summaryrefslogtreecommitdiffstats
path: root/src/2geom/bezier-clipping.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/bezier-clipping.cpp')
-rw-r--r--src/2geom/bezier-clipping.cpp1163
1 files changed, 1163 insertions, 0 deletions
diff --git a/src/2geom/bezier-clipping.cpp b/src/2geom/bezier-clipping.cpp
new file mode 100644
index 0000000..e7bbcc3
--- /dev/null
+++ b/src/2geom/bezier-clipping.cpp
@@ -0,0 +1,1163 @@
+/*
+ * Implement the Bezier clipping algorithm for finding
+ * Bezier curve intersection points and collinear normals
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+
+
+#include <2geom/basic-intersection.h>
+#include <2geom/choose.h>
+#include <2geom/point.h>
+#include <2geom/interval.h>
+#include <2geom/bezier.h>
+#include <2geom/numeric/matrix.h>
+#include <2geom/convex-hull.h>
+#include <2geom/line.h>
+
+#include <cassert>
+#include <vector>
+#include <algorithm>
+#include <utility>
+//#include <iomanip>
+
+using std::swap;
+
+
+#define VERBOSE 0
+#define CHECK 0
+
+
+namespace Geom {
+
+namespace detail { namespace bezier_clipping {
+
+////////////////////////////////////////////////////////////////////////////////
+// for debugging
+//
+
+void print(std::vector<Point> const& cp, const char* msg = "")
+{
+ std::cerr << msg << std::endl;
+ for (size_t i = 0; i < cp.size(); ++i)
+ std::cerr << i << " : " << cp[i] << std::endl;
+}
+
+template< class charT >
+std::basic_ostream<charT> &
+operator<< (std::basic_ostream<charT> & os, const Interval & I)
+{
+ os << "[" << I.min() << ", " << I.max() << "]";
+ return os;
+}
+
+double angle (std::vector<Point> const& A)
+{
+ size_t n = A.size() -1;
+ double a = std::atan2(A[n][Y] - A[0][Y], A[n][X] - A[0][X]);
+ return (180 * a / M_PI);
+}
+
+size_t get_precision(Interval const& I)
+{
+ double d = I.extent();
+ double e = 0.1, p = 10;
+ int n = 0;
+ while (n < 16 && d < e)
+ {
+ p *= 10;
+ e = 1/p;
+ ++n;
+ }
+ return n;
+}
+
+void range_assertion(int k, int m, int n, const char* msg)
+{
+ if ( k < m || k > n)
+ {
+ std::cerr << "range assertion failed: \n"
+ << msg << std::endl
+ << "value: " << k
+ << " range: " << m << ", " << n << std::endl;
+ assert (k >= m && k <= n);
+ }
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// numerical routines
+
+/*
+ * Compute the binomial coefficient (n, k)
+ */
+double binomial(unsigned int n, unsigned int k)
+{
+ return choose<double>(n, k);
+}
+
+/*
+ * Compute the determinant of the 2x2 matrix with column the point P1, P2
+ */
+double det(Point const& P1, Point const& P2)
+{
+ return P1[X]*P2[Y] - P1[Y]*P2[X];
+}
+
+/*
+ * Solve the linear system [P1,P2] * P = Q
+ * in case there isn't exactly one solution the routine returns false
+ */
+bool solve(Point & P, Point const& P1, Point const& P2, Point const& Q)
+{
+ double d = det(P1, P2);
+ if (d == 0) return false;
+ d = 1 / d;
+ P[X] = det(Q, P2) * d;
+ P[Y] = det(P1, Q) * d;
+ return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// interval routines
+
+/*
+ * Map the sub-interval I in [0,1] into the interval J and assign it to J
+ */
+void map_to(Interval & J, Interval const& I)
+{
+ J.setEnds(J.valueAt(I.min()), J.valueAt(I.max()));
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// bezier curve routines
+
+/*
+ * Return true if all the Bezier curve control points are near,
+ * false otherwise
+ */
+// Bezier.isConstant(precision)
+bool is_constant(std::vector<Point> const& A, double precision)
+{
+ for (unsigned int i = 1; i < A.size(); ++i)
+ {
+ if(!are_near(A[i], A[0], precision))
+ return false;
+ }
+ return true;
+}
+
+/*
+ * Compute the hodograph of the bezier curve B and return it in D
+ */
+// derivative(Bezier)
+void derivative(std::vector<Point> & D, std::vector<Point> const& B)
+{
+ D.clear();
+ size_t sz = B.size();
+ if (sz == 0) return;
+ if (sz == 1)
+ {
+ D.resize(1, Point(0,0));
+ return;
+ }
+ size_t n = sz-1;
+ D.reserve(n);
+ for (size_t i = 0; i < n; ++i)
+ {
+ D.push_back(n*(B[i+1] - B[i]));
+ }
+}
+
+/*
+ * Compute the hodograph of the Bezier curve B rotated of 90 degree
+ * and return it in D; we have N(t) orthogonal to B(t) for any t
+ */
+// rot90(derivative(Bezier))
+void normal(std::vector<Point> & N, std::vector<Point> const& B)
+{
+ derivative(N,B);
+ for (size_t i = 0; i < N.size(); ++i)
+ {
+ N[i] = rot90(N[i]);
+ }
+}
+
+/*
+ * Compute the portion of the Bezier curve "B" wrt the interval [0,t]
+ */
+// portion(Bezier, 0, t)
+void left_portion(Coord t, std::vector<Point> & B)
+{
+ size_t n = B.size();
+ for (size_t i = 1; i < n; ++i)
+ {
+ for (size_t j = n-1; j > i-1 ; --j)
+ {
+ B[j] = lerp(t, B[j-1], B[j]);
+ }
+ }
+}
+
+/*
+ * Compute the portion of the Bezier curve "B" wrt the interval [t,1]
+ */
+// portion(Bezier, t, 1)
+void right_portion(Coord t, std::vector<Point> & B)
+{
+ size_t n = B.size();
+ for (size_t i = 1; i < n; ++i)
+ {
+ for (size_t j = 0; j < n-i; ++j)
+ {
+ B[j] = lerp(t, B[j], B[j+1]);
+ }
+ }
+}
+
+/*
+ * Compute the portion of the Bezier curve "B" wrt the interval "I"
+ */
+// portion(Bezier, I)
+void portion (std::vector<Point> & B , Interval const& I)
+{
+ if (I.min() == 0)
+ {
+ if (I.max() == 1) return;
+ left_portion(I.max(), B);
+ return;
+ }
+ right_portion(I.min(), B);
+ if (I.max() == 1) return;
+ double t = I.extent() / (1 - I.min());
+ left_portion(t, B);
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// tags
+
+struct intersection_point_tag;
+struct collinear_normal_tag;
+template <typename Tag>
+OptInterval clip(std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ double precision);
+template <typename Tag>
+void iterate(std::vector<Interval>& domsA,
+ std::vector<Interval>& domsB,
+ std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ Interval const& domA,
+ Interval const& domB,
+ double precision );
+
+
+////////////////////////////////////////////////////////////////////////////////
+// intersection
+
+/*
+ * Make up an orientation line using the control points c[i] and c[j]
+ * the line is returned in the output parameter "l" in the form of a 3 element
+ * vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized.
+ */
+// Line(c[i], c[j])
+void orientation_line (std::vector<double> & l,
+ std::vector<Point> const& c,
+ size_t i, size_t j)
+{
+ l[0] = c[j][Y] - c[i][Y];
+ l[1] = c[i][X] - c[j][X];
+ l[2] = cross(c[j], c[i]);
+ double length = std::sqrt(l[0] * l[0] + l[1] * l[1]);
+ assert (length != 0);
+ l[0] /= length;
+ l[1] /= length;
+ l[2] /= length;
+}
+
+/*
+ * Pick up an orientation line for the Bezier curve "c" and return it in
+ * the output parameter "l"
+ */
+Line pick_orientation_line (std::vector<Point> const &c, double precision)
+{
+ size_t i = c.size();
+ while (--i > 0 && are_near(c[0], c[i], precision))
+ {}
+
+ // this should never happen because when a new curve portion is created
+ // we check that it is not constant;
+ // however this requires that the precision used in the is_constant
+ // routine has to be the same used here in the are_near test
+ assert(i != 0);
+
+ Line line(c[0], c[i]);
+ return line;
+ //std::cerr << "i = " << i << std::endl;
+}
+
+/*
+ * Make up an orientation line for constant bezier curve;
+ * the orientation line is made up orthogonal to the other curve base line;
+ * the line is returned in the output parameter "l" in the form of a 3 element
+ * vector : l[0] * x + l[1] * y + l[2] == 0; the line is normalized.
+ */
+Line orthogonal_orientation_line (std::vector<Point> const &c,
+ Point const &p,
+ double precision)
+{
+ // this should never happen
+ assert(!is_constant(c, precision));
+
+ Line line(p, (c.back() - c.front()).cw() + p);
+ return line;
+}
+
+/*
+ * Compute the signed distance of the point "P" from the normalized line l
+ */
+double signed_distance(Point const &p, Line const &l)
+{
+ Coord a, b, c;
+ l.coefficients(a, b, c);
+ return a * p[X] + b * p[Y] + c;
+}
+
+/*
+ * Compute the min and max distance of the control points of the Bezier
+ * curve "c" from the normalized orientation line "l".
+ * This bounds are returned through the output Interval parameter"bound".
+ */
+Interval fat_line_bounds (std::vector<Point> const &c,
+ Line const &l)
+{
+ Interval bound(0, 0);
+ for (size_t i = 0; i < c.size(); ++i) {
+ bound.expandTo(signed_distance(c[i], l));
+ }
+ return bound;
+}
+
+/*
+ * return the x component of the intersection point between the line
+ * passing through points p1, p2 and the line Y = "y"
+ */
+double intersect (Point const& p1, Point const& p2, double y)
+{
+ // we are sure that p2[Y] != p1[Y] because this routine is called
+ // only when the lower or the upper bound is crossed
+ double dy = (p2[Y] - p1[Y]);
+ double s = (y - p1[Y]) / dy;
+ return (p2[X]-p1[X])*s + p1[X];
+}
+
+/*
+ * Clip the Bezier curve "B" wrt the fat line defined by the orientation
+ * line "l" and the interval range "bound", the new parameter interval for
+ * the clipped curve is returned through the output parameter "dom"
+ */
+OptInterval clip_interval (std::vector<Point> const& B,
+ Line const &l,
+ Interval const &bound)
+{
+ double n = B.size() - 1; // number of sub-intervals
+ std::vector<Point> D; // distance curve control points
+ D.reserve (B.size());
+ for (size_t i = 0; i < B.size(); ++i)
+ {
+ const double d = signed_distance(B[i], l);
+ D.push_back (Point(i/n, d));
+ }
+ //print(D);
+
+ ConvexHull p;
+ p.swap(D);
+ //print(p);
+
+ bool plower, phigher;
+ bool clower, chigher;
+ double t, tmin = 1, tmax = 0;
+// std::cerr << "bound : " << bound << std::endl;
+
+ plower = (p[0][Y] < bound.min());
+ phigher = (p[0][Y] > bound.max());
+ if (!(plower || phigher)) // inside the fat line
+ {
+ if (tmin > p[0][X]) tmin = p[0][X];
+ if (tmax < p[0][X]) tmax = p[0][X];
+// std::cerr << "0 : inside " << p[0]
+// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
+ }
+
+ for (size_t i = 1; i < p.size(); ++i)
+ {
+ clower = (p[i][Y] < bound.min());
+ chigher = (p[i][Y] > bound.max());
+ if (!(clower || chigher)) // inside the fat line
+ {
+ if (tmin > p[i][X]) tmin = p[i][X];
+ if (tmax < p[i][X]) tmax = p[i][X];
+// std::cerr << i << " : inside " << p[i]
+// << " : tmin = " << tmin << ", tmax = " << tmax
+// << std::endl;
+ }
+ if (clower != plower) // cross the lower bound
+ {
+ t = intersect(p[i-1], p[i], bound.min());
+ if (tmin > t) tmin = t;
+ if (tmax < t) tmax = t;
+ plower = clower;
+// std::cerr << i << " : lower " << p[i]
+// << " : tmin = " << tmin << ", tmax = " << tmax
+// << std::endl;
+ }
+ if (chigher != phigher) // cross the upper bound
+ {
+ t = intersect(p[i-1], p[i], bound.max());
+ if (tmin > t) tmin = t;
+ if (tmax < t) tmax = t;
+ phigher = chigher;
+// std::cerr << i << " : higher " << p[i]
+// << " : tmin = " << tmin << ", tmax = " << tmax
+// << std::endl;
+ }
+ }
+
+ // we have to test the closing segment for intersection
+ size_t last = p.size() - 1;
+ clower = (p[0][Y] < bound.min());
+ chigher = (p[0][Y] > bound.max());
+ if (clower != plower) // cross the lower bound
+ {
+ t = intersect(p[last], p[0], bound.min());
+ if (tmin > t) tmin = t;
+ if (tmax < t) tmax = t;
+// std::cerr << "0 : lower " << p[0]
+// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
+ }
+ if (chigher != phigher) // cross the upper bound
+ {
+ t = intersect(p[last], p[0], bound.max());
+ if (tmin > t) tmin = t;
+ if (tmax < t) tmax = t;
+// std::cerr << "0 : higher " << p[0]
+// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
+ }
+
+ if (tmin == 1 && tmax == 0) {
+ return OptInterval();
+ } else {
+ return Interval(tmin, tmax);
+ }
+}
+
+/*
+ * Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating
+ * intersection points the new parameter interval for the clipped curve
+ * is returned through the output parameter "dom"
+ */
+template <>
+OptInterval clip<intersection_point_tag> (std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ double precision)
+{
+ Line bl;
+ if (is_constant(A, precision)) {
+ Point M = middle_point(A.front(), A.back());
+ bl = orthogonal_orientation_line(B, M, precision);
+ } else {
+ bl = pick_orientation_line(A, precision);
+ }
+ bl.normalize();
+ Interval bound = fat_line_bounds(A, bl);
+ return clip_interval(B, bl, bound);
+}
+
+
+///////////////////////////////////////////////////////////////////////////////
+// collinear normal
+
+/*
+ * Compute a closed focus for the Bezier curve B and return it in F
+ * A focus is any curve through which all lines perpendicular to B(t) pass.
+ */
+void make_focus (std::vector<Point> & F, std::vector<Point> const& B)
+{
+ assert (B.size() > 2);
+ size_t n = B.size() - 1;
+ normal(F, B);
+ Point c(1, 1);
+#if VERBOSE
+ if (!solve(c, F[0], -F[n-1], B[n]-B[0]))
+ {
+ std::cerr << "make_focus: unable to make up a closed focus" << std::endl;
+ }
+#else
+ solve(c, F[0], -F[n-1], B[n]-B[0]);
+#endif
+// std::cerr << "c = " << c << std::endl;
+
+
+ // B(t) + c(t) * N(t)
+ double n_inv = 1 / (double)(n);
+ Point c0ni;
+ F.push_back(c[1] * F[n-1]);
+ F[n] += B[n];
+ for (size_t i = n-1; i > 0; --i)
+ {
+ F[i] *= -c[0];
+ c0ni = F[i];
+ F[i] += (c[1] * F[i-1]);
+ F[i] *= (i * n_inv);
+ F[i] -= c0ni;
+ F[i] += B[i];
+ }
+ F[0] *= c[0];
+ F[0] += B[0];
+}
+
+/*
+ * Compute the projection on the plane (t, d) of the control points
+ * (t, u, D(t,u)) where D(t,u) = <(B(t) - F(u)), B'(t)> with 0 <= t, u <= 1
+ * B is a Bezier curve and F is a focus of another Bezier curve.
+ * See Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping.
+ */
+void distance_control_points (std::vector<Point> & D,
+ std::vector<Point> const& B,
+ std::vector<Point> const& F)
+{
+ assert (B.size() > 1);
+ assert (!F.empty());
+ const size_t n = B.size() - 1;
+ const size_t m = F.size() - 1;
+ const size_t r = 2 * n - 1;
+ const double r_inv = 1 / (double)(r);
+ D.clear();
+ D.reserve (B.size() * F.size());
+
+ std::vector<Point> dB;
+ dB.reserve(n);
+ for (size_t k = 0; k < n; ++k)
+ {
+ dB.push_back (B[k+1] - B[k]);
+ }
+ NL::Matrix dBB(n,B.size());
+ for (size_t i = 0; i < n; ++i)
+ for (size_t j = 0; j < B.size(); ++j)
+ dBB(i,j) = dot (dB[i], B[j]);
+ NL::Matrix dBF(n, F.size());
+ for (size_t i = 0; i < n; ++i)
+ for (size_t j = 0; j < F.size(); ++j)
+ dBF(i,j) = dot (dB[i], F[j]);
+
+ size_t l;
+ double bc;
+ Point dij;
+ std::vector<double> d(F.size());
+ for (size_t i = 0; i <= r; ++i)
+ {
+ for (size_t j = 0; j <= m; ++j)
+ {
+ d[j] = 0;
+ }
+ const size_t k0 = std::max(i, n) - n;
+ const size_t kn = std::min(i, n-1);
+ const double bri = n / binomial(r,i);
+ for (size_t k = k0; k <= kn; ++k)
+ {
+ //if (k > i || (i-k) > n) continue;
+ l = i - k;
+#if CHECK
+ assert (l <= n);
+#endif
+ bc = bri * binomial(n,l) * binomial(n-1, k);
+ for (size_t j = 0; j <= m; ++j)
+ {
+ //d[j] += bc * dot(dB[k], B[l] - F[j]);
+ d[j] += bc * (dBB(k,l) - dBF(k,j));
+ }
+ }
+ double dmin, dmax;
+ dmin = dmax = d[m];
+ for (size_t j = 0; j < m; ++j)
+ {
+ if (dmin > d[j]) dmin = d[j];
+ if (dmax < d[j]) dmax = d[j];
+ }
+ dij[0] = i * r_inv;
+ dij[1] = dmin;
+ D.push_back (dij);
+ dij[1] = dmax;
+ D.push_back (dij);
+ }
+}
+
+/*
+ * Clip the Bezier curve "B" wrt the focus "F"; the new parameter interval for
+ * the clipped curve is returned through the output parameter "dom"
+ */
+OptInterval clip_interval (std::vector<Point> const& B,
+ std::vector<Point> const& F)
+{
+ std::vector<Point> D; // distance curve control points
+ distance_control_points(D, B, F);
+ //print(D, "D");
+// ConvexHull chD(D);
+// std::vector<Point>& p = chD.boundary; // convex hull vertices
+
+ ConvexHull p;
+ p.swap(D);
+ //print(p, "CH(D)");
+
+ bool plower, clower;
+ double t, tmin = 1, tmax = 0;
+
+ plower = (p[0][Y] < 0);
+ if (p[0][Y] == 0) // on the x axis
+ {
+ if (tmin > p[0][X]) tmin = p[0][X];
+ if (tmax < p[0][X]) tmax = p[0][X];
+// std::cerr << "0 : on x axis " << p[0]
+// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
+ }
+
+ for (size_t i = 1; i < p.size(); ++i)
+ {
+ clower = (p[i][Y] < 0);
+ if (p[i][Y] == 0) // on x axis
+ {
+ if (tmin > p[i][X]) tmin = p[i][X];
+ if (tmax < p[i][X]) tmax = p[i][X];
+// std::cerr << i << " : on x axis " << p[i]
+// << " : tmin = " << tmin << ", tmax = " << tmax
+// << std::endl;
+ }
+ else if (clower != plower) // cross the x axis
+ {
+ t = intersect(p[i-1], p[i], 0);
+ if (tmin > t) tmin = t;
+ if (tmax < t) tmax = t;
+ plower = clower;
+// std::cerr << i << " : lower " << p[i]
+// << " : tmin = " << tmin << ", tmax = " << tmax
+// << std::endl;
+ }
+ }
+
+ // we have to test the closing segment for intersection
+ size_t last = p.size() - 1;
+ clower = (p[0][Y] < 0);
+ if (clower != plower) // cross the x axis
+ {
+ t = intersect(p[last], p[0], 0);
+ if (tmin > t) tmin = t;
+ if (tmax < t) tmax = t;
+// std::cerr << "0 : lower " << p[0]
+// << " : tmin = " << tmin << ", tmax = " << tmax << std::endl;
+ }
+ if (tmin == 1 && tmax == 0) {
+ return OptInterval();
+ } else {
+ return Interval(tmin, tmax);
+ }
+}
+
+/*
+ * Clip the Bezier curve "B" wrt the Bezier curve "A" for individuating
+ * points which have collinear normals; the new parameter interval
+ * for the clipped curve is returned through the output parameter "dom"
+ */
+template <>
+OptInterval clip<collinear_normal_tag> (std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ double /*precision*/)
+{
+ std::vector<Point> F;
+ make_focus(F, A);
+ return clip_interval(B, F);
+}
+
+
+
+const double MAX_PRECISION = 1e-8;
+const double MIN_CLIPPED_SIZE_THRESHOLD = 0.8;
+const Interval UNIT_INTERVAL(0,1);
+const OptInterval EMPTY_INTERVAL;
+const Interval H1_INTERVAL(0, 0.5);
+const Interval H2_INTERVAL(nextafter(0.5, 1.0), 1.0);
+
+/*
+ * iterate
+ *
+ * input:
+ * A, B: control point sets of two bezier curves
+ * domA, domB: real parameter intervals of the two curves
+ * precision: required computational precision of the returned parameter ranges
+ * output:
+ * domsA, domsB: sets of parameter intervals
+ *
+ * The parameter intervals are computed by using a Bezier clipping algorithm,
+ * in case the clipping doesn't shrink the initial interval more than 20%,
+ * a subdivision step is performed.
+ * If during the computation both curves collapse to a single point
+ * the routine exits independently by the precision reached in the computation
+ * of the curve intervals.
+ */
+template <>
+void iterate<intersection_point_tag> (std::vector<Interval>& domsA,
+ std::vector<Interval>& domsB,
+ std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ Interval const& domA,
+ Interval const& domB,
+ double precision )
+{
+ // in order to limit recursion
+ static size_t counter = 0;
+ if (domA.extent() == 1 && domB.extent() == 1) counter = 0;
+ if (++counter > 100) return;
+#if VERBOSE
+ std::cerr << std::fixed << std::setprecision(16);
+ std::cerr << ">> curve subdision performed <<" << std::endl;
+ std::cerr << "dom(A) : " << domA << std::endl;
+ std::cerr << "dom(B) : " << domB << std::endl;
+// std::cerr << "angle(A) : " << angle(A) << std::endl;
+// std::cerr << "angle(B) : " << angle(B) << std::endl;
+#endif
+
+ if (precision < MAX_PRECISION)
+ precision = MAX_PRECISION;
+
+ std::vector<Point> pA = A;
+ std::vector<Point> pB = B;
+ std::vector<Point>* C1 = &pA;
+ std::vector<Point>* C2 = &pB;
+
+ Interval dompA = domA;
+ Interval dompB = domB;
+ Interval* dom1 = &dompA;
+ Interval* dom2 = &dompB;
+
+ OptInterval dom;
+
+ if ( is_constant(A, precision) && is_constant(B, precision) ){
+ Point M1 = middle_point(C1->front(), C1->back());
+ Point M2 = middle_point(C2->front(), C2->back());
+ if (are_near(M1,M2)){
+ domsA.push_back(domA);
+ domsB.push_back(domB);
+ }
+ return;
+ }
+
+ size_t iter = 0;
+ while (++iter < 100
+ && (dompA.extent() >= precision || dompB.extent() >= precision))
+ {
+#if VERBOSE
+ std::cerr << "iter: " << iter << std::endl;
+#endif
+ dom = clip<intersection_point_tag>(*C1, *C2, precision);
+
+ if (dom.empty())
+ {
+#if VERBOSE
+ std::cerr << "dom: empty" << std::endl;
+#endif
+ return;
+ }
+#if VERBOSE
+ std::cerr << "dom : " << dom << std::endl;
+#endif
+ // all other cases where dom[0] > dom[1] are invalid
+ assert(dom->min() <= dom->max());
+
+ map_to(*dom2, *dom);
+
+ portion(*C2, *dom);
+ if (is_constant(*C2, precision) && is_constant(*C1, precision))
+ {
+ Point M1 = middle_point(C1->front(), C1->back());
+ Point M2 = middle_point(C2->front(), C2->back());
+#if VERBOSE
+ std::cerr << "both curves are constant: \n"
+ << "M1: " << M1 << "\n"
+ << "M2: " << M2 << std::endl;
+ print(*C2, "C2");
+ print(*C1, "C1");
+#endif
+ if (are_near(M1,M2))
+ break; // append the new interval
+ else
+ return; // exit without appending any new interval
+ }
+
+
+ // if we have clipped less than 20% than we need to subdive the curve
+ // with the largest domain into two sub-curves
+ if (dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD)
+ {
+#if VERBOSE
+ std::cerr << "clipped less than 20% : " << dom->extent() << std::endl;
+ std::cerr << "angle(pA) : " << angle(pA) << std::endl;
+ std::cerr << "angle(pB) : " << angle(pB) << std::endl;
+#endif
+ std::vector<Point> pC1, pC2;
+ Interval dompC1, dompC2;
+ if (dompA.extent() > dompB.extent())
+ {
+ pC1 = pC2 = pA;
+ portion(pC1, H1_INTERVAL);
+ portion(pC2, H2_INTERVAL);
+ dompC1 = dompC2 = dompA;
+ map_to(dompC1, H1_INTERVAL);
+ map_to(dompC2, H2_INTERVAL);
+ iterate<intersection_point_tag>(domsA, domsB, pC1, pB,
+ dompC1, dompB, precision);
+ iterate<intersection_point_tag>(domsA, domsB, pC2, pB,
+ dompC2, dompB, precision);
+ }
+ else
+ {
+ pC1 = pC2 = pB;
+ portion(pC1, H1_INTERVAL);
+ portion(pC2, H2_INTERVAL);
+ dompC1 = dompC2 = dompB;
+ map_to(dompC1, H1_INTERVAL);
+ map_to(dompC2, H2_INTERVAL);
+ iterate<intersection_point_tag>(domsB, domsA, pC1, pA,
+ dompC1, dompA, precision);
+ iterate<intersection_point_tag>(domsB, domsA, pC2, pA,
+ dompC2, dompA, precision);
+ }
+ return;
+ }
+
+ swap(C1, C2);
+ swap(dom1, dom2);
+#if VERBOSE
+ std::cerr << "dom(pA) : " << dompA << std::endl;
+ std::cerr << "dom(pB) : " << dompB << std::endl;
+#endif
+ }
+ domsA.push_back(dompA);
+ domsB.push_back(dompB);
+}
+
+
+/*
+ * iterate
+ *
+ * input:
+ * A, B: control point sets of two bezier curves
+ * domA, domB: real parameter intervals of the two curves
+ * precision: required computational precision of the returned parameter ranges
+ * output:
+ * domsA, domsB: sets of parameter intervals
+ *
+ * The parameter intervals are computed by using a Bezier clipping algorithm,
+ * in case the clipping doesn't shrink the initial interval more than 20%,
+ * a subdivision step is performed.
+ * If during the computation one of the two curve interval length becomes less
+ * than MAX_PRECISION the routine exits independently by the precision reached
+ * in the computation of the other curve interval.
+ */
+template <>
+void iterate<collinear_normal_tag> (std::vector<Interval>& domsA,
+ std::vector<Interval>& domsB,
+ std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ Interval const& domA,
+ Interval const& domB,
+ double precision)
+{
+ // in order to limit recursion
+ static size_t counter = 0;
+ if (domA.extent() == 1 && domB.extent() == 1) counter = 0;
+ if (++counter > 100) return;
+#if VERBOSE
+ std::cerr << std::fixed << std::setprecision(16);
+ std::cerr << ">> curve subdision performed <<" << std::endl;
+ std::cerr << "dom(A) : " << domA << std::endl;
+ std::cerr << "dom(B) : " << domB << std::endl;
+// std::cerr << "angle(A) : " << angle(A) << std::endl;
+// std::cerr << "angle(B) : " << angle(B) << std::endl;
+#endif
+
+ if (precision < MAX_PRECISION)
+ precision = MAX_PRECISION;
+
+ std::vector<Point> pA = A;
+ std::vector<Point> pB = B;
+ std::vector<Point>* C1 = &pA;
+ std::vector<Point>* C2 = &pB;
+
+ Interval dompA = domA;
+ Interval dompB = domB;
+ Interval* dom1 = &dompA;
+ Interval* dom2 = &dompB;
+
+ OptInterval dom;
+
+ size_t iter = 0;
+ while (++iter < 100
+ && (dompA.extent() >= precision || dompB.extent() >= precision))
+ {
+#if VERBOSE
+ std::cerr << "iter: " << iter << std::endl;
+#endif
+ dom = clip<collinear_normal_tag>(*C1, *C2, precision);
+
+ if (dom.empty()) {
+#if VERBOSE
+ std::cerr << "dom: empty" << std::endl;
+#endif
+ return;
+ }
+#if VERBOSE
+ std::cerr << "dom : " << dom << std::endl;
+#endif
+ assert(dom->min() <= dom->max());
+
+ map_to(*dom2, *dom);
+
+ // it's better to stop before losing computational precision
+ if (iter > 1 && (dom2->extent() <= MAX_PRECISION))
+ {
+#if VERBOSE
+ std::cerr << "beyond max precision limit" << std::endl;
+#endif
+ break;
+ }
+
+ portion(*C2, *dom);
+ if (iter > 1 && is_constant(*C2, precision))
+ {
+#if VERBOSE
+ std::cerr << "new curve portion pC1 is constant" << std::endl;
+#endif
+ break;
+ }
+
+
+ // if we have clipped less than 20% than we need to subdive the curve
+ // with the largest domain into two sub-curves
+ if ( dom->extent() > MIN_CLIPPED_SIZE_THRESHOLD)
+ {
+#if VERBOSE
+ std::cerr << "clipped less than 20% : " << dom->extent() << std::endl;
+ std::cerr << "angle(pA) : " << angle(pA) << std::endl;
+ std::cerr << "angle(pB) : " << angle(pB) << std::endl;
+#endif
+ std::vector<Point> pC1, pC2;
+ Interval dompC1, dompC2;
+ if (dompA.extent() > dompB.extent())
+ {
+ if ((dompA.extent() / 2) < MAX_PRECISION)
+ {
+ break;
+ }
+ pC1 = pC2 = pA;
+ portion(pC1, H1_INTERVAL);
+ if (false && is_constant(pC1, precision))
+ {
+#if VERBOSE
+ std::cerr << "new curve portion pC1 is constant" << std::endl;
+#endif
+ break;
+ }
+ portion(pC2, H2_INTERVAL);
+ if (is_constant(pC2, precision))
+ {
+#if VERBOSE
+ std::cerr << "new curve portion pC2 is constant" << std::endl;
+#endif
+ break;
+ }
+ dompC1 = dompC2 = dompA;
+ map_to(dompC1, H1_INTERVAL);
+ map_to(dompC2, H2_INTERVAL);
+ iterate<collinear_normal_tag>(domsA, domsB, pC1, pB,
+ dompC1, dompB, precision);
+ iterate<collinear_normal_tag>(domsA, domsB, pC2, pB,
+ dompC2, dompB, precision);
+ }
+ else
+ {
+ if ((dompB.extent() / 2) < MAX_PRECISION)
+ {
+ break;
+ }
+ pC1 = pC2 = pB;
+ portion(pC1, H1_INTERVAL);
+ if (is_constant(pC1, precision))
+ {
+#if VERBOSE
+ std::cerr << "new curve portion pC1 is constant" << std::endl;
+#endif
+ break;
+ }
+ portion(pC2, H2_INTERVAL);
+ if (is_constant(pC2, precision))
+ {
+#if VERBOSE
+ std::cerr << "new curve portion pC2 is constant" << std::endl;
+#endif
+ break;
+ }
+ dompC1 = dompC2 = dompB;
+ map_to(dompC1, H1_INTERVAL);
+ map_to(dompC2, H2_INTERVAL);
+ iterate<collinear_normal_tag>(domsB, domsA, pC1, pA,
+ dompC1, dompA, precision);
+ iterate<collinear_normal_tag>(domsB, domsA, pC2, pA,
+ dompC2, dompA, precision);
+ }
+ return;
+ }
+
+ swap(C1, C2);
+ swap(dom1, dom2);
+#if VERBOSE
+ std::cerr << "dom(pA) : " << dompA << std::endl;
+ std::cerr << "dom(pB) : " << dompB << std::endl;
+#endif
+ }
+ domsA.push_back(dompA);
+ domsB.push_back(dompB);
+}
+
+
+/*
+ * get_solutions
+ *
+ * input: A, B - set of control points of two Bezier curve
+ * input: precision - required precision of computation
+ * input: clip - the routine used for clipping
+ * output: xs - set of pairs of parameter values
+ * at which the clipping algorithm converges
+ *
+ * This routine is based on the Bezier Clipping Algorithm,
+ * see: Sederberg - Computer Aided Geometric Design
+ */
+template <typename Tag>
+void get_solutions (std::vector< std::pair<double, double> >& xs,
+ std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ double precision)
+{
+ std::pair<double, double> ci;
+ std::vector<Interval> domsA, domsB;
+ iterate<Tag> (domsA, domsB, A, B, UNIT_INTERVAL, UNIT_INTERVAL, precision);
+ if (domsA.size() != domsB.size())
+ {
+ assert (domsA.size() == domsB.size());
+ }
+ xs.clear();
+ xs.reserve(domsA.size());
+ for (size_t i = 0; i < domsA.size(); ++i)
+ {
+#if VERBOSE
+ std::cerr << i << " : domA : " << domsA[i] << std::endl;
+ std::cerr << "extent A: " << domsA[i].extent() << " ";
+ std::cerr << "precision A: " << get_precision(domsA[i]) << std::endl;
+ std::cerr << i << " : domB : " << domsB[i] << std::endl;
+ std::cerr << "extent B: " << domsB[i].extent() << " ";
+ std::cerr << "precision B: " << get_precision(domsB[i]) << std::endl;
+#endif
+ ci.first = domsA[i].middle();
+ ci.second = domsB[i].middle();
+ xs.push_back(ci);
+ }
+}
+
+} /* end namespace bezier_clipping */ } /* end namespace detail */
+
+
+/*
+ * find_collinear_normal
+ *
+ * input: A, B - set of control points of two Bezier curve
+ * input: precision - required precision of computation
+ * output: xs - set of pairs of parameter values
+ * at which there are collinear normals
+ *
+ * This routine is based on the Bezier Clipping Algorithm,
+ * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping
+ */
+void find_collinear_normal (std::vector< std::pair<double, double> >& xs,
+ std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ double precision)
+{
+ using detail::bezier_clipping::get_solutions;
+ using detail::bezier_clipping::collinear_normal_tag;
+ get_solutions<collinear_normal_tag>(xs, A, B, precision);
+}
+
+
+/*
+ * find_intersections_bezier_clipping
+ *
+ * input: A, B - set of control points of two Bezier curve
+ * input: precision - required precision of computation
+ * output: xs - set of pairs of parameter values
+ * at which crossing happens
+ *
+ * This routine is based on the Bezier Clipping Algorithm,
+ * see: Sederberg, Nishita, 1990 - Curve intersection using Bezier clipping
+ */
+void find_intersections_bezier_clipping (std::vector< std::pair<double, double> >& xs,
+ std::vector<Point> const& A,
+ std::vector<Point> const& B,
+ double precision)
+{
+ using detail::bezier_clipping::get_solutions;
+ using detail::bezier_clipping::intersection_point_tag;
+ get_solutions<intersection_point_tag>(xs, A, B, precision);
+}
+
+} // end namespace Geom
+
+
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :