summaryrefslogtreecommitdiffstats
path: root/src/2geom/numeric/fitting-tool.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/numeric/fitting-tool.h')
-rw-r--r--src/2geom/numeric/fitting-tool.h562
1 files changed, 562 insertions, 0 deletions
diff --git a/src/2geom/numeric/fitting-tool.h b/src/2geom/numeric/fitting-tool.h
new file mode 100644
index 0000000..f2e856a
--- /dev/null
+++ b/src/2geom/numeric/fitting-tool.h
@@ -0,0 +1,562 @@
+/*
+ * Fitting Tools
+ *
+ * Authors:
+ * Marco Cecchetti <mrcekets at gmail.com>
+ *
+ * Copyright 2008 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+
+#ifndef _NL_FITTING_TOOL_H_
+#define _NL_FITTING_TOOL_H_
+
+
+#include <2geom/numeric/vector.h>
+#include <2geom/numeric/matrix.h>
+
+#include <2geom/point.h>
+
+#include <vector>
+
+
+/*
+ * The least_square_fitter class represents a tool for solving a fitting
+ * problem with respect to a given model that represents an expression
+ * dependent from a parameter where the coefficients of this expression
+ * are the unknowns of the fitting problem.
+ * The minimizing solution is found by computing the pseudo-inverse
+ * of the problem matrix
+ */
+
+
+namespace Geom { namespace NL {
+
+namespace detail {
+
+template< typename ModelT>
+class lsf_base
+{
+ public:
+ typedef ModelT model_type;
+ typedef typename model_type::parameter_type parameter_type;
+ typedef typename model_type::value_type value_type;
+
+ lsf_base( model_type const& _model, size_t forecasted_samples )
+ : m_model(_model),
+ m_total_samples(0),
+ m_matrix(forecasted_samples, m_model.size()),
+ m_psdinv_matrix(NULL)
+ {
+ }
+
+ // compute pseudo inverse
+ void update()
+ {
+ if (total_samples() == 0) return;
+ if (m_psdinv_matrix != NULL)
+ {
+ delete m_psdinv_matrix;
+ }
+ MatrixView mv(m_matrix, 0, 0, total_samples(), m_matrix.columns());
+ m_psdinv_matrix = new Matrix( pseudo_inverse(mv) );
+ assert(m_psdinv_matrix != NULL);
+ }
+
+ size_t total_samples() const
+ {
+ return m_total_samples;
+ }
+
+ bool is_full() const
+ {
+ return (total_samples() == m_matrix.rows());
+ }
+
+ void clear()
+ {
+ m_total_samples = 0;
+ }
+
+ virtual
+ ~lsf_base()
+ {
+ if (m_psdinv_matrix != NULL)
+ {
+ delete m_psdinv_matrix;
+ }
+ }
+
+ protected:
+ const model_type & m_model;
+ size_t m_total_samples;
+ Matrix m_matrix;
+ Matrix* m_psdinv_matrix;
+
+}; // end class lsf_base
+
+
+
+
+template< typename ModelT, typename ValueType = typename ModelT::value_type>
+class lsf_solution
+{
+};
+
+// a fitting process on samples with value of type double
+// produces a solution of type Vector
+template< typename ModelT>
+class lsf_solution<ModelT, double>
+ : public lsf_base<ModelT>
+{
+public:
+ typedef ModelT model_type;
+ typedef typename model_type::parameter_type parameter_type;
+ typedef typename model_type::value_type value_type;
+ typedef Vector solution_type;
+ typedef lsf_base<model_type> base_type;
+
+ using base_type::m_model;
+ using base_type::m_psdinv_matrix;
+ using base_type::total_samples;
+
+public:
+ lsf_solution<ModelT, double>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples),
+ m_solution(_model.size())
+ {
+ }
+
+ template< typename VectorT >
+ solution_type& result(VectorT const& sample_values)
+ {
+ assert(sample_values.size() == total_samples());
+ ConstVectorView sv(sample_values);
+ m_solution = (*m_psdinv_matrix) * sv;
+ return m_solution;
+ }
+
+ // a comparison between old sample values and the new ones is performed
+ // in order to minimize computation
+ // prerequisite:
+ // old_sample_values.size() == new_sample_values.size()
+ // no update() call can be performed between two result invocations
+ template< typename VectorT >
+ solution_type& result( VectorT const& old_sample_values,
+ VectorT const& new_sample_values )
+ {
+ assert(old_sample_values.size() == total_samples());
+ assert(new_sample_values.size() == total_samples());
+ Vector diff(total_samples());
+ for (size_t i = 0; i < diff.size(); ++i)
+ {
+ diff[i] = new_sample_values[i] - old_sample_values[i];
+ }
+ Vector column(m_model.size());
+ Vector delta(m_model.size(), 0.0);
+ for (size_t i = 0; i < diff.size(); ++i)
+ {
+ if (diff[i] != 0)
+ {
+ column = m_psdinv_matrix->column_view(i);
+ column.scale(diff[i]);
+ delta += column;
+ }
+ }
+ m_solution += delta;
+ return m_solution;
+ }
+
+ solution_type& result()
+ {
+ return m_solution;
+ }
+
+private:
+ solution_type m_solution;
+
+}; // end class lsf_solution<ModelT, double>
+
+
+// a fitting process on samples with value of type Point
+// produces a solution of type Matrix (with 2 columns)
+template< typename ModelT>
+class lsf_solution<ModelT, Point>
+ : public lsf_base<ModelT>
+{
+public:
+ typedef ModelT model_type;
+ typedef typename model_type::parameter_type parameter_type;
+ typedef typename model_type::value_type value_type;
+ typedef Matrix solution_type;
+ typedef lsf_base<model_type> base_type;
+
+ using base_type::m_model;
+ using base_type::m_psdinv_matrix;
+ using base_type::total_samples;
+
+public:
+ lsf_solution<ModelT, Point>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples),
+ m_solution(_model.size(), 2)
+ {
+ }
+
+ solution_type& result(std::vector<Point> const& sample_values)
+ {
+ assert(sample_values.size() == total_samples());
+ Matrix svm(total_samples(), 2);
+ for (size_t i = 0; i < total_samples(); ++i)
+ {
+ svm(i, X) = sample_values[i][X];
+ svm(i, Y) = sample_values[i][Y];
+ }
+ m_solution = (*m_psdinv_matrix) * svm;
+ return m_solution;
+ }
+
+ // a comparison between old sample values and the new ones is performed
+ // in order to minimize computation
+ // prerequisite:
+ // old_sample_values.size() == new_sample_values.size()
+ // no update() call can to be performed between two result invocations
+ solution_type& result( std::vector<Point> const& old_sample_values,
+ std::vector<Point> const& new_sample_values )
+ {
+ assert(old_sample_values.size() == total_samples());
+ assert(new_sample_values.size() == total_samples());
+ Matrix diff(total_samples(), 2);
+ for (size_t i = 0; i < total_samples(); ++i)
+ {
+ diff(i, X) = new_sample_values[i][X] - old_sample_values[i][X];
+ diff(i, Y) = new_sample_values[i][Y] - old_sample_values[i][Y];
+ }
+ Vector column(m_model.size());
+ Matrix delta(m_model.size(), 2, 0.0);
+ VectorView deltax = delta.column_view(X);
+ VectorView deltay = delta.column_view(Y);
+ for (size_t i = 0; i < total_samples(); ++i)
+ {
+ if (diff(i, X) != 0)
+ {
+ column = m_psdinv_matrix->column_view(i);
+ column.scale(diff(i, X));
+ deltax += column;
+ }
+ if (diff(i, Y) != 0)
+ {
+ column = m_psdinv_matrix->column_view(i);
+ column.scale(diff(i, Y));
+ deltay += column;
+ }
+ }
+ m_solution += delta;
+ return m_solution;
+ }
+
+ solution_type& result()
+ {
+ return m_solution;
+ }
+
+private:
+ solution_type m_solution;
+
+}; // end class lsf_solution<ModelT, Point>
+
+
+
+
+template< typename ModelT,
+ bool WITH_FIXED_TERMS = ModelT::WITH_FIXED_TERMS >
+class lsf_with_fixed_terms
+{
+};
+
+
+// fitting tool for completely unknown models
+template< typename ModelT>
+class lsf_with_fixed_terms<ModelT, false>
+ : public lsf_solution<ModelT>
+{
+ public:
+ typedef ModelT model_type;
+ typedef typename model_type::parameter_type parameter_type;
+ typedef typename model_type::value_type value_type;
+ typedef lsf_solution<model_type> base_type;
+ typedef typename base_type::solution_type solution_type;
+
+ using base_type::total_samples;
+ using base_type::is_full;
+ using base_type::m_matrix;
+ using base_type::m_total_samples;
+ using base_type::m_model;
+
+ public:
+ lsf_with_fixed_terms<ModelT, false>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples)
+ {
+ }
+
+ void append(parameter_type const& sample_parameter)
+ {
+ assert(!is_full());
+ VectorView row = m_matrix.row_view(total_samples());
+ m_model.feed(row, sample_parameter);
+ ++m_total_samples;
+ }
+
+ void append_copy(size_t sample_index)
+ {
+ assert(!is_full());
+ assert(sample_index < total_samples());
+ VectorView dest_row = m_matrix.row_view(total_samples());
+ VectorView source_row = m_matrix.row_view(sample_index);
+ dest_row = source_row;
+ ++m_total_samples;
+ }
+
+}; // end class lsf_with_fixed_terms<ModelT, false>
+
+
+// fitting tool for partially known models
+template< typename ModelT>
+class lsf_with_fixed_terms<ModelT, true>
+ : public lsf_solution<ModelT>
+{
+ public:
+ typedef ModelT model_type;
+ typedef typename model_type::parameter_type parameter_type;
+ typedef typename model_type::value_type value_type;
+ typedef lsf_solution<model_type> base_type;
+ typedef typename base_type::solution_type solution_type;
+
+ using base_type::total_samples;
+ using base_type::is_full;
+ using base_type::m_matrix;
+ using base_type::m_total_samples;
+ using base_type::m_model;
+
+ public:
+ lsf_with_fixed_terms<ModelT, true>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples),
+ m_vector(forecasted_samples),
+ m_vector_view(NULL)
+ {
+ }
+ void append(parameter_type const& sample_parameter)
+ {
+ assert(!is_full());
+ VectorView row = m_matrix.row_view(total_samples());
+ m_model.feed(row, m_vector[total_samples()], sample_parameter);
+ ++m_total_samples;
+ }
+
+ void append_copy(size_t sample_index)
+ {
+ assert(!is_full());
+ assert(sample_index < total_samples());
+ VectorView dest_row = m_matrix.row_view(total_samples());
+ VectorView source_row = m_matrix.row_view(sample_index);
+ dest_row = source_row;
+ m_vector[total_samples()] = m_vector[sample_index];
+ ++m_total_samples;
+ }
+
+ void update()
+ {
+ base_type::update();
+ if (total_samples() == 0) return;
+ if (m_vector_view != NULL)
+ {
+ delete m_vector_view;
+ }
+ m_vector_view = new VectorView(m_vector, base_type::total_samples());
+ assert(m_vector_view != NULL);
+ }
+
+ virtual
+ ~lsf_with_fixed_terms<model_type, true>()
+ {
+ if (m_vector_view != NULL)
+ {
+ delete m_vector_view;
+ }
+ }
+
+ protected:
+ Vector m_vector;
+ VectorView* m_vector_view;
+
+}; // end class lsf_with_fixed_terms<ModelT, true>
+
+
+} // end namespace detail
+
+
+
+
+template< typename ModelT,
+ typename ValueType = typename ModelT::value_type,
+ bool WITH_FIXED_TERMS = ModelT::WITH_FIXED_TERMS >
+class least_squeares_fitter
+{
+};
+
+
+template< typename ModelT, typename ValueType >
+class least_squeares_fitter<ModelT, ValueType, false>
+ : public detail::lsf_with_fixed_terms<ModelT>
+{
+ public:
+ typedef ModelT model_type;
+ typedef detail::lsf_with_fixed_terms<model_type> base_type;
+ typedef typename base_type::parameter_type parameter_type;
+ typedef typename base_type::value_type value_type;
+ typedef typename base_type::solution_type solution_type;
+
+ public:
+ least_squeares_fitter<ModelT, ValueType, false>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples)
+ {
+ }
+}; // end class least_squeares_fitter<ModelT, ValueType, true>
+
+
+template< typename ModelT>
+class least_squeares_fitter<ModelT, double, true>
+ : public detail::lsf_with_fixed_terms<ModelT>
+{
+ public:
+ typedef ModelT model_type;
+ typedef detail::lsf_with_fixed_terms<model_type> base_type;
+ typedef typename base_type::parameter_type parameter_type;
+ typedef typename base_type::value_type value_type;
+ typedef typename base_type::solution_type solution_type;
+
+ using base_type::m_vector_view;
+ //using base_type::result; // VSC legacy support
+ solution_type& result( std::vector<Point> const& old_sample_values,
+ std::vector<Point> const& new_sample_values )
+ {
+ return base_type::result(old_sample_values, new_sample_values);
+ }
+
+ solution_type& result()
+ {
+ return base_type::result();
+ }
+
+ public:
+ least_squeares_fitter<ModelT, double, true>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples)
+ {
+ }
+
+ template< typename VectorT >
+ solution_type& result(VectorT const& sample_values)
+ {
+ assert(sample_values.size() == m_vector_view->size());
+ Vector sv(sample_values.size());
+ for (size_t i = 0; i < sv.size(); ++i)
+ sv[i] = sample_values[i] - (*m_vector_view)[i];
+ return base_type::result(sv);
+ }
+
+}; // end class least_squeares_fitter<ModelT, double, true>
+
+
+template< typename ModelT>
+class least_squeares_fitter<ModelT, Point, true>
+ : public detail::lsf_with_fixed_terms<ModelT>
+{
+ public:
+ typedef ModelT model_type;
+ typedef detail::lsf_with_fixed_terms<model_type> base_type;
+ typedef typename base_type::parameter_type parameter_type;
+ typedef typename base_type::value_type value_type;
+ typedef typename base_type::solution_type solution_type;
+
+ using base_type::m_vector_view;
+ //using base_type::result; // VCS legacy support
+ solution_type& result( std::vector<Point> const& old_sample_values,
+ std::vector<Point> const& new_sample_values )
+ {
+ return base_type::result(old_sample_values, new_sample_values);
+ }
+
+ solution_type& result()
+ {
+ return base_type::result();
+ }
+
+
+ public:
+ least_squeares_fitter<ModelT, Point, true>( model_type const& _model,
+ size_t forecasted_samples )
+ : base_type(_model, forecasted_samples)
+ {
+ }
+
+ solution_type& result(std::vector<Point> const& sample_values)
+ {
+ assert(sample_values.size() == m_vector_view->size());
+ NL::Matrix sv(sample_values.size(), 2);
+ for (size_t i = 0; i < sample_values.size(); ++i)
+ {
+ sv(i, X) = sample_values[i][X] - (*m_vector_view)[i];
+ sv(i, Y) = sample_values[i][Y] - (*m_vector_view)[i];
+ }
+ return base_type::result(sv);
+ }
+
+}; // end class least_squeares_fitter<ModelT, Point, true>
+
+
+} // end namespace NL
+} // end namespace Geom
+
+
+
+#endif // _NL_FITTING_TOOL_H_
+
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :