diff options
Diffstat (limited to 'src/2geom/sbasis.cpp')
-rw-r--r-- | src/2geom/sbasis.cpp | 681 |
1 files changed, 681 insertions, 0 deletions
diff --git a/src/2geom/sbasis.cpp b/src/2geom/sbasis.cpp new file mode 100644 index 0000000..3efc227 --- /dev/null +++ b/src/2geom/sbasis.cpp @@ -0,0 +1,681 @@ +/* + * sbasis.cpp - S-power basis function class + supporting classes + * + * Authors: + * Nathan Hurst <njh@mail.csse.monash.edu.au> + * Michael Sloan <mgsloan@gmail.com> + * + * Copyright (C) 2006-2007 authors + * + * This library is free software; you can redistribute it and/or + * modify it either under the terms of the GNU Lesser General Public + * License version 2.1 as published by the Free Software Foundation + * (the "LGPL") or, at your option, under the terms of the Mozilla + * Public License Version 1.1 (the "MPL"). If you do not alter this + * notice, a recipient may use your version of this file under either + * the MPL or the LGPL. + * + * You should have received a copy of the LGPL along with this library + * in the file COPYING-LGPL-2.1; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * You should have received a copy of the MPL along with this library + * in the file COPYING-MPL-1.1 + * + * The contents of this file are subject to the Mozilla Public License + * Version 1.1 (the "License"); you may not use this file except in + * compliance with the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY + * OF ANY KIND, either express or implied. See the LGPL or the MPL for + * the specific language governing rights and limitations. + */ + +#include <cmath> + +#include <2geom/sbasis.h> +#include <2geom/math-utils.h> + +namespace Geom { + +#ifndef M_PI +# define M_PI 3.14159265358979323846 +#endif + +/** bound the error from term truncation + \param tail first term to chop + \returns the largest possible error this truncation could give +*/ +double SBasis::tailError(unsigned tail) const { + Interval bs = *bounds_fast(*this, tail); + return std::max(fabs(bs.min()),fabs(bs.max())); +} + +/** test all coefficients are finite +*/ +bool SBasis::isFinite() const { + for(unsigned i = 0; i < size(); i++) { + if(!(*this)[i].isFinite()) + return false; + } + return true; +} + +/** Compute the value and the first n derivatives + \param t position to evaluate + \param n number of derivatives (not counting value) + \returns a vector with the value and the n derivative evaluations + +There is an elegant way to compute the value and n derivatives for a polynomial using a variant of horner's rule. Someone will someday work out how for sbasis. +*/ +std::vector<double> SBasis::valueAndDerivatives(double t, unsigned n) const { + std::vector<double> ret(n+1); + ret[0] = valueAt(t); + SBasis tmp = *this; + for(unsigned i = 1; i < n+1; i++) { + tmp.derive(); + ret[i] = tmp.valueAt(t); + } + return ret; +} + + +/** Compute the pointwise sum of a and b (Exact) + \param a,b sbasis functions + \returns sbasis equal to a+b + +*/ +SBasis operator+(const SBasis& a, const SBasis& b) { + const unsigned out_size = std::max(a.size(), b.size()); + const unsigned min_size = std::min(a.size(), b.size()); + SBasis result(out_size, Linear()); + + for(unsigned i = 0; i < min_size; i++) { + result[i] = a[i] + b[i]; + } + for(unsigned i = min_size; i < a.size(); i++) + result[i] = a[i]; + for(unsigned i = min_size; i < b.size(); i++) + result[i] = b[i]; + + assert(result.size() == out_size); + return result; +} + +/** Compute the pointwise difference of a and b (Exact) + \param a,b sbasis functions + \returns sbasis equal to a-b + +*/ +SBasis operator-(const SBasis& a, const SBasis& b) { + const unsigned out_size = std::max(a.size(), b.size()); + const unsigned min_size = std::min(a.size(), b.size()); + SBasis result(out_size, Linear()); + + for(unsigned i = 0; i < min_size; i++) { + result[i] = a[i] - b[i]; + } + for(unsigned i = min_size; i < a.size(); i++) + result[i] = a[i]; + for(unsigned i = min_size; i < b.size(); i++) + result[i] = -b[i]; + + assert(result.size() == out_size); + return result; +} + +/** Compute the pointwise sum of a and b and store in a (Exact) + \param a,b sbasis functions + \returns sbasis equal to a+b + +*/ +SBasis& operator+=(SBasis& a, const SBasis& b) { + const unsigned out_size = std::max(a.size(), b.size()); + const unsigned min_size = std::min(a.size(), b.size()); + a.resize(out_size); + + for(unsigned i = 0; i < min_size; i++) + a[i] += b[i]; + for(unsigned i = min_size; i < b.size(); i++) + a[i] = b[i]; + + assert(a.size() == out_size); + return a; +} + +/** Compute the pointwise difference of a and b and store in a (Exact) + \param a,b sbasis functions + \returns sbasis equal to a-b + +*/ +SBasis& operator-=(SBasis& a, const SBasis& b) { + const unsigned out_size = std::max(a.size(), b.size()); + const unsigned min_size = std::min(a.size(), b.size()); + a.resize(out_size); + + for(unsigned i = 0; i < min_size; i++) + a[i] -= b[i]; + for(unsigned i = min_size; i < b.size(); i++) + a[i] = -b[i]; + + assert(a.size() == out_size); + return a; +} + +/** Compute the pointwise product of a and b (Exact) + \param a,b sbasis functions + \returns sbasis equal to a*b + +*/ +SBasis operator*(SBasis const &a, double k) { + SBasis c(a.size(), Linear()); + for(unsigned i = 0; i < a.size(); i++) + c[i] = a[i] * k; + return c; +} + +/** Compute the pointwise product of a and b and store the value in a (Exact) + \param a,b sbasis functions + \returns sbasis equal to a*b + +*/ +SBasis& operator*=(SBasis& a, double b) { + if (a.isZero()) return a; + if (b == 0) + a.clear(); + else + for(unsigned i = 0; i < a.size(); i++) + a[i] *= b; + return a; +} + +/** multiply a by x^sh in place (Exact) + \param a sbasis function + \param sh power + \returns a + +*/ +SBasis shift(SBasis const &a, int sh) { + size_t n = a.size()+sh; + SBasis c(n, Linear()); + size_t m = std::max(0, sh); + + for(int i = 0; i < sh; i++) + c[i] = Linear(0,0); + for(size_t i = m, j = std::max(0,-sh); i < n; i++, j++) + c[i] = a[j]; + return c; +} + +/** multiply a by x^sh (Exact) + \param a linear function + \param sh power + \returns a* x^sh + +*/ +SBasis shift(Linear const &a, int sh) { + size_t n = 1+sh; + SBasis c(n, Linear()); + + for(int i = 0; i < sh; i++) + c[i] = Linear(0,0); + if(sh >= 0) + c[sh] = a; + return c; +} + +#if 0 +SBasis multiply(SBasis const &a, SBasis const &b) { + // c = {a0*b0 - shift(1, a.Tri*b.Tri), a1*b1 - shift(1, a.Tri*b.Tri)} + + // shift(1, a.Tri*b.Tri) + SBasis c(a.size() + b.size(), Linear(0,0)); + if(a.isZero() || b.isZero()) + return c; + for(unsigned j = 0; j < b.size(); j++) { + for(unsigned i = j; i < a.size()+j; i++) { + double tri = b[j].tri()*a[i-j].tri(); + c[i+1/*shift*/] += Linear(-tri); + } + } + for(unsigned j = 0; j < b.size(); j++) { + for(unsigned i = j; i < a.size()+j; i++) { + for(unsigned dim = 0; dim < 2; dim++) + c[i][dim] += b[j][dim]*a[i-j][dim]; + } + } + c.normalize(); + //assert(!(0 == c.back()[0] && 0 == c.back()[1])); + return c; +} +#else + +/** Compute the pointwise product of a and b adding c (Exact) + \param a,b,c sbasis functions + \returns sbasis equal to a*b+c + +The added term is almost free +*/ +SBasis multiply_add(SBasis const &a, SBasis const &b, SBasis c) { + if(a.isZero() || b.isZero()) + return c; + c.resize(a.size() + b.size(), Linear(0,0)); + for(unsigned j = 0; j < b.size(); j++) { + for(unsigned i = j; i < a.size()+j; i++) { + double tri = b[j].tri()*a[i-j].tri(); + c[i+1/*shift*/] += Linear(-tri); + } + } + for(unsigned j = 0; j < b.size(); j++) { + for(unsigned i = j; i < a.size()+j; i++) { + for(unsigned dim = 0; dim < 2; dim++) + c[i][dim] += b[j][dim]*a[i-j][dim]; + } + } + c.normalize(); + //assert(!(0 == c.back()[0] && 0 == c.back()[1])); + return c; +} + +/** Compute the pointwise product of a and b (Exact) + \param a,b sbasis functions + \returns sbasis equal to a*b + +*/ +SBasis multiply(SBasis const &a, SBasis const &b) { + if(a.isZero() || b.isZero()) { + SBasis c(1, Linear(0,0)); + return c; + } + SBasis c(a.size() + b.size(), Linear(0,0)); + return multiply_add(a, b, c); +} +#endif +/** Compute the integral of a (Exact) + \param a sbasis functions + \returns sbasis integral(a) + +*/ +SBasis integral(SBasis const &c) { + SBasis a; + a.resize(c.size() + 1, Linear(0,0)); + a[0] = Linear(0,0); + + for(unsigned k = 1; k < c.size() + 1; k++) { + double ahat = -c[k-1].tri()/(2*k); + a[k][0] = a[k][1] = ahat; + } + double aTri = 0; + for(int k = c.size()-1; k >= 0; k--) { + aTri = (c[k].hat() + (k+1)*aTri/2)/(2*k+1); + a[k][0] -= aTri/2; + a[k][1] += aTri/2; + } + a.normalize(); + return a; +} + +/** Compute the derivative of a (Exact) + \param a sbasis functions + \returns sbasis da/dt + +*/ +SBasis derivative(SBasis const &a) { + SBasis c; + c.resize(a.size(), Linear(0,0)); + if(a.isZero()) + return c; + + for(unsigned k = 0; k < a.size()-1; k++) { + double d = (2*k+1)*(a[k][1] - a[k][0]); + + c[k][0] = d + (k+1)*a[k+1][0]; + c[k][1] = d - (k+1)*a[k+1][1]; + } + int k = a.size()-1; + double d = (2*k+1)*(a[k][1] - a[k][0]); + if (d == 0 && k > 0) { + c.pop_back(); + } else { + c[k][0] = d; + c[k][1] = d; + } + + return c; +} + +/** Compute the derivative of this inplace (Exact) + +*/ +void SBasis::derive() { // in place version + if(isZero()) return; + for(unsigned k = 0; k < size()-1; k++) { + double d = (2*k+1)*((*this)[k][1] - (*this)[k][0]); + + (*this)[k][0] = d + (k+1)*(*this)[k+1][0]; + (*this)[k][1] = d - (k+1)*(*this)[k+1][1]; + } + int k = size()-1; + double d = (2*k+1)*((*this)[k][1] - (*this)[k][0]); + if (d == 0 && k > 0) { + pop_back(); + } else { + (*this)[k][0] = d; + (*this)[k][1] = d; + } +} + +/** Compute the sqrt of a + \param a sbasis functions + \returns sbasis \f[ \sqrt{a} \f] + +It is recommended to use the piecewise version unless you have good reason. +TODO: convert int k to unsigned k, and remove cast +*/ +SBasis sqrt(SBasis const &a, int k) { + SBasis c; + if(a.isZero() || k == 0) + return c; + c.resize(k, Linear(0,0)); + c[0] = Linear(std::sqrt(a[0][0]), std::sqrt(a[0][1])); + SBasis r = a - multiply(c, c); // remainder + + for(unsigned i = 1; i <= (unsigned)k && i<r.size(); i++) { + Linear ci(r[i][0]/(2*c[0][0]), r[i][1]/(2*c[0][1])); + SBasis cisi = shift(ci, i); + r -= multiply(shift((c*2 + cisi), i), SBasis(ci)); + r.truncate(k+1); + c += cisi; + if(r.tailError(i) == 0) // if exact + break; + } + + return c; +} + +/** Compute the recpirocal of a + \param a sbasis functions + \returns sbasis 1/a + +It is recommended to use the piecewise version unless you have good reason. +*/ +SBasis reciprocal(Linear const &a, int k) { + SBasis c; + assert(!a.isZero()); + c.resize(k, Linear(0,0)); + double r_s0 = (a.tri()*a.tri())/(-a[0]*a[1]); + double r_s0k = 1; + for(unsigned i = 0; i < (unsigned)k; i++) { + c[i] = Linear(r_s0k/a[0], r_s0k/a[1]); + r_s0k *= r_s0; + } + return c; +} + +/** Compute a / b to k terms + \param a,b sbasis functions + \returns sbasis a/b + +It is recommended to use the piecewise version unless you have good reason. +*/ +SBasis divide(SBasis const &a, SBasis const &b, int k) { + SBasis c; + assert(!a.isZero()); + SBasis r = a; // remainder + + k++; + r.resize(k, Linear(0,0)); + c.resize(k, Linear(0,0)); + + for(unsigned i = 0; i < (unsigned)k; i++) { + Linear ci(r[i][0]/b[0][0], r[i][1]/b[0][1]); //H0 + c[i] += ci; + r -= shift(multiply(ci,b), i); + r.truncate(k+1); + if(r.tailError(i) == 0) // if exact + break; + } + + return c; +} + +/** Compute a composed with b + \param a,b sbasis functions + \returns sbasis a(b(t)) + + return a0 + s(a1 + s(a2 +... where s = (1-u)u; ak =(1 - u)a^0_k + ua^1_k +*/ +SBasis compose(SBasis const &a, SBasis const &b) { + SBasis s = multiply((SBasis(Linear(1,1))-b), b); + SBasis r; + + for(int i = a.size()-1; i >= 0; i--) { + r = multiply_add(r, s, SBasis(Linear(a[i][0])) - b*a[i][0] + b*a[i][1]); + } + return r; +} + +/** Compute a composed with b to k terms + \param a,b sbasis functions + \returns sbasis a(b(t)) + + return a0 + s(a1 + s(a2 +... where s = (1-u)u; ak =(1 - u)a^0_k + ua^1_k +*/ +SBasis compose(SBasis const &a, SBasis const &b, unsigned k) { + SBasis s = multiply((SBasis(Linear(1,1))-b), b); + SBasis r; + + for(int i = a.size()-1; i >= 0; i--) { + r = multiply_add(r, s, SBasis(Linear(a[i][0])) - b*a[i][0] + b*a[i][1]); + } + r.truncate(k); + return r; +} + +SBasis portion(const SBasis &t, double from, double to) { + double fv = t.valueAt(from); + double tv = t.valueAt(to); + SBasis ret = compose(t, Linear(from, to)); + ret.at0() = fv; + ret.at1() = tv; + return ret; +} + +/* +Inversion algorithm. The notation is certainly very misleading. The +pseudocode should say: + +c(v) := 0 +r(u) := r_0(u) := u +for i:=0 to k do + c_i(v) := H_0(r_i(u)/(t_1)^i; u) + c(v) := c(v) + c_i(v)*t^i + r(u) := r(u) ? c_i(u)*(t(u))^i +endfor +*/ + +//#define DEBUG_INVERSION 1 + +/** find the function a^-1 such that a^-1 composed with a to k terms is the identity function + \param a sbasis function + \returns sbasis a^-1 s.t. a^-1(a(t)) = 1 + + The function must have 'unit range'("a00 = 0 and a01 = 1") and be monotonic. +*/ +SBasis inverse(SBasis a, int k) { + assert(a.size() > 0); + double a0 = a[0][0]; + if(a0 != 0) { + a -= a0; + } + double a1 = a[0][1]; + assert(a1 != 0); // not invertable. + + if(a1 != 1) { + a /= a1; + } + SBasis c(k, Linear()); // c(v) := 0 + if(a.size() >= 2 && k == 2) { + c[0] = Linear(0,1); + Linear t1(1+a[1][0], 1-a[1][1]); // t_1 + c[1] = Linear(-a[1][0]/t1[0], -a[1][1]/t1[1]); + } else if(a.size() >= 2) { // non linear + SBasis r = Linear(0,1); // r(u) := r_0(u) := u + Linear t1(1./(1+a[1][0]), 1./(1-a[1][1])); // 1./t_1 + Linear one(1,1); + Linear t1i = one; // t_1^0 + SBasis one_minus_a = SBasis(one) - a; + SBasis t = multiply(one_minus_a, a); // t(u) + SBasis ti(one); // t(u)^0 +#ifdef DEBUG_INVERSION + std::cout << "a=" << a << std::endl; + std::cout << "1-a=" << one_minus_a << std::endl; + std::cout << "t1=" << t1 << std::endl; + //assert(t1 == t[1]); +#endif + + //c.resize(k+1, Linear(0,0)); + for(unsigned i = 0; i < (unsigned)k; i++) { // for i:=0 to k do +#ifdef DEBUG_INVERSION + std::cout << "-------" << i << ": ---------" <<std::endl; + std::cout << "r=" << r << std::endl + << "c=" << c << std::endl + << "ti=" << ti << std::endl + << std::endl; +#endif + if(r.size() <= i) // ensure enough space in the remainder, probably not needed + r.resize(i+1, Linear(0,0)); + Linear ci(r[i][0]*t1i[0], r[i][1]*t1i[1]); // c_i(v) := H_0(r_i(u)/(t_1)^i; u) +#ifdef DEBUG_INVERSION + std::cout << "t1i=" << t1i << std::endl; + std::cout << "ci=" << ci << std::endl; +#endif + for(int dim = 0; dim < 2; dim++) // t1^-i *= 1./t1 + t1i[dim] *= t1[dim]; + c[i] = ci; // c(v) := c(v) + c_i(v)*t^i + // change from v to u parameterisation + SBasis civ = one_minus_a*ci[0] + a*ci[1]; + // r(u) := r(u) - c_i(u)*(t(u))^i + // We can truncate this to the number of final terms, as no following terms can + // contribute to the result. + r -= multiply(civ,ti); + r.truncate(k); + if(r.tailError(i) == 0) + break; // yay! + ti = multiply(ti,t); + } +#ifdef DEBUG_INVERSION + std::cout << "##########################" << std::endl; +#endif + } else + c = Linear(0,1); // linear + c -= a0; // invert the offset + c /= a1; // invert the slope + return c; +} + +/** Compute the sine of a to k terms + \param b linear function + \returns sbasis sin(a) + +It is recommended to use the piecewise version unless you have good reason. +*/ +SBasis sin(Linear b, int k) { + SBasis s(k+2, Linear()); + s[0] = Linear(std::sin(b[0]), std::sin(b[1])); + double tr = s[0].tri(); + double t2 = b.tri(); + s[1] = Linear(std::cos(b[0])*t2 - tr, -std::cos(b[1])*t2 + tr); + + t2 *= t2; + for(int i = 0; i < k; i++) { + Linear bo(4*(i+1)*s[i+1][0] - 2*s[i+1][1], + -2*s[i+1][0] + 4*(i+1)*s[i+1][1]); + bo -= s[i]*(t2/(i+1)); + + + s[i+2] = bo/double(i+2); + } + + return s; +} + +/** Compute the cosine of a + \param b linear function + \returns sbasis cos(a) + +It is recommended to use the piecewise version unless you have good reason. +*/ +SBasis cos(Linear bo, int k) { + return sin(Linear(bo[0] + M_PI/2, + bo[1] + M_PI/2), + k); +} + +/** compute fog^-1. + \param f,g sbasis functions + \returns sbasis f(g^-1(t)). + +("zero" = double comparison threshold. *!*we might divide by "zero"*!*) +TODO: compute order according to tol? +TODO: requires g(0)=0 & g(1)=1 atm... adaptation to other cases should be obvious! +*/ +SBasis compose_inverse(SBasis const &f, SBasis const &g, unsigned order, double zero){ + SBasis result(order, Linear(0.)); //result + SBasis r=f; //remainder + SBasis Pk=Linear(1)-g,Qk=g,sg=Pk*Qk; + Pk.truncate(order); + Qk.truncate(order); + Pk.resize(order,Linear(0.)); + Qk.resize(order,Linear(0.)); + r.resize(order,Linear(0.)); + + int vs = valuation(sg,zero); + if (vs == 0) { // to prevent infinite loop + return result; + } + + for (unsigned k=0; k<order; k+=vs){ + double p10 = Pk.at(k)[0];// we have to solve the linear system: + double p01 = Pk.at(k)[1];// + double q10 = Qk.at(k)[0];// p10*a + q10*b = r10 + double q01 = Qk.at(k)[1];// & + double r10 = r.at(k)[0];// p01*a + q01*b = r01 + double r01 = r.at(k)[1];// + double a,b; + double det = p10*q01-p01*q10; + + //TODO: handle det~0!! + if (fabs(det)<zero){ + a=b=0; + }else{ + a=( q01*r10-q10*r01)/det; + b=(-p01*r10+p10*r01)/det; + } + result[k] = Linear(a,b); + r=r-Pk*a-Qk*b; + + Pk=Pk*sg; + Qk=Qk*sg; + + Pk.resize(order,Linear(0.)); // truncates if too high order, expands with zeros if too low + Qk.resize(order,Linear(0.)); + r.resize(order,Linear(0.)); + + } + result.normalize(); + return result; +} + +} + +/* + Local Variables: + mode:c++ + c-file-style:"stroustrup" + c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) + indent-tabs-mode:nil + fill-column:99 + End: +*/ +// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 : |