summaryrefslogtreecommitdiffstats
path: root/src/2geom/bezier-curve.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/bezier-curve.cpp')
-rw-r--r--src/2geom/bezier-curve.cpp516
1 files changed, 516 insertions, 0 deletions
diff --git a/src/2geom/bezier-curve.cpp b/src/2geom/bezier-curve.cpp
new file mode 100644
index 0000000..73fafe4
--- /dev/null
+++ b/src/2geom/bezier-curve.cpp
@@ -0,0 +1,516 @@
+/* Bezier curve implementation
+ *
+ * Authors:
+ * MenTaLguY <mental@rydia.net>
+ * Marco Cecchetti <mrcekets at gmail.com>
+ * Krzysztof KosiƄski <tweenk.pl@gmail.com>
+ *
+ * Copyright 2007-2009 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#include <2geom/bezier-curve.h>
+#include <2geom/path-sink.h>
+#include <2geom/basic-intersection.h>
+#include <2geom/nearest-time.h>
+
+namespace Geom
+{
+
+/**
+ * @class BezierCurve
+ * @brief Two-dimensional Bezier curve of arbitrary order.
+ *
+ * Bezier curves are an expansion of the concept of linear interpolation to n points.
+ * Linear segments in 2Geom are in fact Bezier curves of order 1.
+ *
+ * Let \f$\mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_n}\f$ denote a Bezier curve
+ * of order \f$n\f$ defined by the points \f$\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_n\f$.
+ * Bezier curve of order 1 is a linear interpolation curve between two points, defined as
+ * \f[ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1}(t) = (1-t)\mathbf{p}_0 + t\mathbf{p}_1 \f]
+ * If we now substitute points \f$\mathbf{p_0}\f$ and \f$\mathbf{p_1}\f$ in this definition
+ * by linear interpolations, we get the definition of a Bezier curve of order 2, also called
+ * a quadratic Bezier curve.
+ * \f{align*}{ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t)
+ &= (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1}(t) + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2}(t) \\
+ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t)
+ &= (1-t)^2\mathbf{p}_0 + 2(1-t)t\mathbf{p}_1 + t^2\mathbf{p}_2 \f}
+ * By substituting points for quadratic Bezier curves in the original definition,
+ * we get a Bezier curve of order 3, called a cubic Bezier curve.
+ * \f{align*}{ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t)
+ &= (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2}(t)
+ + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t) \\
+ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3}(t)
+ &= (1-t)^3\mathbf{p}_0+3(1-t)^2t\mathbf{p}_1+3(1-t)t^2\mathbf{p}_2+t^3\mathbf{p}_3 \f}
+ * In general, a Bezier curve or order \f$n\f$ can be recursively defined as
+ * \f[ \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_n}(t)
+ = (1-t) \mathbf{B}_{\mathbf{p}_0\mathbf{p}_1\ldots\mathbf{p}_{n-1}}(t)
+ + t \mathbf{B}_{\mathbf{p}_1\mathbf{p}_2\ldots\mathbf{p}_n}(t) \f]
+ *
+ * This substitution can be repeated an arbitrary number of times. To picture this, imagine
+ * the evaluation of a point on the curve as follows: first, all control points are joined with
+ * straight lines, and a point corresponding to the selected time value is marked on them.
+ * Then, the marked points are joined with straight lines and the point corresponding to
+ * the time value is marked. This is repeated until only one marked point remains, which is the
+ * point at the selected time value.
+ *
+ * @image html bezier-curve-evaluation.png "Evaluation of the Bezier curve"
+ *
+ * An important property of the Bezier curves is that their parameters (control points)
+ * have an intuitive geometric interpretation. Because of this, they are frequently used
+ * in vector graphics editors.
+ *
+ * Every Bezier curve is contained in its control polygon (the convex polygon composed
+ * of its control points). This fact is useful for sweepline algorithms and intersection.
+ *
+ * @par Implementation notes
+ * The order of a Bezier curve is immuable once it has been created. Normally, you should
+ * know the order at compile time and use the BezierCurveN template. If you need to determine
+ * the order at runtime, use the BezierCurve::create() function. It will create a BezierCurveN
+ * for orders 1, 2 and 3 (up to cubic Beziers), so you can later <tt>dynamic_cast</tt>
+ * to those types, and for higher orders it will create an instance of BezierCurve.
+ *
+ * @relates BezierCurveN
+ * @ingroup Curves
+ */
+
+/**
+ * @class BezierCurveN
+ * @brief Bezier curve with compile-time specified order.
+ *
+ * @tparam degree unsigned value indicating the order of the Bezier curve
+ *
+ * @relates BezierCurve
+ * @ingroup Curves
+ */
+
+
+BezierCurve::BezierCurve(std::vector<Point> const &pts)
+ : inner(pts)
+{
+ if (pts.size() < 2) {
+ THROW_RANGEERROR("Bezier curve must have at least 2 control points");
+ }
+}
+
+bool BezierCurve::isDegenerate() const
+{
+ for (unsigned d = 0; d < 2; ++d) {
+ Coord ic = inner[d][0];
+ for (unsigned i = 1; i < size(); ++i) {
+ if (inner[d][i] != ic) return false;
+ }
+ }
+ return true;
+}
+
+Coord BezierCurve::length(Coord tolerance) const
+{
+ switch (order())
+ {
+ case 0:
+ return 0.0;
+ case 1:
+ return distance(initialPoint(), finalPoint());
+ case 2:
+ {
+ std::vector<Point> pts = controlPoints();
+ return bezier_length(pts[0], pts[1], pts[2], tolerance);
+ }
+ case 3:
+ {
+ std::vector<Point> pts = controlPoints();
+ return bezier_length(pts[0], pts[1], pts[2], pts[3], tolerance);
+ }
+ default:
+ return bezier_length(controlPoints(), tolerance);
+ }
+}
+
+std::vector<CurveIntersection>
+BezierCurve::intersect(Curve const &other, Coord eps) const
+{
+ std::vector<CurveIntersection> result;
+
+ // in case we encounter an order-1 curve created from a vector
+ // or a degenerate elliptical arc
+ if (isLineSegment()) {
+ LineSegment ls(initialPoint(), finalPoint());
+ result = ls.intersect(other);
+ return result;
+ }
+
+ // here we are sure that this curve is at least a quadratic Bezier
+ BezierCurve const *bez = dynamic_cast<BezierCurve const *>(&other);
+ if (bez) {
+ std::vector<std::pair<double, double> > xs;
+ find_intersections(xs, inner, bez->inner, eps);
+ for (unsigned i = 0; i < xs.size(); ++i) {
+ CurveIntersection x(*this, other, xs[i].first, xs[i].second);
+ result.push_back(x);
+ }
+ return result;
+ }
+
+ // pass other intersection types to the other curve
+ result = other.intersect(*this, eps);
+ transpose_in_place(result);
+ return result;
+}
+
+bool BezierCurve::isNear(Curve const &c, Coord precision) const
+{
+ if (this == &c) return true;
+
+ BezierCurve const *other = dynamic_cast<BezierCurve const *>(&c);
+ if (!other) return false;
+
+ if (!are_near(inner.at0(), other->inner.at0(), precision)) return false;
+ if (!are_near(inner.at1(), other->inner.at1(), precision)) return false;
+
+ if (size() == other->size()) {
+ for (unsigned i = 1; i < order(); ++i) {
+ if (!are_near(inner.point(i), other->inner.point(i), precision)) {
+ return false;
+ }
+ }
+ return true;
+ } else {
+ // TODO: comparison after degree elevation
+ return false;
+ }
+}
+
+bool BezierCurve::operator==(Curve const &c) const
+{
+ if (this == &c) return true;
+
+ BezierCurve const *other = dynamic_cast<BezierCurve const *>(&c);
+ if (!other) return false;
+ if (size() != other->size()) return false;
+
+ for (unsigned i = 0; i < size(); ++i) {
+ if (controlPoint(i) != other->controlPoint(i)) return false;
+ }
+ return true;
+}
+
+Coord BezierCurve::nearestTime(Point const &p, Coord from, Coord to) const
+{
+ return nearest_time(p, inner, from, to);
+}
+
+void BezierCurve::feed(PathSink &sink, bool moveto_initial) const
+{
+ if (size() > 4) {
+ Curve::feed(sink, moveto_initial);
+ return;
+ }
+
+ Point ip = controlPoint(0);
+ if (moveto_initial) {
+ sink.moveTo(ip);
+ }
+ switch (size()) {
+ case 2:
+ sink.lineTo(controlPoint(1));
+ break;
+ case 3:
+ sink.quadTo(controlPoint(1), controlPoint(2));
+ break;
+ case 4:
+ sink.curveTo(controlPoint(1), controlPoint(2), controlPoint(3));
+ break;
+ default:
+ // TODO: add a path sink method that accepts a vector of control points
+ // and converts to cubic spline by default
+ assert(false);
+ break;
+ }
+}
+
+BezierCurve *BezierCurve::create(std::vector<Point> const &pts)
+{
+ switch (pts.size()) {
+ case 0:
+ case 1:
+ THROW_LOGICALERROR("BezierCurve::create: too few points in vector");
+ return NULL;
+ case 2:
+ return new LineSegment(pts[0], pts[1]);
+ case 3:
+ return new QuadraticBezier(pts[0], pts[1], pts[2]);
+ case 4:
+ return new CubicBezier(pts[0], pts[1], pts[2], pts[3]);
+ default:
+ return new BezierCurve(pts);
+ }
+}
+
+// optimized specializations for LineSegment
+
+template <>
+Curve *BezierCurveN<1>::derivative() const {
+ double dx = inner[X][1] - inner[X][0], dy = inner[Y][1] - inner[Y][0];
+ return new BezierCurveN<1>(Point(dx,dy),Point(dx,dy));
+}
+
+template<>
+Coord BezierCurveN<1>::nearestTime(Point const& p, Coord from, Coord to) const
+{
+ using std::swap;
+
+ if ( from > to ) swap(from, to);
+ Point ip = pointAt(from);
+ Point fp = pointAt(to);
+ Point v = fp - ip;
+ Coord l2v = L2sq(v);
+ if (l2v == 0) return 0;
+ Coord t = dot( p - ip, v ) / l2v;
+ if ( t <= 0 ) return from;
+ else if ( t >= 1 ) return to;
+ else return from + t*(to-from);
+}
+
+template <>
+std::vector<CurveIntersection> BezierCurveN<1>::intersect(Curve const &other, Coord eps) const
+{
+ std::vector<CurveIntersection> result;
+
+ // only handle intersections with other LineSegments here
+ if (other.isLineSegment()) {
+ Line this_line(initialPoint(), finalPoint());
+ Line other_line(other.initialPoint(), other.finalPoint());
+ result = this_line.intersect(other_line);
+ filter_line_segment_intersections(result, true, true);
+ return result;
+ }
+
+ // pass all other types to the other curve
+ result = other.intersect(*this, eps);
+ transpose_in_place(result);
+ return result;
+}
+
+template <>
+int BezierCurveN<1>::winding(Point const &p) const
+{
+ Point ip = inner.at0(), fp = inner.at1();
+ if (p[Y] == std::max(ip[Y], fp[Y])) return 0;
+
+ Point v = fp - ip;
+ assert(v[Y] != 0);
+ Coord t = (p[Y] - ip[Y]) / v[Y];
+ assert(t >= 0 && t <= 1);
+ Coord xcross = lerp(t, ip[X], fp[X]);
+ if (xcross > p[X]) {
+ return v[Y] > 0 ? 1 : -1;
+ }
+ return 0;
+}
+
+template <>
+void BezierCurveN<1>::feed(PathSink &sink, bool moveto_initial) const
+{
+ if (moveto_initial) {
+ sink.moveTo(controlPoint(0));
+ }
+ sink.lineTo(controlPoint(1));
+}
+
+template <>
+void BezierCurveN<2>::feed(PathSink &sink, bool moveto_initial) const
+{
+ if (moveto_initial) {
+ sink.moveTo(controlPoint(0));
+ }
+ sink.quadTo(controlPoint(1), controlPoint(2));
+}
+
+template <>
+void BezierCurveN<3>::feed(PathSink &sink, bool moveto_initial) const
+{
+ if (moveto_initial) {
+ sink.moveTo(controlPoint(0));
+ }
+ sink.curveTo(controlPoint(1), controlPoint(2), controlPoint(3));
+}
+
+
+static Coord bezier_length_internal(std::vector<Point> &v1, Coord tolerance, int level)
+{
+ /* The Bezier length algorithm used in 2Geom utilizes a simple fact:
+ * the Bezier curve is longer than the distance between its endpoints
+ * but shorter than the length of the polyline formed by its control
+ * points. When the difference between the two values is smaller than the
+ * error tolerance, we can be sure that the true value is no further than
+ * 0.5 * tolerance from their arithmetic mean. When it's larger, we recursively
+ * subdivide the Bezier curve into two parts and add their lengths.
+ *
+ * We cap the maximum number of subdivisions at 256, which corresponds to 8 levels.
+ */
+ Coord lower = distance(v1.front(), v1.back());
+ Coord upper = 0.0;
+ for (size_t i = 0; i < v1.size() - 1; ++i) {
+ upper += distance(v1[i], v1[i+1]);
+ }
+ if (upper - lower <= 2*tolerance || level >= 8) {
+ return (lower + upper) / 2;
+ }
+
+
+ std::vector<Point> v2 = v1;
+
+ /* Compute the right subdivision directly in v1 and the left one in v2.
+ * Explanation of the algorithm used:
+ * We have to compute the left and right edges of this triangle in which
+ * the top row are the control points of the Bezier curve, and each cell
+ * is equal to the arithmetic mean of the cells directly above it
+ * to the right and left. This corresponds to subdividing the Bezier curve
+ * at time value 0.5: the left edge has the control points of the first
+ * portion of the Bezier curve and the right edge - the second one.
+ * In the example we subdivide a curve with 5 control points (order 4).
+ *
+ * Start:
+ * 0 1 2 3 4
+ * ? ? ? ?
+ * ? ? ?
+ * ? ?
+ * ?
+ * # means we have overwritten the value, ? means we don't know
+ * the value yet. Numbers mean the value is at i-th position in the vector.
+ *
+ * After loop with i==1
+ * # 1 2 3 4
+ * 0 ? ? ? -> write 0 to v2[1]
+ * ? ? ?
+ * ? ?
+ * ?
+ *
+ * After loop with i==2
+ * # # 2 3 4
+ * # 1 ? ?
+ * 0 ? ? -> write 0 to v2[2]
+ * ? ?
+ * ?
+ *
+ * After loop with i==3
+ * # # # 3 4
+ * # # 2 ?
+ * # 1 ?
+ * 0 ? -> write 0 to v2[3]
+ * ?
+ *
+ * After loop with i==4, we have the right edge of the triangle in v1,
+ * and we write the last value needed for the left edge in v2[4].
+ */
+
+ for (size_t i = 1; i < v1.size(); ++i) {
+ for (size_t j = i; j > 0; --j) {
+ v1[j-1] = 0.5 * (v1[j-1] + v1[j]);
+ }
+ v2[i] = v1[0];
+ }
+
+ return bezier_length_internal(v1, 0.5 * tolerance, level + 1) +
+ bezier_length_internal(v2, 0.5 * tolerance, level + 1);
+}
+
+/** @brief Compute the length of a bezier curve given by a vector of its control points
+ * @relatesalso BezierCurve */
+Coord bezier_length(std::vector<Point> const &points, Coord tolerance)
+{
+ if (points.size() < 2) return 0.0;
+ std::vector<Point> v1 = points;
+ return bezier_length_internal(v1, tolerance, 0);
+}
+
+static Coord bezier_length_internal(Point a0, Point a1, Point a2, Coord tolerance, int level)
+{
+ Coord lower = distance(a0, a2);
+ Coord upper = distance(a0, a1) + distance(a1, a2);
+
+ if (upper - lower <= 2*tolerance || level >= 8) {
+ return (lower + upper) / 2;
+ }
+
+ Point // Casteljau subdivision
+ // b0 = a0,
+ // c0 = a2,
+ b1 = 0.5*(a0 + a1),
+ c1 = 0.5*(a1 + a2),
+ b2 = 0.5*(b1 + c1); // == c2
+ return bezier_length_internal(a0, b1, b2, 0.5 * tolerance, level + 1) +
+ bezier_length_internal(b2, c1, a2, 0.5 * tolerance, level + 1);
+}
+
+/** @brief Compute the length of a quadratic bezier curve given by its control points
+ * @relatesalso QuadraticBezier */
+Coord bezier_length(Point a0, Point a1, Point a2, Coord tolerance)
+{
+ return bezier_length_internal(a0, a1, a2, tolerance, 0);
+}
+
+static Coord bezier_length_internal(Point a0, Point a1, Point a2, Point a3, Coord tolerance, int level)
+{
+ Coord lower = distance(a0, a3);
+ Coord upper = distance(a0, a1) + distance(a1, a2) + distance(a2, a3);
+
+ if (upper - lower <= 2*tolerance || level >= 8) {
+ return (lower + upper) / 2;
+ }
+
+ Point // Casteljau subdivision
+ // b0 = a0,
+ // c0 = a3,
+ b1 = 0.5*(a0 + a1),
+ t0 = 0.5*(a1 + a2),
+ c1 = 0.5*(a2 + a3),
+ b2 = 0.5*(b1 + t0),
+ c2 = 0.5*(t0 + c1),
+ b3 = 0.5*(b2 + c2); // == c3
+ return bezier_length_internal(a0, b1, b2, b3, 0.5 * tolerance, level + 1) +
+ bezier_length_internal(b3, c2, c1, a3, 0.5 * tolerance, level + 1);
+}
+
+/** @brief Compute the length of a cubic bezier curve given by its control points
+ * @relatesalso CubicBezier */
+Coord bezier_length(Point a0, Point a1, Point a2, Point a3, Coord tolerance)
+{
+ return bezier_length_internal(a0, a1, a2, a3, tolerance, 0);
+}
+
+} // end namespace Geom
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :