 0; i <= r; ++i) + { + for (size_t j = 0; j <= m; ++j) + { + d[j] = 0; + } + const size_t k0 = std::max(i, n) - n; + const size_t kn = std::min(i, n-1); + const double bri = n / binomial(r,i); + for (size_t k = k0; k <= kn; ++k) + { + //if (k > i || (i-k) > n) continue; + l = i - k; +#if CHECK + assert (l <= n); +#endif + bc = bri * binomial(n,l) * binomial(n-1, k); + for (size_t j = 0; j <= m; ++j) + { + //d[j] += bc * dot(dB[k], B[l] - F[j]); + d[j] += bc * (dBB(k,l) - dBF(k,j)); + } + } + double dmin, dmax; + dmin = dmax = d[m]; + for (size_t j = 0; j < m; ++j) + { + if (dmin > d[j]) dmin = d[j]; + if (dmax < d[j]) dmax = d[j]; + } + dij[0] = i * r_inv; + dij[1] = dmin; + D.push_back (dij); + dij[1] = dmax; + D.push_back (dij); + } +} + +/* + * Clip the Bezier curve "B" wrt the focus "F"; the new parameter interval for + * the clipped curve is returned through the output parameter "dom" + */ +OptInterval clip_interval (std::vector<Point> const& B, + std::vector<Point> const& F) +{ + std::vector<Point> D; // distance curve control points + distance_control_points(D, B, F); + //print(D, "D"); +// ConvexHull chD(D); +// std::vector<Point>& p = chD.boundary; // convex hull vertices + + ConvexHull p; + p.swap(D); + //print(p, "CH(D)"); + + bool plower, clower; + double t, tmin = 1, tmax = 0; + + plower = (p[0][Y] < 0); + if (p[0][Y] == 0) // on the x axis + { + if (tmin > p[0][X]) tmin = p[0][X]; + if (tmax < p[0][X]) tmax = p[0][X]; +// std::cerr << "0 : on x axis " << p[0] +// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; + } + + for (size_t i = 1; i < p.size(); ++i) + { + clower = (p[i][Y] < 0); + if (p[i][Y] == 0) // on x axis + { + if (tmin > p[i][X]) tmin = p[i][X]; + if (tmax < p[i][X]) tmax = p[i][X]; +// std::cerr << i << " : on x axis " << p[i] +// << " : tmin = " << tmin << ", tmax = " << tmax +// << std::endl; + } + else if (clower != plower) // cross the x axis + { + t = intersect(p[i-1], p[i], 0); + if (tmin > t) tmin = t; + if (tmax < t) tmax = t; + plower = clower; +// std::cerr << i << " : lower " << p[i] +// << " : tmin = " << tmin << ", tmax = " << tmax +// << std::endl; + } + } + + // we have to test the closing segment for intersection + size_t last = p.size() - 1; + clower = (p[0][Y] < 0); + if (clower != plower) // cross the x axis + { + t = intersect(p[last], p[0], 0); + if (tmin > t) tmin = t; + if (tmax < t) tmax = t; +// std::cerr << "0 : lower " << p[0] +// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl; + } + if (tmin == 1 && tmax == 0) { + return OptInterval(); + } else { + return Interval(tmin, tmax); + } +} + +/* + * Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating + * points which have collinear normals; the new parameter interval + * for the clipped curve is returned through the output parameter "dom" + */ +template <> +OptInterval clip<collinear_normal_tag> (std::vector<Point> const& A, + std::vector<Point> const& B, + double /*precision*/) +{ + std::vector<Point> F; + make_focus(F, A); + return clip_interval(B, F); +} + + + +const double MAX_PRECISION = 1e-8; +const double MIN_CLIPPED_SIZE_THRESHOLD = 0.8; +const Interval UNIT_INTERVAL(0,1); +const OptInterval EMPTY_INTERVAL; +const Interval H1_INTERVAL(0, 0.5); +const Interval H2_INTERVAL(nextafter(0.5, 1.0), 1.0); + +/* + * iterate + * + * input: + * A, B: control point sets of two bezier curves + * domA, domB: real parameter intervals of the two curves + * precision: required computational precision of the returned parameter ranges + * output: + * domsA, domsB: sets of parameter intervals + * + * The parameter intervals are computed by using a Bezier clipping algorithm, + * in case the clipping doesn't shrink the initial interval more than 20%, + * a subdivision step is performed. + * If during the computation both curves collapse to a single point + * the routine exits independently by the precision reached in the computation + * of the curve intervals. + */ +template <> +void iterate<intersection_point_tag> (std::vector<Interval>& domsA, + std::vector<Interval>& domsB, + std::vector<Point> const& A, + std::vector<Point> const& B, + Interval const& domA, + Interval const& domB, + double precision ) +{ + // in order to limit recursion + static size_t counter = 0; + if (domA.extent() == 1 && domB.extent() == 1) counter = 0; + if (++counter > 100) return; +#if VERBOSE + std::cerr << std::fixed << std::setprecision(16); + std::cerr << ">> curve subdision performed <<" << std::endl; + std::cerr << "dom(A) : " << domA << std::endl; + std::cerr << "dom(B) : " << domB << std::endl; +// std::cerr << "angle(A) : " << angle(A) << std::endl; +// std::cerr << "angle(B) : " << angle(B) << std::endl; +#endif + + if (precision < MAX_PRECISION) + precision = MAX_PRECISION; + + std::vector<Point> pA = A; + std::vector<Point> pB = B; + std::vector<Point>* C1 = &pA; + std::vector<Point>* C2 = &pB; + + Interval dompA = domA; + Interval dompB = domB; + Interval* dom1 = &dompA; + Interval* dom2 = &dompB; + + OptInterval dom; + + if ( is_constant(A, precision) && is_constant(B, precision) ){ + Point M1 = middle_point(C1->front(), C1->back()); + Point M2 = middle_point(C2->front(), C2->back()); + if (are_near(M1,M2)){ + domsA.push_back(domA); + domsB.push_back(domB); + } + return; + } + + size_t iter = 0; + while (++iter < 100 + && (dompA.extent() >= precision || dompB.extent() >= precision)) + { +#if VERBOSE + std::cerr << "iter: " << iter << std::endl; +#endif + dom = clip<intersection_point_tag>(*C1, *C2, precision); + + if (dom.empty()) + { +#if VERBOSE + std::cerr << "dom: empty" << std::endl; +#endif + return; + } +#if VERBOSE + std::cerr << "dom : " << dom << std::endl; +#endif + // all other cases where dom[0] > dom[1] are invalid + assert(dom->min() <= dom->max()); + + map_to(*dom2, *dom); + + portion(*C2, *dom); + if (is_constant(*C2, precision) && is_constant(*C1, precision)) + { + Point M1 = middle_point(C1->front(), C1->back()); + Point M2 = middle_point(C2->front(), C2->back()); +#if VERBOSE + std::cerr << "both curves are constant: \n" + << "M1: " << M1 << "\n" + << "M2: " << M2 << std::endl; + print(*C2, "C2"); + print(*C1, "C1"); +#endif + if (are_near(M1,M2)) + break; // append the new interval + else + return; // exit without appending any new interval + } + + + // if we have clipped less than 20% than we need to subdive the curve + // with the largest domain into two sub-curves + if (dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD) + { +#if VERBOSE + std::cerr << "clipped less than 20% : " << dom->extent() << std::endl; + std::cerr << "angle(pA) : " << angle(pA) << std::endl; + std::cerr << "angle(pB) : " << angle(pB) << std::endl; +#endif + std::vector<Point> pC1, pC2; + Interval dompC1, dompC2; + if (dompA.extent() > dompB.extent()) + { + pC1 = pC2 = pA; + portion(pC1, H1_INTERVAL); + portion(pC2, H2_INTERVAL); + dompC1 = dompC2 = dompA; + map_to(dompC1, H1_INTERVAL); + map_to(dompC2, H2_INTERVAL); + iterate<intersection_point_tag>(domsA, domsB, pC1, pB, + dompC1, dompB, precision); + iterate<intersection_point_tag>(domsA, domsB, pC2, pB, + dompC2, dompB, precision); + } + else + { + pC1 = pC2 = pB; + portion(pC1, H1_INTERVAL); + portion(pC2, H2_INTERVAL); + dompC1 = dompC2 = dompB; + map_to(dompC1, H1_INTERVAL); + map_to(dompC2, H2_INTERVAL); + iterate<intersection_point_tag>(domsB, domsA, pC1, pA, + dompC1, dompA, precision); + iterate<intersection_point_tag>(domsB, domsA, pC2, pA, + dompC2, dompA, precision); + } + return; + } + + swap(C1, C2); + swap(dom1, dom2); +#if VERBOSE + std::cerr << "dom(pA) : " << dompA << std::endl; + std::cerr << "dom(pB) : " << dompB << std::endl; +#endif + } + domsA.push_back(dompA); + domsB.push_back(dompB); +} + + +/* + * iterate + * + * input: + * A, B: control point sets of two bezier curves + * domA, domB: real parameter intervals of the two curves + * precision: required computational precision of the returned parameter ranges + * output: + * domsA, domsB: sets of parameter intervals + * + * The parameter intervals are computed by using a Bezier clipping algorithm, + * in case the clipping doesn't shrink the initial interval more than 20%, + * a subdivision step is performed. + * If during the computation one of the two curve interval length becomes less + * than MAX_PRECISION the routine exits independently by the precision reached + * in the computation of the other curve interval. + */ +template <> +void iterate<collinear_normal_tag> (std::vector<Interval>& domsA, + std::vector<Interval>& domsB, + std::vector<Point> const& A, + std::vector<Point> const& B, + Interval const& domA, + Interval const& domB, + double precision) +{ + // in order to limit recursion + static size_t counter = 0; + if (domA.extent() == 1 && domB.extent() == 1) counter = 0; + if (++counter > 100) return; +#if VERBOSE + std::cerr << std::fixed << std::setprecision(16); + std::cerr << ">> curve subdision performed <<" << std::endl; + std::cerr << "dom(A) : " << domA << std::endl; + std::cerr << "dom(B) : " << domB << std::endl; +// std::cerr << "angle(A) : " << angle(A) << std::endl; +// std::cerr << "angle(B) : " << angle(B) << std::endl; +#endif + + if (precision < MAX_PRECISION) + precision = MAX_PRECISION; + + std::vector<Point> pA = A; + std::vector<Point> pB = B; + std::vector<Point>* C1 = &pA; + std::vector<Point>* C2 = &pB; + + Interval dompA = domA; + Interval dompB = domB; + Interval* dom1 = &dompA; + Interval* dom2 = &dompB; + + OptInterval dom; + + size_t iter = 0; + while (++iter < 100 + && (dompA.extent() >= precision || dompB.extent() >= precision)) + { +#if VERBOSE + std::cerr << "iter: " << iter << std::endl; +#endif + dom = clip<collinear_normal_tag>(*C1, *C2, precision); + + if (dom.empty()) { +#if VERBOSE + std::cerr << "dom: empty" << std::endl; +#endif + return; + } +#if VERBOSE + std::cerr << "dom : " << dom << std::endl; +#endif + assert(dom->min() <= dom->max()); + + map_to(*dom2, *dom); + + // it's better to stop before losing computational precision + if (iter > 1 && (dom2->extent() <= MAX_PRECISION)) + { +#if VERBOSE + std::cerr << "beyond max precision limit" << std::endl; +#endif + break; + } + + portion(*C2, *dom); + if (iter > 1 && is_constant(*C2, precision)) + { +#if VERBOSE + std::cerr << "new curve portion pC1 is constant" << std::endl; +#endif + break; + } + + + // if we have clipped less than 20% than we need to subdive the curve + // with the largest domain into two sub-curves + if ( dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD) + { +#if VERBOSE + std::cerr << "clipped less than 20% : " << dom->extent() << std::endl; + std::cerr << "angle(pA) : " << angle(pA) << std::endl; + std::cerr << "angle(pB) : " << angle(pB) << std::endl; +#endif + std::vector<Point> pC1, pC2; + Interval dompC1, dompC2; + if (dompA.extent() > dompB.extent()) + { + if ((dompA.extent() / 2) < MAX_PRECISION) + { + break; + } + pC1 = pC2 = pA; + portion(pC1, H1_INTERVAL); + if (false && is_constant(pC1, precision)) + { +#if VERBOSE + std::cerr << "new curve portion pC1 is constant" << std::endl; +#endif + break; + } + portion(pC2, H2_INTERVAL); + if (is_constant(pC2, precision)) + { +#if VERBOSE + std::cerr << "new curve portion pC2 is constant" << std::endl; +#endif + break; + } + dompC1 = dompC2 = dompA; + map_to(dompC1, H1_INTERVAL); + map_to(dompC2, H2_INTERVAL); + iterate<collinear_normal_tag>(domsA, domsB, pC1, pB, + dompC1, dompB, precision); + iterate<collinear_normal_tag>(domsA, domsB, pC2, pB, + dompC2, dompB, precision); + } + else + { + if ((dompB.extent() / 2) < MAX_PRECISION) + { + break; + } + pC1 = pC2 = pB; + portion(pC1, H1_INTERVAL); + if (is_constant(pC1, precision)) + { +#if VERBOSE + std::cerr << "new curve portion pC1 is constant" << std::endl; +#endif + break; + } + portion(pC2, H2_INTERVAL); + if (is_constant(pC2, precision)) + { +#if VERBOSE + std::cerr << "new curve portion pC2 is constant" << std::endl; +#endif + break; + } + dompC1 = dompC2 = dompB; + map_to(dompC1, H1_INTERVAL); + map_to(dompC2, H2_INTERVAL); + iterate<collinear_normal_tag>(domsB, domsA, pC1, pA, + dompC1, dompA, precision); + iterate<collinear_normal_tag>(domsB, domsA, pC2, pA, + dompC2, dompA, precision); + } + return; + } + + swap(C1, C2); + swap(dom1, dom2); +#if VERBOSE + std::cerr << "dom(pA) : " << dompA << std::endl; + std::cerr << "dom(pB) : " << dompB << std::endl; +#endif + } + domsA.push_back(dompA); + domsB.push_back(dompB); +} + + +/* + * get_solutions + * + * input: A, B - set of control points of two Bezier curve + * input: precision - required precision of computation + * input: clip - the routine used for clipping + * output: xs - set of pairs of parameter values + * at which the clipping algorithm converges + * + * This routine is based on the Bezier Clipping Algorithm, + * see: Sederberg - Computer Aided Geometric Design + */ +template <typename Tag> +void get_solutions (std::vector< std::pair<double, double> >& xs, + std::vector<Point> const& A, + std::vector<Point> const& B, + double precision) +{ + std::pair<double, double> ci; + std::vector<Interval> domsA, domsB; + iterate<Tag> (domsA, domsB, A, B, UNIT_INTERVAL, UNIT_INTERVAL, precision); + if (domsA.size() != domsB.size()) + { + assert (domsA.size() == domsB.size()); + } + xs.clear(); + xs.reserve(domsA.size()); + for (size_t i = 0; i < domsA.size(); ++i) + { +#if VERBOSE + std::cerr << i << " : domA : " << domsA[i] << std::endl; + std::cerr << "extent A: " << domsA[i].extent() << " "; + std::cerr << "precision A: " << get_precision(domsA[i]) << std::endl; + std::cerr << i << " : domB : " << domsB[i] << std::endl; + std::cerr << "extent B: " << domsB[i].extent() << " "; + std::cerr << "precision B: " << get_precision(domsB[i]) << std::endl; +#endif + ci.first = domsA[i].middle(); + ci.second = domsB[i].middle(); + xs.push_back(ci); + } +} + +} /* end namespace bezier_clipping */ } /* end namespace detail */ + + +/* + * find_collinear_normal + * + * input: A, B - set of control points of two Bezier curve + * input: precision - required precision of computation + * output: xs - set of pairs of parameter values + * at which there are collinear normals + * + * This routine is based on the Bezier Clipping Algorithm, + * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping + */ +void find_collinear_normal (std::vector< std::pair<double, double> >& xs, + std::vector<Point> const& A, + std::vector<Point> const& B, + double precision) +{ + using detail::bezier_clipping::get_solutions; + using detail::bezier_clipping::collinear_normal_tag; + get_solutions<collinear_normal_tag>(xs, A, B, precision); +} + + +/* + * find_intersections_bezier_clipping + * + * input: A, B - set of control points of two Bezier curve + * input: precision - required precision of computation + * output: xs - set of pairs of parameter values + * at which crossing happens + * + * This routine is based on the Bezier Clipping Algorithm, + * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping + */ +void find_intersections_bezier_clipping (std::vector< std::pair<double, double> >& xs, + std::vector<Point> const& A, + std::vector<Point> const& B, + double precision) +{ + using detail::bezier_clipping::get_solutions; + using detail::bezier_clipping::intersection_point_tag; + get_solutions<intersection_point_tag>(xs, A, B, precision); +} + +} // end namespace Geom + + + + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |