diff options
Diffstat (limited to 'src/2geom/polynomial.h')
-rw-r--r-- | src/2geom/polynomial.h | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/src/2geom/polynomial.h b/src/2geom/polynomial.h new file mode 100644 index 0000000..5ab2aa4 --- /dev/null +++ b/src/2geom/polynomial.h @@ -0,0 +1,264 @@ +/** + * \file + * \brief Polynomial in canonical (monomial) basis + *//* + * Authors: + * MenTaLguY <mental@rydia.net> + * Krzysztof KosiĆski <tweenk.pl@gmail.com> + * + * Copyright 2007-2015 Authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#ifndef LIB2GEOM_SEEN_POLY_H +#define LIB2GEOM_SEEN_POLY_H +#include <assert.h> +#include <vector> +#include <iostream> +#include <algorithm> +#include <complex> +#include <2geom/coord.h> +#include <2geom/utils.h> + +namespace Geom { + +/** @brief Polynomial in canonical (monomial) basis. + * @ingroup Fragments */ +class Poly : public std::vector<double>{ +public: + // coeff; // sum x^i*coeff[i] + + //unsigned size() const { return coeff.size();} + unsigned degree() const { return size()-1;} + + //double operator[](const int i) const { return (*this)[i];} + //double& operator[](const int i) { return (*this)[i];} + + Poly operator+(const Poly& p) const { + Poly result; + const unsigned out_size = std::max(size(), p.size()); + const unsigned min_size = std::min(size(), p.size()); + //result.reserve(out_size); + + for(unsigned i = 0; i < min_size; i++) { + result.push_back((*this)[i] + p[i]); + } + for(unsigned i = min_size; i < size(); i++) + result.push_back((*this)[i]); + for(unsigned i = min_size; i < p.size(); i++) + result.push_back(p[i]); + assert(result.size() == out_size); + return result; + } + Poly operator-(const Poly& p) const { + Poly result; + const unsigned out_size = std::max(size(), p.size()); + const unsigned min_size = std::min(size(), p.size()); + result.reserve(out_size); + + for(unsigned i = 0; i < min_size; i++) { + result.push_back((*this)[i] - p[i]); + } + for(unsigned i = min_size; i < size(); i++) + result.push_back((*this)[i]); + for(unsigned i = min_size; i < p.size(); i++) + result.push_back(-p[i]); + assert(result.size() == out_size); + return result; + } + Poly operator-=(const Poly& p) { + const unsigned out_size = std::max(size(), p.size()); + const unsigned min_size = std::min(size(), p.size()); + resize(out_size); + + for(unsigned i = 0; i < min_size; i++) { + (*this)[i] -= p[i]; + } + for(unsigned i = min_size; i < out_size; i++) + (*this)[i] = -p[i]; + return *this; + } + Poly operator-(const double k) const { + Poly result; + const unsigned out_size = size(); + result.reserve(out_size); + + for(unsigned i = 0; i < out_size; i++) { + result.push_back((*this)[i]); + } + result[0] -= k; + return result; + } + Poly operator-() const { + Poly result; + result.resize(size()); + + for(unsigned i = 0; i < size(); i++) { + result[i] = -(*this)[i]; + } + return result; + } + Poly operator*(const double p) const { + Poly result; + const unsigned out_size = size(); + result.reserve(out_size); + + for(unsigned i = 0; i < out_size; i++) { + result.push_back((*this)[i]*p); + } + assert(result.size() == out_size); + return result; + } + // equivalent to multiply by x^terms, negative terms are disallowed + Poly shifted(unsigned const terms) const { + Poly result; + size_type const out_size = size() + terms; + result.reserve(out_size); + + result.resize(terms, 0.0); + result.insert(result.end(), this->begin(), this->end()); + + assert(result.size() == out_size); + return result; + } + Poly operator*(const Poly& p) const; + + template <typename T> + T eval(T x) const { + T r = 0; + for(int k = size()-1; k >= 0; k--) { + r = r*x + T((*this)[k]); + } + return r; + } + + template <typename T> + T operator()(T t) const { return (T)eval(t);} + + void normalize(); + + void monicify(); + Poly() {} + Poly(const Poly& p) : std::vector<double>(p) {} + Poly(const double a) {push_back(a);} + +public: + template <class T, class U> + void val_and_deriv(T x, U &pd) const { + pd[0] = back(); + int nc = size() - 1; + int nd = pd.size() - 1; + for(unsigned j = 1; j < pd.size(); j++) + pd[j] = 0.0; + for(int i = nc -1; i >= 0; i--) { + int nnd = std::min(nd, nc-i); + for(int j = nnd; j >= 1; j--) + pd[j] = pd[j]*x + operator[](i); + pd[0] = pd[0]*x + operator[](i); + } + double cnst = 1; + for(int i = 2; i <= nd; i++) { + cnst *= i; + pd[i] *= cnst; + } + } + + static Poly linear(double ax, double b) { + Poly p; + p.push_back(b); + p.push_back(ax); + return p; + } +}; + +inline Poly operator*(double a, Poly const & b) { return b * a;} + +Poly integral(Poly const & p); +Poly derivative(Poly const & p); +Poly divide_out_root(Poly const & p, double x); +Poly compose(Poly const & a, Poly const & b); +Poly divide(Poly const &a, Poly const &b, Poly &r); +Poly gcd(Poly const &a, Poly const &b, const double tol=1e-10); + +/*** solve(Poly p) + * find all p.degree() roots of p. + * This function can take a long time with suitably crafted polynomials, but in practice it should be fast. Should we provide special forms for degree() <= 4? + */ +std::vector<std::complex<double> > solve(const Poly & p); + +#ifdef HAVE_GSL +/*** solve_reals(Poly p) + * find all real solutions to Poly p. + * currently we just use solve and pick out the suitably real looking values, there may be a better algorithm. + */ +std::vector<double> solve_reals(const Poly & p); +#endif +double polish_root(Poly const & p, double guess, double tol); + + +/** @brief Analytically solve quadratic equation. + * The equation is given in the standard form: ax^2 + bx + c = 0. + * Only real roots are returned. */ +std::vector<Coord> solve_quadratic(Coord a, Coord b, Coord c); + +/** @brief Analytically solve cubic equation. + * The equation is given in the standard form: ax^3 + bx^2 + cx + d = 0. + * Only real roots are returned. */ +std::vector<Coord> solve_cubic(Coord a, Coord b, Coord c, Coord d); + + +inline std::ostream &operator<< (std::ostream &out_file, const Poly &in_poly) { + if(in_poly.size() == 0) + out_file << "0"; + else { + for(int i = (int)in_poly.size()-1; i >= 0; --i) { + if(i == 1) { + out_file << "" << in_poly[i] << "*x"; + out_file << " + "; + } else if(i) { + out_file << "" << in_poly[i] << "*x^" << i; + out_file << " + "; + } else + out_file << in_poly[i]; + + } + } + return out_file; +} + +} // namespace Geom + +#endif //LIB2GEOM_SEEN_POLY_H + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |