summaryrefslogtreecommitdiffstats
path: root/src/2geom/conic_section_clipper_impl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/conic_section_clipper_impl.cpp')
-rw-r--r--src/2geom/conic_section_clipper_impl.cpp574
1 files changed, 574 insertions, 0 deletions
diff --git a/src/2geom/conic_section_clipper_impl.cpp b/src/2geom/conic_section_clipper_impl.cpp
new file mode 100644
index 0000000..23731af
--- /dev/null
+++ b/src/2geom/conic_section_clipper_impl.cpp
@@ -0,0 +1,574 @@
+/* Conic section clipping with respect to a rectangle
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail>
+ *
+ * Copyright 2009 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#ifndef CLIP_WITH_CAIRO_SUPPORT
+ #include <2geom/conic_section_clipper.h>
+#endif
+
+namespace Geom
+{
+
+/*
+ * Find rectangle-conic crossing points. They are returned in the
+ * "crossing_points" parameter.
+ * The method returns true if the conic section intersects at least one
+ * of the four lines passing through rectangle edges, else it returns false.
+ */
+bool CLIPPER_CLASS::intersect (std::vector<Point> & crossing_points) const
+{
+ crossing_points.clear();
+
+ std::vector<double> rts;
+ std::vector<Point> cpts;
+ // rectangle corners
+ enum {TOP_LEFT, TOP_RIGHT, BOTTOM_RIGHT, BOTTOM_LEFT};
+
+ bool no_crossing = true;
+
+ // right edge
+ cs.roots (rts, R.right(), X);
+ if (!rts.empty())
+ {
+ no_crossing = false;
+ DBGPRINT ("CLIP: right: rts[0] = ", rts[0])
+ DBGPRINTIF ((rts.size() == 2), "CLIP: right: rts[1] = ", rts[1])
+
+ Point corner1 = R.corner(TOP_RIGHT);
+ Point corner2 = R.corner(BOTTOM_RIGHT);
+
+ for (size_t i = 0; i < rts.size(); ++i)
+ {
+ if (rts[i] < R.top() || rts[i] > R.bottom()) continue;
+ Point P (R.right(), rts[i]);
+ if (are_near (P, corner1))
+ P = corner1;
+ else if (are_near (P, corner2))
+ P = corner2;
+
+ cpts.push_back (P);
+ }
+ if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
+ {
+ cpts[0] = middle_point (cpts[0], cpts[1]);
+ cpts.pop_back();
+ }
+ }
+
+ // top edge
+ cs.roots (rts, R.top(), Y);
+ if (!rts.empty())
+ {
+ no_crossing = false;
+ DBGPRINT ("CLIP: top: rts[0] = ", rts[0])
+ DBGPRINTIF ((rts.size() == 2), "CLIP: top: rts[1] = ", rts[1])
+
+ Point corner1 = R.corner(TOP_RIGHT);
+ Point corner2 = R.corner(TOP_LEFT);
+
+ for (size_t i = 0; i < rts.size(); ++i)
+ {
+ if (rts[i] < R.left() || rts[i] > R.right()) continue;
+ Point P (rts[i], R.top());
+ if (are_near (P, corner1))
+ P = corner1;
+ else if (are_near (P, corner2))
+ P = corner2;
+
+ cpts.push_back (P);
+ }
+ if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
+ {
+ cpts[0] = middle_point (cpts[0], cpts[1]);
+ cpts.pop_back();
+ }
+ }
+
+ // left edge
+ cs.roots (rts, R.left(), X);
+ if (!rts.empty())
+ {
+ no_crossing = false;
+ DBGPRINT ("CLIP: left: rts[0] = ", rts[0])
+ DBGPRINTIF ((rts.size() == 2), "CLIP: left: rts[1] = ", rts[1])
+
+ Point corner1 = R.corner(TOP_LEFT);
+ Point corner2 = R.corner(BOTTOM_LEFT);
+
+ for (size_t i = 0; i < rts.size(); ++i)
+ {
+ if (rts[i] < R.top() || rts[i] > R.bottom()) continue;
+ Point P (R.left(), rts[i]);
+ if (are_near (P, corner1))
+ P = corner1;
+ else if (are_near (P, corner2))
+ P = corner2;
+
+ cpts.push_back (P);
+ }
+ if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
+ {
+ cpts[0] = middle_point (cpts[0], cpts[1]);
+ cpts.pop_back();
+ }
+ }
+
+ // bottom edge
+ cs.roots (rts, R.bottom(), Y);
+ if (!rts.empty())
+ {
+ no_crossing = false;
+ DBGPRINT ("CLIP: bottom: rts[0] = ", rts[0])
+ DBGPRINTIF ((rts.size() == 2), "CLIP: bottom: rts[1] = ", rts[1])
+
+ Point corner1 = R.corner(BOTTOM_RIGHT);
+ Point corner2 = R.corner(BOTTOM_LEFT);
+
+ for (size_t i = 0; i < rts.size(); ++i)
+ {
+ if (rts[i] < R.left() || rts[i] > R.right()) continue;
+ Point P (rts[i], R.bottom());
+ if (are_near (P, corner1))
+ P = corner1;
+ else if (are_near (P, corner2))
+ P = corner2;
+
+ cpts.push_back (P);
+ }
+ if (cpts.size() == 2 && are_near (cpts[0], cpts[1]))
+ {
+ cpts[0] = middle_point (cpts[0], cpts[1]);
+ cpts.pop_back();
+ }
+ }
+
+ DBGPRINT ("CLIP: intersect: crossing_points.size (with duplicates) = ",
+ cpts.size())
+
+ // remove duplicates
+ std::sort (cpts.begin(), cpts.end(), Point::LexLess<X>());
+ cpts.erase (std::unique (cpts.begin(), cpts.end()), cpts.end());
+
+
+ // Order crossing points on the rectangle edge clockwise, so two consecutive
+ // crossing points would be the end points of a conic arc all inside or all
+ // outside the rectangle.
+ std::map<double, size_t> cp_angles;
+ for (size_t i = 0; i < cpts.size(); ++i)
+ {
+ cp_angles.insert (std::make_pair (cs.angle_at (cpts[i]), i));
+ }
+
+ std::map<double, size_t>::const_iterator pos;
+ for (pos = cp_angles.begin(); pos != cp_angles.end(); ++pos)
+ {
+ crossing_points.push_back (cpts[pos->second]);
+ }
+
+ DBGPRINT ("CLIP: intersect: crossing_points.size = ", crossing_points.size())
+ DBGPRINTCOLL ("CLIP: intersect: crossing_points:", crossing_points)
+
+ return no_crossing;
+} // end function intersect
+
+
+
+inline
+double signed_triangle_area (Point const& p1, Point const& p2, Point const& p3)
+{
+ return (cross(p2, p3) - cross(p1, p3) + cross(p1, p2));
+}
+
+
+/*
+ * Test if two crossing points are the end points of a conic arc inner to the
+ * rectangle. In such a case the method returns true, else it returns false.
+ * Moreover by the parameter "M" it returns a point inner to the conic arc
+ * with the given end-points.
+ *
+ */
+bool CLIPPER_CLASS::are_paired (Point& M, const Point & P1, const Point & P2) const
+{
+ using std::swap;
+
+ /*
+ * we looks for the points on the conic whose tangent is parallel to the
+ * arc chord P1P2, they will be extrema of the conic arc P1P2 wrt the
+ * direction orthogonal to the chord
+ */
+ Point dir = P2 - P1;
+ DBGPRINT ("CLIP: are_paired: first point: ", P1)
+ DBGPRINT ("CLIP: are_paired: second point: ", P2)
+
+ double grad0 = 2 * cs.coeff(0) * dir[0] + cs.coeff(1) * dir[1];
+ double grad1 = cs.coeff(1) * dir[0] + 2 * cs.coeff(2) * dir[1];
+ double grad2 = cs.coeff(3) * dir[0] + cs.coeff(4) * dir[1];
+
+
+ /*
+ * such points are found intersecating the conic section with the line
+ * orthogonal to "grad": the derivative wrt the "dir" direction
+ */
+ Line gl (grad0, grad1, grad2);
+ std::vector<double> rts;
+ rts = cs.roots (gl);
+ DBGPRINT ("CLIP: are_paired: extrema: rts.size() = ", rts.size())
+
+
+
+ std::vector<Point> extrema;
+ for (size_t i = 0; i < rts.size(); ++i)
+ {
+ extrema.push_back (gl.pointAt (rts[i]));
+ }
+
+ if (extrema.size() == 2)
+ {
+ // in case we are dealing with an hyperbola we could have two extrema
+ // on the same side wrt the line passing through P1 and P2, but
+ // only the nearer extremum is on the arc P1P2
+ double side0 = signed_triangle_area (P1, extrema[0], P2);
+ double side1 = signed_triangle_area (P1, extrema[1], P2);
+
+ if (sgn(side0) == sgn(side1))
+ {
+ if (std::fabs(side0) > std::fabs(side1)) {
+ swap(extrema[0], extrema[1]);
+ }
+ extrema.pop_back();
+ }
+ }
+
+ std::vector<Point> inner_points;
+ for (size_t i = 0; i < extrema.size(); ++i)
+ {
+ if (!R.contains (extrema[i])) continue;
+ // in case we are dealing with an ellipse tangent to two orthogonal
+ // rectangle edges we could have two extrema on opposite sides wrt the
+ // line passing through P1P2 and both inner the rectangle; anyway, since
+ // we order the crossing points clockwise we have only one extremum
+ // that follows such an ordering wrt P1 and P2;
+ // remark: the other arc will be selected when we test for the arc P2P1.
+ double P1angle = cs.angle_at (P1);
+ double P2angle = cs.angle_at (P2);
+ double Qangle = cs.angle_at (extrema[i]);
+ if (P1angle < P2angle && !(P1angle <= Qangle && Qangle <= P2angle))
+ continue;
+ if (P1angle > P2angle && !(P1angle <= Qangle || Qangle <= P2angle))
+ continue;
+
+ inner_points.push_back (extrema[i]);
+ }
+
+ if (inner_points.size() > 1)
+ {
+ THROW_LOGICALERROR ("conic section clipper: "
+ "more than one extremum found");
+ }
+ else if (inner_points.size() == 1)
+ {
+ M = inner_points.front();
+ return true;
+ }
+
+ return false;
+}
+
+
+/*
+ * Pair the points contained in the "crossing_points" vector; the paired points
+ * are put in the paired_points vector so that given a point with an even index
+ * and the next one they are the end points of a conic arc that is inner to the
+ * rectangle. In the "inner_points" are returned points that are inner to the
+ * arc, where the inner point with index k is related to the arc with end
+ * points with indexes 2k, 2k+1. In case there are unpaired points the are put
+ * in to the "single_points" vector.
+ */
+void CLIPPER_CLASS::pairing (std::vector<Point> & paired_points,
+ std::vector<Point> & inner_points,
+ const std::vector<Point> & crossing_points)
+{
+ paired_points.clear();
+ paired_points.reserve (crossing_points.size());
+
+ inner_points.clear();
+ inner_points.reserve (crossing_points.size() / 2);
+
+ single_points.clear();
+
+ // to keep trace of which crossing points have been paired
+ std::vector<bool> paired (crossing_points.size(), false);
+
+ Point M;
+
+ // by the way we have ordered crossing points we need to test one point wrt
+ // the next point only, for pairing; moreover the last point need to be
+ // tested wrt the first point; pay attention: one point can be paired both
+ // with the previous and the next one: this is not an error, think of
+ // crossing points that are tangent to the rectangle edge (and inner);
+ for (size_t i = 0; i < crossing_points.size(); ++i)
+ {
+ // we need to test the last point wrt the first one
+ size_t j = (i == 0) ? (crossing_points.size() - 1) : (i-1);
+ if (are_paired (M, crossing_points[j], crossing_points[i]))
+ {
+#ifdef CLIP_WITH_CAIRO_SUPPORT
+ cairo_set_source_rgba(cr, 0.1, 0.1, 0.8, 1.0);
+ draw_line_seg (cr, crossing_points[j], crossing_points[i]);
+ draw_handle (cr, crossing_points[j]);
+ draw_handle (cr, crossing_points[i]);
+ draw_handle (cr, M);
+ cairo_stroke (cr);
+#endif
+ paired[j] = paired[i] = true;
+ paired_points.push_back (crossing_points[j]);
+ paired_points.push_back (crossing_points[i]);
+ inner_points.push_back (M);
+ }
+ }
+
+ // some point are not paired with any point, e.g. a crossing point tangent
+ // to a rectangle edge but with the conic arc outside the rectangle
+ for (size_t i = 0; i < paired.size(); ++i)
+ {
+ if (!paired[i])
+ single_points.push_back (crossing_points[i]);
+ }
+ DBGPRINTCOLL ("single_points", single_points)
+
+}
+
+
+/*
+ * This method clip the section conic wrt the rectangle and returns the inner
+ * conic arcs as a vector of RatQuad objects by the "arcs" parameter.
+ */
+bool CLIPPER_CLASS::clip (std::vector<RatQuad> & arcs)
+{
+ using std::swap;
+
+ arcs.clear();
+ std::vector<Point> crossing_points;
+ std::vector<Point> paired_points;
+ std::vector<Point> inner_points;
+
+ Line l1, l2;
+ if (cs.decompose (l1, l2))
+ {
+ bool inner_empty = true;
+
+ DBGINFO ("CLIP: degenerate section conic")
+
+ boost::optional<LineSegment> ls1 = Geom::clip (l1, R);
+ if (ls1)
+ {
+ if (ls1->isDegenerate())
+ {
+ single_points.push_back (ls1->initialPoint());
+ }
+ else
+ {
+ Point M = middle_point (*ls1);
+ arcs.push_back
+ (RatQuad (ls1->initialPoint(), M, ls1->finalPoint(), 1));
+ inner_empty = false;
+ }
+ }
+
+ boost::optional<LineSegment> ls2 = Geom::clip (l2, R);
+ if (ls2)
+ {
+ if (ls2->isDegenerate())
+ {
+ single_points.push_back (ls2->initialPoint());
+ }
+ else
+ {
+ Point M = middle_point (*ls2);
+ arcs.push_back
+ (RatQuad (ls2->initialPoint(), M, ls2->finalPoint(), 1));
+ inner_empty = false;
+ }
+ }
+
+ return !inner_empty;
+ }
+
+
+ bool no_crossing = intersect (crossing_points);
+
+ // if the only crossing point is a rectangle corner than the section conic
+ // is all outside the rectangle
+ if (crossing_points.size() == 1)
+ {
+ for (size_t i = 0; i < 4; ++i)
+ {
+ if (crossing_points[0] == R.corner(i))
+ {
+ single_points.push_back (R.corner(i));
+ return false;
+ }
+ }
+ }
+
+ // if the conic does not cross any line passing through a rectangle edge or
+ // it is tangent to only one edge then it is an ellipse
+ if (no_crossing
+ || (crossing_points.size() == 1 && single_points.empty()))
+ {
+ // if the ellipse centre is inside the rectangle
+ // then so it is the ellipse
+ boost::optional<Point> c = cs.centre();
+ if (c && R.contains (*c))
+ {
+ DBGPRINT ("CLIP: ellipse with centre", *c)
+ // we set paired and inner points by finding the ellipse
+ // intersection with its axes; this choice let us having a more
+ // accurate RatQuad parametric arc
+ paired_points.resize(4);
+ std::vector<double> rts;
+ double angle = cs.axis_angle();
+ Line axis1 (*c, angle);
+ rts = cs.roots (axis1);
+ if (rts[0] > rts[1]) swap (rts[0], rts[1]);
+ paired_points[0] = axis1.pointAt (rts[0]);
+ paired_points[1] = axis1.pointAt (rts[1]);
+ paired_points[2] = paired_points[1];
+ paired_points[3] = paired_points[0];
+ Line axis2 (*c, angle + M_PI/2);
+ rts = cs.roots (axis2);
+ if (rts[0] > rts[1]) swap (rts[0], rts[1]);
+ inner_points.push_back (axis2.pointAt (rts[0]));
+ inner_points.push_back (axis2.pointAt (rts[1]));
+ }
+ else if (crossing_points.size() == 1)
+ {
+ // so we have a tangent crossing point but the ellipse is outside
+ // the rectangle
+ single_points.push_back (crossing_points[0]);
+ }
+ }
+ else
+ {
+ // in case the conic section intersects any of the four lines passing
+ // through the rectangle edges but it does not cross any rectangle edge
+ // then the conic is all outer of the rectangle
+ if (crossing_points.empty()) return false;
+ // else we need to pair crossing points, and to find an arc inner point
+ // in order to generate a RatQuad object
+ pairing (paired_points, inner_points, crossing_points);
+ }
+
+
+ // we split arcs until the end-point distance is less than a given value,
+ // in this way the RatQuad parametrization is enough accurate
+ std::list<Point> points;
+ std::list<Point>::iterator sp, ip, fp;
+ for (size_t i = 0, j = 0; i < paired_points.size(); i += 2, ++j)
+ {
+ //DBGPRINT ("CLIP: clip: P = ", paired_points[i])
+ //DBGPRINT ("CLIP: clip: M = ", inner_points[j])
+ //DBGPRINT ("CLIP: clip: Q = ", paired_points[i+1])
+
+ // in case inner point and end points are near is better not split
+ // the conic arc further or we could get a degenerate RatQuad object
+ if (are_near (paired_points[i], inner_points[j], 1e-4)
+ && are_near (paired_points[i+1], inner_points[j], 1e-4))
+ {
+ arcs.push_back (cs.toRatQuad (paired_points[i],
+ inner_points[j],
+ paired_points[i+1]));
+ continue;
+ }
+
+ // populate the list
+ points.push_back(paired_points[i]);
+ points.push_back(inner_points[j]);
+ points.push_back(paired_points[i+1]);
+
+ // an initial unconditioned splitting
+ sp = points.begin();
+ ip = sp; ++ip;
+ fp = ip; ++fp;
+ rsplit (points, sp, ip, size_t(1u));
+ rsplit (points, ip, fp, size_t(1u));
+
+ // length conditioned split
+ sp = points.begin();
+ fp = sp; ++fp;
+ while (fp != points.end())
+ {
+ rsplit (points, sp, fp, 100.0);
+ sp = fp;
+ ++fp;
+ }
+
+ sp = points.begin();
+ ip = sp; ++ip;
+ fp = ip; ++fp;
+ //DBGPRINT ("CLIP: points ", j)
+ //DBGPRINT ("CLIP: points.size = ", points.size())
+ while (ip != points.end())
+ {
+#ifdef CLIP_WITH_CAIRO_SUPPORT
+ cairo_set_source_rgba(cr, 0.1, 0.1, 0.8, 1.0);
+ draw_handle (cr, *sp);
+ draw_handle (cr, *ip);
+ cairo_stroke (cr);
+#endif
+ //std::cerr << "CLIP: arc: [" << *sp << ", " << *ip << ", "
+ // << *fp << "]" << std::endl;
+ arcs.push_back (cs.toRatQuad (*sp, *ip, *fp));
+ sp = fp;
+ ip = sp; ++ip;
+ fp = ip; ++fp;
+ }
+ points.clear();
+ }
+ DBGPRINT ("CLIP: arcs.size() = ", arcs.size())
+ return (arcs.size() != 0);
+} // end method clip
+
+
+} // end namespace geom
+
+
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :