summaryrefslogtreecommitdiffstats
path: root/src/2geom/recursive-bezier-intersection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/recursive-bezier-intersection.cpp')
-rw-r--r--src/2geom/recursive-bezier-intersection.cpp476
1 files changed, 476 insertions, 0 deletions
diff --git a/src/2geom/recursive-bezier-intersection.cpp b/src/2geom/recursive-bezier-intersection.cpp
new file mode 100644
index 0000000..e86192f
--- /dev/null
+++ b/src/2geom/recursive-bezier-intersection.cpp
@@ -0,0 +1,476 @@
+
+
+
+#include <2geom/basic-intersection.h>
+#include <2geom/sbasis-to-bezier.h>
+#include <2geom/exception.h>
+
+
+#include <gsl/gsl_vector.h>
+#include <gsl/gsl_multiroots.h>
+
+
+unsigned intersect_steps = 0;
+
+using std::vector;
+
+namespace Geom {
+
+class OldBezier {
+public:
+ std::vector<Geom::Point> p;
+ OldBezier() {
+ }
+ void split(double t, OldBezier &a, OldBezier &b) const;
+ Point operator()(double t) const;
+
+ ~OldBezier() {}
+
+ void bounds(double &minax, double &maxax,
+ double &minay, double &maxay) {
+ // Compute bounding box for a
+ minax = p[0][X]; // These are the most likely to be extremal
+ maxax = p.back()[X];
+ if( minax > maxax )
+ std::swap(minax, maxax);
+ for(unsigned i = 1; i < p.size()-1; i++) {
+ if( p[i][X] < minax )
+ minax = p[i][X];
+ else if( p[i][X] > maxax )
+ maxax = p[i][X];
+ }
+
+ minay = p[0][Y]; // These are the most likely to be extremal
+ maxay = p.back()[Y];
+ if( minay > maxay )
+ std::swap(minay, maxay);
+ for(unsigned i = 1; i < p.size()-1; i++) {
+ if( p[i][Y] < minay )
+ minay = p[i][Y];
+ else if( p[i][Y] > maxay )
+ maxay = p[i][Y];
+ }
+
+ }
+
+};
+
+static void
+find_intersections_bezier_recursive(std::vector<std::pair<double, double> > & xs,
+ OldBezier a,
+ OldBezier b);
+
+void
+find_intersections_bezier_recursive( std::vector<std::pair<double, double> > &xs,
+ vector<Geom::Point> const & A,
+ vector<Geom::Point> const & B,
+ double /*precision*/) {
+ OldBezier a, b;
+ a.p = A;
+ b.p = B;
+ return find_intersections_bezier_recursive(xs, a,b);
+}
+
+
+/*
+ * split the curve at the midpoint, returning an array with the two parts
+ * Temporary storage is minimized by using part of the storage for the result
+ * to hold an intermediate value until it is no longer needed.
+ */
+void OldBezier::split(double t, OldBezier &left, OldBezier &right) const {
+ const unsigned sz = p.size();
+ //Geom::Point Vtemp[sz][sz];
+ std::vector< std::vector< Geom::Point > > Vtemp;
+ for (size_t i = 0; i < sz; ++i )
+ Vtemp[i].reserve(sz);
+
+ /* Copy control points */
+ std::copy(p.begin(), p.end(), Vtemp[0].begin());
+
+ /* Triangle computation */
+ for (unsigned i = 1; i < sz; i++) {
+ for (unsigned j = 0; j < sz - i; j++) {
+ Vtemp[i][j] = lerp(t, Vtemp[i-1][j], Vtemp[i-1][j+1]);
+ }
+ }
+
+ left.p.resize(sz);
+ right.p.resize(sz);
+ for (unsigned j = 0; j < sz; j++)
+ left.p[j] = Vtemp[j][0];
+ for (unsigned j = 0; j < sz; j++)
+ right.p[j] = Vtemp[sz-1-j][j];
+}
+
+#if 0
+/*
+ * split the curve at the midpoint, returning an array with the two parts
+ * Temporary storage is minimized by using part of the storage for the result
+ * to hold an intermediate value until it is no longer needed.
+ */
+Point OldBezier::operator()(double t) const {
+ const unsigned sz = p.size();
+ Geom::Point Vtemp[sz][sz];
+
+ /* Copy control points */
+ std::copy(p.begin(), p.end(), Vtemp[0]);
+
+ /* Triangle computation */
+ for (unsigned i = 1; i < sz; i++) {
+ for (unsigned j = 0; j < sz - i; j++) {
+ Vtemp[i][j] = lerp(t, Vtemp[i-1][j], Vtemp[i-1][j+1]);
+ }
+ }
+ return Vtemp[sz-1][0];
+}
+#endif
+
+// suggested by Sederberg.
+Point OldBezier::operator()(double const t) const {
+ size_t const n = p.size()-1;
+ Point r;
+ for(int dim = 0; dim < 2; dim++) {
+ double const u = 1.0 - t;
+ double bc = 1;
+ double tn = 1;
+ double tmp = p[0][dim]*u;
+ for(size_t i=1; i<n; i++){
+ tn = tn*t;
+ bc = bc*(n-i+1)/i;
+ tmp = (tmp + tn*bc*p[i][dim])*u;
+ }
+ r[dim] = (tmp + tn*t*p[n][dim]);
+ }
+ return r;
+}
+
+
+/*
+ * Test the bounding boxes of two OldBezier curves for interference.
+ * Several observations:
+ * First, it is cheaper to compute the bounding box of the second curve
+ * and test its bounding box for interference than to use a more direct
+ * approach of comparing all control points of the second curve with
+ * the various edges of the bounding box of the first curve to test
+ * for interference.
+ * Second, after a few subdivisions it is highly probable that two corners
+ * of the bounding box of a given Bezier curve are the first and last
+ * control point. Once this happens once, it happens for all subsequent
+ * subcurves. It might be worth putting in a test and then short-circuit
+ * code for further subdivision levels.
+ * Third, in the final comparison (the interference test) the comparisons
+ * should both permit equality. We want to find intersections even if they
+ * occur at the ends of segments.
+ * Finally, there are tighter bounding boxes that can be derived. It isn't
+ * clear whether the higher probability of rejection (and hence fewer
+ * subdivisions and tests) is worth the extra work.
+ */
+
+bool intersect_BB( OldBezier a, OldBezier b ) {
+ double minax, maxax, minay, maxay;
+ a.bounds(minax, maxax, minay, maxay);
+ double minbx, maxbx, minby, maxby;
+ b.bounds(minbx, maxbx, minby, maxby);
+ // Test bounding box of b against bounding box of a
+ // Not >= : need boundary case
+ return !( ( minax > maxbx ) || ( minay > maxby )
+ || ( minbx > maxax ) || ( minby > maxay ) );
+}
+
+/*
+ * Recursively intersect two curves keeping track of their real parameters
+ * and depths of intersection.
+ * The results are returned in a 2-D array of doubles indicating the parameters
+ * for which intersections are found. The parameters are in the order the
+ * intersections were found, which is probably not in sorted order.
+ * When an intersection is found, the parameter value for each of the two
+ * is stored in the index elements array, and the index is incremented.
+ *
+ * If either of the curves has subdivisions left before it is straight
+ * (depth > 0)
+ * that curve (possibly both) is (are) subdivided at its (their) midpoint(s).
+ * the depth(s) is (are) decremented, and the parameter value(s) corresponding
+ * to the midpoints(s) is (are) computed.
+ * Then each of the subcurves of one curve is intersected with each of the
+ * subcurves of the other curve, first by testing the bounding boxes for
+ * interference. If there is any bounding box interference, the corresponding
+ * subcurves are recursively intersected.
+ *
+ * If neither curve has subdivisions left, the line segments from the first
+ * to last control point of each segment are intersected. (Actually the
+ * only the parameter value corresponding to the intersection point is found).
+ *
+ * The apriori flatness test is probably more efficient than testing at each
+ * level of recursion, although a test after three or four levels would
+ * probably be worthwhile, since many curves become flat faster than their
+ * asymptotic rate for the first few levels of recursion.
+ *
+ * The bounding box test fails much more frequently than it succeeds, providing
+ * substantial pruning of the search space.
+ *
+ * Each (sub)curve is subdivided only once, hence it is not possible that for
+ * one final line intersection test the subdivision was at one level, while
+ * for another final line intersection test the subdivision (of the same curve)
+ * was at another. Since the line segments share endpoints, the intersection
+ * is robust: a near-tangential intersection will yield zero or two
+ * intersections.
+ */
+void recursively_intersect( OldBezier a, double t0, double t1, int deptha,
+ OldBezier b, double u0, double u1, int depthb,
+ std::vector<std::pair<double, double> > &parameters)
+{
+ intersect_steps ++;
+ //std::cout << deptha << std::endl;
+ if( deptha > 0 )
+ {
+ OldBezier A[2];
+ a.split(0.5, A[0], A[1]);
+ double tmid = (t0+t1)*0.5;
+ deptha--;
+ if( depthb > 0 )
+ {
+ OldBezier B[2];
+ b.split(0.5, B[0], B[1]);
+ double umid = (u0+u1)*0.5;
+ depthb--;
+ if( intersect_BB( A[0], B[0] ) )
+ recursively_intersect( A[0], t0, tmid, deptha,
+ B[0], u0, umid, depthb,
+ parameters );
+ if( intersect_BB( A[1], B[0] ) )
+ recursively_intersect( A[1], tmid, t1, deptha,
+ B[0], u0, umid, depthb,
+ parameters );
+ if( intersect_BB( A[0], B[1] ) )
+ recursively_intersect( A[0], t0, tmid, deptha,
+ B[1], umid, u1, depthb,
+ parameters );
+ if( intersect_BB( A[1], B[1] ) )
+ recursively_intersect( A[1], tmid, t1, deptha,
+ B[1], umid, u1, depthb,
+ parameters );
+ }
+ else
+ {
+ if( intersect_BB( A[0], b ) )
+ recursively_intersect( A[0], t0, tmid, deptha,
+ b, u0, u1, depthb,
+ parameters );
+ if( intersect_BB( A[1], b ) )
+ recursively_intersect( A[1], tmid, t1, deptha,
+ b, u0, u1, depthb,
+ parameters );
+ }
+ }
+ else
+ if( depthb > 0 )
+ {
+ OldBezier B[2];
+ b.split(0.5, B[0], B[1]);
+ double umid = (u0 + u1)*0.5;
+ depthb--;
+ if( intersect_BB( a, B[0] ) )
+ recursively_intersect( a, t0, t1, deptha,
+ B[0], u0, umid, depthb,
+ parameters );
+ if( intersect_BB( a, B[1] ) )
+ recursively_intersect( a, t0, t1, deptha,
+ B[0], umid, u1, depthb,
+ parameters );
+ }
+ else // Both segments are fully subdivided; now do line segments
+ {
+ double xlk = a.p.back()[X] - a.p[0][X];
+ double ylk = a.p.back()[Y] - a.p[0][Y];
+ double xnm = b.p.back()[X] - b.p[0][X];
+ double ynm = b.p.back()[Y] - b.p[0][Y];
+ double xmk = b.p[0][X] - a.p[0][X];
+ double ymk = b.p[0][Y] - a.p[0][Y];
+ double det = xnm * ylk - ynm * xlk;
+ if( 1.0 + det == 1.0 )
+ return;
+ else
+ {
+ double detinv = 1.0 / det;
+ double s = ( xnm * ymk - ynm *xmk ) * detinv;
+ double t = ( xlk * ymk - ylk * xmk ) * detinv;
+ if( ( s < 0.0 ) || ( s > 1.0 ) || ( t < 0.0 ) || ( t > 1.0 ) )
+ return;
+ parameters.push_back(std::pair<double, double>(t0 + s * ( t1 - t0 ),
+ u0 + t * ( u1 - u0 )));
+ }
+ }
+}
+
+inline double log4( double x ) { return log(x)/log(4.); }
+
+/*
+ * Wang's theorem is used to estimate the level of subdivision required,
+ * but only if the bounding boxes interfere at the top level.
+ * Assuming there is a possible intersection, recursively_intersect is
+ * used to find all the parameters corresponding to intersection points.
+ * these are then sorted and returned in an array.
+ */
+
+double Lmax(Point p) {
+ return std::max(fabs(p[X]), fabs(p[Y]));
+}
+
+
+unsigned wangs_theorem(OldBezier /*a*/) {
+ return 6; // seems a good approximation!
+
+ /*
+ const double INV_EPS = (1L<<14); // The value of 1.0 / (1L<<14) is enough for most applications
+
+ double la1 = Lmax( ( a.p[2] - a.p[1] ) - (a.p[1] - a.p[0]) );
+ double la2 = Lmax( ( a.p[3] - a.p[2] ) - (a.p[2] - a.p[1]) );
+ double l0 = std::max(la1, la2);
+ unsigned ra;
+ if( l0 * 0.75 * M_SQRT2 + 1.0 == 1.0 )
+ ra = 0;
+ else
+ ra = (unsigned)ceil( log4( M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0 ) );
+ //std::cout << ra << std::endl;
+ return ra;*/
+}
+
+struct rparams
+{
+ OldBezier &A;
+ OldBezier &B;
+};
+
+/*static int
+intersect_polish_f (const gsl_vector * x, void *params,
+ gsl_vector * f)
+{
+ const double x0 = gsl_vector_get (x, 0);
+ const double x1 = gsl_vector_get (x, 1);
+
+ Geom::Point dx = ((struct rparams *) params)->A(x0) -
+ ((struct rparams *) params)->B(x1);
+
+ gsl_vector_set (f, 0, dx[0]);
+ gsl_vector_set (f, 1, dx[1]);
+
+ return GSL_SUCCESS;
+}*/
+
+/*union dbl_64{
+ long long i64;
+ double d64;
+};*/
+
+/*static double EpsilonBy(double value, int eps)
+{
+ dbl_64 s;
+ s.d64 = value;
+ s.i64 += eps;
+ return s.d64;
+}*/
+
+/*
+static void intersect_polish_root (OldBezier &A, double &s,
+ OldBezier &B, double &t) {
+ const gsl_multiroot_fsolver_type *T;
+ gsl_multiroot_fsolver *sol;
+
+ int status;
+ size_t iter = 0;
+
+ const size_t n = 2;
+ struct rparams p = {A, B};
+ gsl_multiroot_function f = {&intersect_polish_f, n, &p};
+
+ double x_init[2] = {s, t};
+ gsl_vector *x = gsl_vector_alloc (n);
+
+ gsl_vector_set (x, 0, x_init[0]);
+ gsl_vector_set (x, 1, x_init[1]);
+
+ T = gsl_multiroot_fsolver_hybrids;
+ sol = gsl_multiroot_fsolver_alloc (T, 2);
+ gsl_multiroot_fsolver_set (sol, &f, x);
+
+ do
+ {
+ iter++;
+ status = gsl_multiroot_fsolver_iterate (sol);
+
+ if (status) // check if solver is stuck
+ break;
+
+ status =
+ gsl_multiroot_test_residual (sol->f, 1e-12);
+ }
+ while (status == GSL_CONTINUE && iter < 1000);
+
+ s = gsl_vector_get (sol->x, 0);
+ t = gsl_vector_get (sol->x, 1);
+
+ gsl_multiroot_fsolver_free (sol);
+ gsl_vector_free (x);
+
+ // This code does a neighbourhood search for minor improvements.
+ double best_v = L1(A(s) - B(t));
+ //std::cout << "------\n" << best_v << std::endl;
+ Point best(s,t);
+ while (true) {
+ Point trial = best;
+ double trial_v = best_v;
+ for(int nsi = -1; nsi < 2; nsi++) {
+ for(int nti = -1; nti < 2; nti++) {
+ Point n(EpsilonBy(best[0], nsi),
+ EpsilonBy(best[1], nti));
+ double c = L1(A(n[0]) - B(n[1]));
+ //std::cout << c << "; ";
+ if (c < trial_v) {
+ trial = n;
+ trial_v = c;
+ }
+ }
+ }
+ if(trial == best) {
+ //std::cout << "\n" << s << " -> " << s - best[0] << std::endl;
+ //std::cout << t << " -> " << t - best[1] << std::endl;
+ //std::cout << best_v << std::endl;
+ s = best[0];
+ t = best[1];
+ return;
+ } else {
+ best = trial;
+ best_v = trial_v;
+ }
+ }
+}*/
+
+
+void find_intersections_bezier_recursive( std::vector<std::pair<double, double> > &xs,
+ OldBezier a, OldBezier b)
+{
+ if( intersect_BB( a, b ) )
+ {
+ recursively_intersect( a, 0., 1., wangs_theorem(a),
+ b, 0., 1., wangs_theorem(b),
+ xs);
+ }
+ /*for(unsigned i = 0; i < xs.size(); i++)
+ intersect_polish_root(a, xs[i].first,
+ b, xs[i].second);*/
+ std::sort(xs.begin(), xs.end());
+}
+
+
+};
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :