summaryrefslogtreecommitdiffstats
path: root/src/2geom/bezier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/bezier.cpp')
-rw-r--r--src/2geom/bezier.cpp324
1 files changed, 324 insertions, 0 deletions
diff --git a/src/2geom/bezier.cpp b/src/2geom/bezier.cpp
new file mode 100644
index 0000000..0c9d12c
--- /dev/null
+++ b/src/2geom/bezier.cpp
@@ -0,0 +1,324 @@
+/**
+ * @file
+ * @brief Bernstein-Bezier polynomial
+ *//*
+ * Authors:
+ * MenTaLguY <mental@rydia.net>
+ * Michael Sloan <mgsloan@gmail.com>
+ * Nathan Hurst <njh@njhurst.com>
+ * Krzysztof KosiƄski <tweenk.pl@gmail.com>
+ *
+ * Copyright 2007-2015 Authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ *
+ */
+
+#include <2geom/bezier.h>
+#include <2geom/solver.h>
+#include <2geom/concepts.h>
+
+namespace Geom {
+
+std::vector<Coord> Bezier::valueAndDerivatives(Coord t, unsigned n_derivs) const {
+ /* This is inelegant, as it uses several extra stores. I think there might be a way to
+ * evaluate roughly in situ. */
+
+ // initialize return vector with zeroes, such that we only need to replace the non-zero derivs
+ std::vector<Coord> val_n_der(n_derivs + 1, Coord(0.0));
+
+ // initialize temp storage variables
+ std::valarray<Coord> d_(order()+1);
+ for(unsigned i = 0; i < size(); i++) {
+ d_[i] = c_[i];
+ }
+
+ unsigned nn = n_derivs + 1;
+ if(n_derivs > order()) {
+ nn = order()+1; // only calculate the non zero derivs
+ }
+ for(unsigned di = 0; di < nn; di++) {
+ //val_n_der[di] = (casteljau_subdivision(t, &d_[0], NULL, NULL, order() - di));
+ val_n_der[di] = bernstein_value_at(t, &d_[0], order() - di);
+ for(unsigned i = 0; i < order() - di; i++) {
+ d_[i] = (order()-di)*(d_[i+1] - d_[i]);
+ }
+ }
+
+ return val_n_der;
+}
+
+void Bezier::subdivide(Coord t, Bezier *left, Bezier *right) const
+{
+ if (left) {
+ left->c_.resize(size());
+ if (right) {
+ right->c_.resize(size());
+ casteljau_subdivision<double>(t, &const_cast<std::valarray<Coord>&>(c_)[0],
+ &left->c_[0], &right->c_[0], order());
+ } else {
+ casteljau_subdivision<double>(t, &const_cast<std::valarray<Coord>&>(c_)[0],
+ &left->c_[0], NULL, order());
+ }
+ } else if (right) {
+ right->c_.resize(size());
+ casteljau_subdivision<double>(t, &const_cast<std::valarray<Coord>&>(c_)[0],
+ NULL, &right->c_[0], order());
+ }
+}
+
+std::pair<Bezier, Bezier> Bezier::subdivide(Coord t) const
+{
+ std::pair<Bezier, Bezier> ret;
+ subdivide(t, &ret.first, &ret.second);
+ return ret;
+}
+
+std::vector<Coord> Bezier::roots() const
+{
+ std::vector<Coord> solutions;
+ find_bezier_roots(solutions, 0, 1);
+ std::sort(solutions.begin(), solutions.end());
+ return solutions;
+}
+
+std::vector<Coord> Bezier::roots(Interval const &ivl) const
+{
+ std::vector<Coord> solutions;
+ find_bernstein_roots(&const_cast<std::valarray<Coord>&>(c_)[0], order(), solutions, 0, ivl.min(), ivl.max());
+ std::sort(solutions.begin(), solutions.end());
+ return solutions;
+}
+
+Bezier Bezier::forward_difference(unsigned k) const
+{
+ Bezier fd(Order(order()-k));
+ unsigned n = fd.size();
+
+ for(unsigned i = 0; i < n; i++) {
+ fd[i] = 0;
+ for(unsigned j = i; j < n; j++) {
+ fd[i] += (((j)&1)?-c_[j]:c_[j])*choose<double>(n, j-i);
+ }
+ }
+ return fd;
+}
+
+Bezier Bezier::elevate_degree() const
+{
+ Bezier ed(Order(order()+1));
+ unsigned n = size();
+ ed[0] = c_[0];
+ ed[n] = c_[n-1];
+ for(unsigned i = 1; i < n; i++) {
+ ed[i] = (i*c_[i-1] + (n - i)*c_[i])/(n);
+ }
+ return ed;
+}
+
+Bezier Bezier::reduce_degree() const
+{
+ if(order() == 0) return *this;
+ Bezier ed(Order(order()-1));
+ unsigned n = size();
+ ed[0] = c_[0];
+ ed[n-1] = c_[n]; // ensure exact endpoints
+ unsigned middle = n/2;
+ for(unsigned i = 1; i < middle; i++) {
+ ed[i] = (n*c_[i] - i*ed[i-1])/(n-i);
+ }
+ for(unsigned i = n-1; i >= middle; i--) {
+ ed[i] = (n*c_[i] - i*ed[n-i])/(i);
+ }
+ return ed;
+}
+
+Bezier Bezier::elevate_to_degree(unsigned newDegree) const
+{
+ Bezier ed = *this;
+ for(unsigned i = degree(); i < newDegree; i++) {
+ ed = ed.elevate_degree();
+ }
+ return ed;
+}
+
+Bezier Bezier::deflate() const
+{
+ if(order() == 0) return *this;
+ unsigned n = order();
+ Bezier b(Order(n-1));
+ for(unsigned i = 0; i < n; i++) {
+ b[i] = (n*c_[i+1])/(i+1);
+ }
+ return b;
+}
+
+SBasis Bezier::toSBasis() const
+{
+ SBasis sb;
+ bezier_to_sbasis(sb, (*this));
+ return sb;
+ //return bezier_to_sbasis(&c_[0], order());
+}
+
+Bezier &Bezier::operator+=(Bezier const &other)
+{
+ if (c_.size() > other.size()) {
+ c_ += other.elevate_to_degree(degree()).c_;
+ } else if (c_.size() < other.size()) {
+ *this = elevate_to_degree(other.degree());
+ c_ += other.c_;
+ } else {
+ c_ += other.c_;
+ }
+ return *this;
+}
+
+Bezier &Bezier::operator-=(Bezier const &other)
+{
+ if (c_.size() > other.size()) {
+ c_ -= other.elevate_to_degree(degree()).c_;
+ } else if (c_.size() < other.size()) {
+ *this = elevate_to_degree(other.degree());
+ c_ -= other.c_;
+ } else {
+ c_ -= other.c_;
+ }
+ return *this;
+}
+
+
+
+Bezier operator*(Bezier const &f, Bezier const &g)
+{
+ unsigned m = f.order();
+ unsigned n = g.order();
+ Bezier h(Bezier::Order(m+n));
+ // h_k = sum_(i+j=k) (m i)f_i (n j)g_j / (m+n k)
+
+ for(unsigned i = 0; i <= m; i++) {
+ const double fi = choose<double>(m,i)*f[i];
+ for(unsigned j = 0; j <= n; j++) {
+ h[i+j] += fi * choose<double>(n,j)*g[j];
+ }
+ }
+ for(unsigned k = 0; k <= m+n; k++) {
+ h[k] /= choose<double>(m+n, k);
+ }
+ return h;
+}
+
+Bezier portion(Bezier const &a, double from, double to)
+{
+ Bezier ret(a);
+
+ bool reverse_result = false;
+ if (from > to) {
+ std::swap(from, to);
+ reverse_result = true;
+ }
+
+ do {
+ if (from == 0) {
+ if (to == 1) {
+ break;
+ }
+ casteljau_subdivision<double>(to, &ret.c_[0], &ret.c_[0], NULL, ret.order());
+ break;
+ }
+ casteljau_subdivision<double>(from, &ret.c_[0], NULL, &ret.c_[0], ret.order());
+ if (to == 1) break;
+ casteljau_subdivision<double>((to - from) / (1 - from), &ret.c_[0], &ret.c_[0], NULL, ret.order());
+ // to protect against numerical inaccuracy in the above expression, we manually set
+ // the last coefficient to a value evaluated directly from the original polynomial
+ ret.c_[ret.order()] = a.valueAt(to);
+ } while(0);
+
+ if (reverse_result) {
+ std::reverse(&ret.c_[0], &ret.c_[0] + ret.c_.size());
+ }
+ return ret;
+}
+
+Bezier derivative(Bezier const &a)
+{
+ //if(a.order() == 1) return Bezier(0.0);
+ if(a.order() == 1) return Bezier(a.c_[1]-a.c_[0]);
+ Bezier der(Bezier::Order(a.order()-1));
+
+ for(unsigned i = 0; i < a.order(); i++) {
+ der.c_[i] = a.order()*(a.c_[i+1] - a.c_[i]);
+ }
+ return der;
+}
+
+Bezier integral(Bezier const &a)
+{
+ Bezier inte(Bezier::Order(a.order()+1));
+
+ inte[0] = 0;
+ for(unsigned i = 0; i < inte.order(); i++) {
+ inte[i+1] = inte[i] + a[i]/(inte.order());
+ }
+ return inte;
+}
+
+OptInterval bounds_fast(Bezier const &b)
+{
+ OptInterval ret = Interval::from_array(&const_cast<Bezier&>(b).c_[0], b.size());
+ return ret;
+}
+
+OptInterval bounds_exact(Bezier const &b)
+{
+ OptInterval ret(b.at0(), b.at1());
+ std::vector<Coord> r = derivative(b).roots();
+ for (unsigned i = 0; i < r.size(); ++i) {
+ ret->expandTo(b.valueAt(r[i]));
+ }
+ return ret;
+}
+
+OptInterval bounds_local(Bezier const &b, OptInterval const &i)
+{
+ //return bounds_local(b.toSBasis(), i);
+ if (i) {
+ return bounds_fast(portion(b, i->min(), i->max()));
+ } else {
+ return OptInterval();
+ }
+}
+
+} // end namespace Geom
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :