diff options
Diffstat (limited to 'src/2geom/bezier-curve.cpp')
-rw-r--r-- | src/2geom/bezier-curve.cpp | 516 |
1 files changed, 516 insertions, 0 deletions
diff --git a/src/2geom/bezier-curve.cpp b/src/2geom/bezier-curve.cpp new file mode 100644 index 0000000..73fafe4 --- /dev/null +++ b/src/2geom/bezier-curve.cpp @@ -0,0 +1,516 @@ +/* Bezier curve implementation + * + * Authors: + * MenTaLguY <mental@rydia.net> + * Marco Cecchetti <mrcekets at gmail.com> + * Krzysztof KosiĆski <tweenk.pl@gmail.com> + * + * Copyright 2007-2009 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <2geom/bezier-curve.h> +#include <2geom/path-sink.h> +#include <2geom/basic-intersection.h> +#include <2geom/nearest-time.h> + +namespace Geom +{ + +/** + * @class BezierCurve + * @brief Two-dimensional Bezier curve of arbitrary order. + * + * Bezier curves are an expansion of the concept of linear interpolation to n points. + * Linear segments in 2Geom are in fact Bezier curves of order 1. + * + * Let \f$\mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_n}\f$ denote a Bezier curve + * of order \f$n\f$ defined by the points \f$\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_n\f$. + * Bezier curve of order 1 is a linear interpolation curve between two points, defined as + * \f[ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1}(t) = (1-t)\mathbf{p}_0 + t\mathbf{p}_1 \f] + * If we now substitute points \f$\mathbf{p_0}\f$ and \f$\mathbf{p_1}\f$ in this definition + * by linear interpolations, we get the definition of a Bezier curve of order 2, also called + * a quadratic Bezier curve. + * \f{align*}{ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t) + &= (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1}(t) + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2}(t) \\ + \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t) + &= (1-t)^2\mathbf{p}_0 + 2(1-t)t\mathbf{p}_1 + t^2\mathbf{p}_2 \f} + * By substituting points for quadratic Bezier curves in the original definition, + * we get a Bezier curve of order 3, called a cubic Bezier curve. + * \f{align*}{ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t) + &= (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t) + + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t) \\ + \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t) + &= (1-t)^3\mathbf{p}_0+3(1-t)^2t\mathbf{p}_1+3(1-t)t^2\mathbf{p}_2+t^3\mathbf{p}_3 \f} + * In general, a Bezier curve or order \f$n\f$ can be recursively defined as + * \f[ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_n}(t) + = (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_{n-1}}(t) + + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2\ldots\mathbf{p}_n}(t) \f] + * + * This substitution can be repeated an arbitrary number of times. To picture this, imagine + * the evaluation of a point on the curve as follows: first, all control points are joined with + * straight lines, and a point corresponding to the selected time value is marked on them. + * Then, the marked points are joined with straight lines and the point corresponding to + * the time value is marked. This is repeated until only one marked point remains, which is the + * point at the selected time value. + * + * @image html bezier-curve-evaluation.png "Evaluation of the Bezier curve" + * + * An important property of the Bezier curves is that their parameters (control points) + * have an intuitive geometric interpretation. Because of this, they are frequently used + * in vector graphics editors. + * + * Every Bezier curve is contained in its control polygon (the convex polygon composed + * of its control points). This fact is useful for sweepline algorithms and intersection. + * + * @par Implementation notes + * The order of a Bezier curve is immuable once it has been created. Normally, you should + * know the order at compile time and use the BezierCurveN template. If you need to determine + * the order at runtime, use the BezierCurve::create() function. It will create a BezierCurveN + * for orders 1, 2 and 3 (up to cubic Beziers), so you can later <tt>dynamic_cast</tt> + * to those types, and for higher orders it will create an instance of BezierCurve. + * + * @relates BezierCurveN + * @ingroup Curves + */ + +/** + * @class BezierCurveN + * @brief Bezier curve with compile-time specified order. + * + * @tparam degree unsigned value indicating the order of the Bezier curve + * + * @relates BezierCurve + * @ingroup Curves + */ + + +BezierCurve::BezierCurve(std::vector<Point> const &pts) + : inner(pts) +{ + if (pts.size() < 2) { + THROW_RANGEERROR("Bezier curve must have at least 2 control points"); + } +} + +bool BezierCurve::isDegenerate() const +{ + for (unsigned d = 0; d < 2; ++d) { + Coord ic = inner[d][0]; + for (unsigned i = 1; i < size(); ++i) { + if (inner[d][i] != ic) return false; + } + } + return true; +} + +Coord BezierCurve::length(Coord tolerance) const +{ + switch (order()) + { + case 0: + return 0.0; + case 1: + return distance(initialPoint(), finalPoint()); + case 2: + { + std::vector<Point> pts = controlPoints(); + return bezier_length(pts[0], pts[1], pts[2], tolerance); + } + case 3: + { + std::vector<Point> pts = controlPoints(); + return bezier_length(pts[0], pts[1], pts[2], pts[3], tolerance); + } + default: + return bezier_length(controlPoints(), tolerance); + } +} + +std::vector<CurveIntersection> +BezierCurve::intersect(Curve const &other, Coord eps) const +{ + std::vector<CurveIntersection> result; + + // in case we encounter an order-1 curve created from a vector + // or a degenerate elliptical arc + if (isLineSegment()) { + LineSegment ls(initialPoint(), finalPoint()); + result = ls.intersect(other); + return result; + } + + // here we are sure that this curve is at least a quadratic Bezier + BezierCurve const *bez = dynamic_cast<BezierCurve const *>(&other); + if (bez) { + std::vector<std::pair<double, double> > xs; + find_intersections(xs, inner, bez->inner, eps); + for (unsigned i = 0; i < xs.size(); ++i) { + CurveIntersection x(*this, other, xs[i].first, xs[i].second); + result.push_back(x); + } + return result; + } + + // pass other intersection types to the other curve + result = other.intersect(*this, eps); + transpose_in_place(result); + return result; +} + +bool BezierCurve::isNear(Curve const &c, Coord precision) const +{ + if (this == &c) return true; + + BezierCurve const *other = dynamic_cast<BezierCurve const *>(&c); + if (!other) return false; + + if (!are_near(inner.at0(), other->inner.at0(), precision)) return false; + if (!are_near(inner.at1(), other->inner.at1(), precision)) return false; + + if (size() == other->size()) { + for (unsigned i = 1; i < order(); ++i) { + if (!are_near(inner.point(i), other->inner.point(i), precision)) { + return false; + } + } + return true; + } else { + // TODO: comparison after degree elevation + return false; + } +} + +bool BezierCurve::operator==(Curve const &c) const +{ + if (this == &c) return true; + + BezierCurve const *other = dynamic_cast<BezierCurve const *>(&c); + if (!other) return false; + if (size() != other->size()) return false; + + for (unsigned i = 0; i < size(); ++i) { + if (controlPoint(i) != other->controlPoint(i)) return false; + } + return true; +} + +Coord BezierCurve::nearestTime(Point const &p, Coord from, Coord to) const +{ + return nearest_time(p, inner, from, to); +} + +void BezierCurve::feed(PathSink &sink, bool moveto_initial) const +{ + if (size() > 4) { + Curve::feed(sink, moveto_initial); + return; + } + + Point ip = controlPoint(0); + if (moveto_initial) { + sink.moveTo(ip); + } + switch (size()) { + case 2: + sink.lineTo(controlPoint(1)); + break; + case 3: + sink.quadTo(controlPoint(1), controlPoint(2)); + break; + case 4: + sink.curveTo(controlPoint(1), controlPoint(2), controlPoint(3)); + break; + default: + // TODO: add a path sink method that accepts a vector of control points + // and converts to cubic spline by default + assert(false); + break; + } +} + +BezierCurve *BezierCurve::create(std::vector<Point> const &pts) +{ + switch (pts.size()) { + case 0: + case 1: + THROW_LOGICALERROR("BezierCurve::create: too few points in vector"); + return NULL; + case 2: + return new LineSegment(pts[0], pts[1]); + case 3: + return new QuadraticBezier(pts[0], pts[1], pts[2]); + case 4: + return new CubicBezier(pts[0], pts[1], pts[2], pts[3]); + default: + return new BezierCurve(pts); + } +} + +// optimized specializations for LineSegment + +template <> +Curve *BezierCurveN<1>::derivative() const { + double dx = inner[X][1] - inner[X][0], dy = inner[Y][1] - inner[Y][0]; + return new BezierCurveN<1>(Point(dx,dy),Point(dx,dy)); +} + +template<> +Coord BezierCurveN<1>::nearestTime(Point const& p, Coord from, Coord to) const +{ + using std::swap; + + if ( from > to ) swap(from, to); + Point ip = pointAt(from); + Point fp = pointAt(to); + Point v = fp - ip; + Coord l2v = L2sq(v); + if (l2v == 0) return 0; + Coord t = dot( p - ip, v ) / l2v; + if ( t <= 0 ) return from; + else if ( t >= 1 ) return to; + else return from + t*(to-from); +} + +template <> +std::vector<CurveIntersection> BezierCurveN<1>::intersect(Curve const &other, Coord eps) const +{ + std::vector<CurveIntersection> result; + + // only handle intersections with other LineSegments here + if (other.isLineSegment()) { + Line this_line(initialPoint(), finalPoint()); + Line other_line(other.initialPoint(), other.finalPoint()); + result = this_line.intersect(other_line); + filter_line_segment_intersections(result, true, true); + return result; + } + + // pass all other types to the other curve + result = other.intersect(*this, eps); + transpose_in_place(result); + return result; +} + +template <> +int BezierCurveN<1>::winding(Point const &p) const +{ + Point ip = inner.at0(), fp = inner.at1(); + if (p[Y] == std::max(ip[Y], fp[Y])) return 0; + + Point v = fp - ip; + assert(v[Y] != 0); + Coord t = (p[Y] - ip[Y]) / v[Y]; + assert(t >= 0 && t <= 1); + Coord xcross = lerp(t, ip[X], fp[X]); + if (xcross > p[X]) { + return v[Y] > 0 ? 1 : -1; + } + return 0; +} + +template <> +void BezierCurveN<1>::feed(PathSink &sink, bool moveto_initial) const +{ + if (moveto_initial) { + sink.moveTo(controlPoint(0)); + } + sink.lineTo(controlPoint(1)); +} + +template <> +void BezierCurveN<2>::feed(PathSink &sink, bool moveto_initial) const +{ + if (moveto_initial) { + sink.moveTo(controlPoint(0)); + } + sink.quadTo(controlPoint(1), controlPoint(2)); +} + +template <> +void BezierCurveN<3>::feed(PathSink &sink, bool moveto_initial) const +{ + if (moveto_initial) { + sink.moveTo(controlPoint(0)); + } + sink.curveTo(controlPoint(1), controlPoint(2), controlPoint(3)); +} + + +static Coord bezier_length_internal(std::vector<Point> &v1, Coord tolerance, int level) +{ + /* The Bezier length algorithm used in 2Geom utilizes a simple fact: + * the Bezier curve is longer than the distance between its endpoints + * but shorter than the length of the polyline formed by its control + * points. When the difference between the two values is smaller than the + * error tolerance, we can be sure that the true value is no further than + * 0.5 * tolerance from their arithmetic mean. When it's larger, we recursively + * subdivide the Bezier curve into two parts and add their lengths. + * + * We cap the maximum number of subdivisions at 256, which corresponds to 8 levels. + */ + Coord lower = distance(v1.front(), v1.back()); + Coord upper = 0.0; + for (size_t i = 0; i < v1.size() - 1; ++i) { + upper += distance(v1[i], v1[i+1]); + } + if (upper - lower <= 2*tolerance || level >= 8) { + return (lower + upper) / 2; + } + + + std::vector<Point> v2 = v1; + + /* Compute the right subdivision directly in v1 and the left one in v2. + * Explanation of the algorithm used: + * We have to compute the left and right edges of this triangle in which + * the top row are the control points of the Bezier curve, and each cell + * is equal to the arithmetic mean of the cells directly above it + * to the right and left. This corresponds to subdividing the Bezier curve + * at time value 0.5: the left edge has the control points of the first + * portion of the Bezier curve and the right edge - the second one. + * In the example we subdivide a curve with 5 control points (order 4). + * + * Start: + * 0 1 2 3 4 + * ? ? ? ? + * ? ? ? + * ? ? + * ? + * # means we have overwritten the value, ? means we don't know + * the value yet. Numbers mean the value is at i-th position in the vector. + * + * After loop with i==1 + * # 1 2 3 4 + * 0 ? ? ? -> write 0 to v2[1] + * ? ? ? + * ? ? + * ? + * + * After loop with i==2 + * # # 2 3 4 + * # 1 ? ? + * 0 ? ? -> write 0 to v2[2] + * ? ? + * ? + * + * After loop with i==3 + * # # # 3 4 + * # # 2 ? + * # 1 ? + * 0 ? -> write 0 to v2[3] + * ? + * + * After loop with i==4, we have the right edge of the triangle in v1, + * and we write the last value needed for the left edge in v2[4]. + */ + + for (size_t i = 1; i < v1.size(); ++i) { + for (size_t j = i; j > 0; --j) { + v1[j-1] = 0.5 * (v1[j-1] + v1[j]); + } + v2[i] = v1[0]; + } + + return bezier_length_internal(v1, 0.5 * tolerance, level + 1) + + bezier_length_internal(v2, 0.5 * tolerance, level + 1); +} + +/** @brief Compute the length of a bezier curve given by a vector of its control points + * @relatesalso BezierCurve */ +Coord bezier_length(std::vector<Point> const &points, Coord tolerance) +{ + if (points.size() < 2) return 0.0; + std::vector<Point> v1 = points; + return bezier_length_internal(v1, tolerance, 0); +} + +static Coord bezier_length_internal(Point a0, Point a1, Point a2, Coord tolerance, int level) +{ + Coord lower = distance(a0, a2); + Coord upper = distance(a0, a1) + distance(a1, a2); + + if (upper - lower <= 2*tolerance || level >= 8) { + return (lower + upper) / 2; + } + + Point // Casteljau subdivision + // b0 = a0, + // c0 = a2, + b1 = 0.5*(a0 + a1), + c1 = 0.5*(a1 + a2), + b2 = 0.5*(b1 + c1); // == c2 + return bezier_length_internal(a0, b1, b2, 0.5 * tolerance, level + 1) + + bezier_length_internal(b2, c1, a2, 0.5 * tolerance, level + 1); +} + +/** @brief Compute the length of a quadratic bezier curve given by its control points + * @relatesalso QuadraticBezier */ +Coord bezier_length(Point a0, Point a1, Point a2, Coord tolerance) +{ + return bezier_length_internal(a0, a1, a2, tolerance, 0); +} + +static Coord bezier_length_internal(Point a0, Point a1, Point a2, Point a3, Coord tolerance, int level) +{ + Coord lower = distance(a0, a3); + Coord upper = distance(a0, a1) + distance(a1, a2) + distance(a2, a3); + + if (upper - lower <= 2*tolerance || level >= 8) { + return (lower + upper) / 2; + } + + Point // Casteljau subdivision + // b0 = a0, + // c0 = a3, + b1 = 0.5*(a0 + a1), + t0 = 0.5*(a1 + a2), + c1 = 0.5*(a2 + a3), + b2 = 0.5*(b1 + t0), + c2 = 0.5*(t0 + c1), + b3 = 0.5*(b2 + c2); // == c3 + return bezier_length_internal(a0, b1, b2, b3, 0.5 * tolerance, level + 1) + + bezier_length_internal(b3, c2, c1, a3, 0.5 * tolerance, level + 1); +} + +/** @brief Compute the length of a cubic bezier curve given by its control points + * @relatesalso CubicBezier */ +Coord bezier_length(Point a0, Point a1, Point a2, Point a3, Coord tolerance) +{ + return bezier_length_internal(a0, a1, a2, a3, tolerance, 0); +} + +} // end namespace Geom + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |