summaryrefslogtreecommitdiffstats
path: root/src/2geom/solve-bezier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/2geom/solve-bezier.cpp')
-rw-r--r--src/2geom/solve-bezier.cpp304
1 files changed, 304 insertions, 0 deletions
diff --git a/src/2geom/solve-bezier.cpp b/src/2geom/solve-bezier.cpp
new file mode 100644
index 0000000..4ff42bb
--- /dev/null
+++ b/src/2geom/solve-bezier.cpp
@@ -0,0 +1,304 @@
+
+#include <2geom/solver.h>
+#include <2geom/choose.h>
+#include <2geom/bezier.h>
+#include <2geom/point.h>
+
+#include <cmath>
+#include <algorithm>
+
+/*** Find the zeros of a Bezier. The code subdivides until it is happy with the linearity of the
+ * function. This requires an O(degree^2) subdivision for each step, even when there is only one
+ * solution.
+ *
+ * We try fairly hard to correctly handle multiple roots.
+ */
+
+//#define debug(x) do{x;}while(0)
+#define debug(x)
+
+namespace Geom{
+
+template<class t>
+static int SGN(t x) { return (x > 0 ? 1 : (x < 0 ? -1 : 0)); }
+
+class Bernsteins{
+public:
+ static const size_t MAX_DEPTH = 22;
+ std::vector<double> &solutions;
+ //std::vector<double> dsolutions;
+
+ Bernsteins(std::vector<double> & sol)
+ : solutions(sol)
+ {}
+
+ void subdivide(double const *V,
+ double t,
+ double *Left,
+ double *Right);
+
+ double secant(Bezier const &bz);
+
+
+ void find_bernstein_roots(Bezier const &bz, unsigned depth,
+ double left_t, double right_t);
+};
+
+template <typename T>
+inline std::ostream &operator<< (std::ostream &out_file, const std::vector<T> & b) {
+ out_file << "[";
+ for(unsigned i = 0; i < b.size(); i++) {
+ out_file << b[i] << ", ";
+ }
+ return out_file << "]";
+}
+
+void convex_hull_marching(Bezier const &src_bz, Bezier bz,
+ std::vector<double> &solutions,
+ double left_t,
+ double right_t)
+{
+ while(bz.order() > 0 && bz[0] == 0) {
+ std::cout << "deflate\n";
+ bz = bz.deflate();
+ solutions.push_back(left_t);
+ }
+ std::cout << std::endl;
+ if (bz.order() > 0) {
+
+ int old_sign = SGN(bz[0]);
+
+ double left_bound = 0;
+ double dt = 0;
+ for (size_t i = 1; i < bz.size(); i++)
+ {
+ int sign = SGN(bz[i]);
+ if (sign != old_sign)
+ {
+ dt = double(i) / bz.order();
+ left_bound = dt * bz[0] / (bz[0] - bz[i]);
+ break;
+ }
+ old_sign = sign;
+ }
+ if (dt == 0) return;
+ std::cout << bz << std::endl;
+ std::cout << "dt = " << dt << std::endl;
+ std::cout << "left_t = " << left_t << std::endl;
+ std::cout << "right_t = " << right_t << std::endl;
+ std::cout << "left bound = " << left_bound
+ << " = " << bz(left_bound) << std::endl;
+ double new_left_t = left_bound * (right_t - left_t) + left_t;
+ std::cout << "new_left_t = " << new_left_t << std::endl;
+ Bezier bzr = portion(src_bz, new_left_t, 1);
+ while(bzr.order() > 0 && bzr[0] == 0) {
+ std::cout << "deflate\n";
+ bzr = bzr.deflate();
+ solutions.push_back(new_left_t);
+ }
+ if (left_t < new_left_t) {
+ convex_hull_marching(src_bz, bzr,
+ solutions,
+ new_left_t, right_t);
+ } else {
+ std::cout << "epsilon reached\n";
+ while(bzr.order() > 0 && fabs(bzr[0]) <= 1e-10) {
+ std::cout << "deflate\n";
+ bzr = bzr.deflate();
+ std::cout << bzr << std::endl;
+ solutions.push_back(new_left_t);
+ }
+
+ }
+ }
+}
+
+void
+Bezier::find_bezier_roots(std::vector<double> &solutions,
+ double left_t, double right_t) const {
+ Bezier bz = *this;
+ //convex_hull_marching(bz, bz, solutions, left_t, right_t);
+ //return;
+
+ // a constant bezier, even if identically zero, has no roots
+ if (bz.isConstant()) {
+ return;
+ }
+
+ while(bz[0] == 0) {
+ debug(std::cout << "deflate\n");
+ bz = bz.deflate();
+ solutions.push_back(0);
+ }
+ if (bz.degree() == 1) {
+ debug(std::cout << "linear\n");
+
+ if (SGN(bz[0]) != SGN(bz[1])) {
+ double d = bz[0] - bz[1];
+ if(d != 0) {
+ double r = bz[0] / d;
+ if(0 <= r && r <= 1)
+ solutions.push_back(r);
+ }
+ }
+ return;
+ }
+
+ //std::cout << "initial = " << bz << std::endl;
+ Bernsteins B(solutions);
+ B.find_bernstein_roots(bz, 0, left_t, right_t);
+ //std::cout << solutions << std::endl;
+}
+
+void Bernsteins::find_bernstein_roots(Bezier const &bz,
+ unsigned depth,
+ double left_t,
+ double right_t)
+{
+ debug(std::cout << left_t << ", " << right_t << std::endl);
+ size_t n_crossings = 0;
+
+ int old_sign = SGN(bz[0]);
+ //std::cout << "w[0] = " << bz[0] << std::endl;
+ for (size_t i = 1; i < bz.size(); i++)
+ {
+ //std::cout << "w[" << i << "] = " << w[i] << std::endl;
+ int sign = SGN(bz[i]);
+ if (sign != 0)
+ {
+ if (sign != old_sign && old_sign != 0)
+ {
+ ++n_crossings;
+ }
+ old_sign = sign;
+ }
+ }
+ // if last control point is zero, that counts as crossing too
+ if (SGN(bz[bz.size()-1]) == 0) {
+ ++n_crossings;
+ }
+
+ //std::cout << "n_crossings = " << n_crossings << std::endl;
+ if (n_crossings == 0) return; // no solutions here
+
+ if (n_crossings == 1) /* Unique solution */
+ {
+ //std::cout << "depth = " << depth << std::endl;
+ /* Stop recursion when the tree is deep enough */
+ /* if deep enough, return 1 solution at midpoint */
+ if (depth > MAX_DEPTH)
+ {
+ //printf("bottom out %d\n", depth);
+ const double Ax = right_t - left_t;
+ const double Ay = bz.at1() - bz.at0();
+
+ solutions.push_back(left_t - Ax*bz.at0() / Ay);
+ return;
+ }
+
+ double r = secant(bz);
+ solutions.push_back(r*right_t + (1-r)*left_t);
+ return;
+ }
+ /* Otherwise, solve recursively after subdividing control polygon */
+ Bezier::Order o(bz);
+ Bezier Left(o), Right = bz;
+ double split_t = (left_t + right_t) * 0.5;
+
+ // If subdivision is working poorly, split around the leftmost root of the derivative
+ if (depth > 2) {
+ debug(std::cout << "derivative mode\n");
+ Bezier dbz = derivative(bz);
+
+ debug(std::cout << "initial = " << dbz << std::endl);
+ std::vector<double> dsolutions = dbz.roots(Interval(left_t, right_t));
+ debug(std::cout << "dsolutions = " << dsolutions << std::endl);
+
+ double dsplit_t = 0.5;
+ if(!dsolutions.empty()) {
+ dsplit_t = dsolutions[0];
+ split_t = left_t + (right_t - left_t)*dsplit_t;
+ debug(std::cout << "split_value = " << bz(split_t) << std::endl);
+ debug(std::cout << "splitting around " << dsplit_t << " = "
+ << split_t << "\n");
+
+ }
+ std::pair<Bezier, Bezier> LR = bz.subdivide(dsplit_t);
+ Left = LR.first;
+ Right = LR.second;
+ } else {
+ // split at midpoint, because it is cheap
+ Left[0] = Right[0];
+ for (size_t i = 1; i < bz.size(); ++i)
+ {
+ for (size_t j = 0; j < bz.size()-i; ++j)
+ {
+ Right[j] = (Right[j] + Right[j+1]) * 0.5;
+ }
+ Left[i] = Right[0];
+ }
+ }
+ debug(std::cout << "Solution is exactly on the subdivision point.\n");
+ debug(std::cout << Left << " , " << Right << std::endl);
+ Left = reverse(Left);
+ while(Right.order() > 0 && fabs(Right[0]) <= 1e-10) {
+ debug(std::cout << "deflate\n");
+ Right = Right.deflate();
+ Left = Left.deflate();
+ solutions.push_back(split_t);
+ }
+ Left = reverse(Left);
+ if (Right.order() > 0) {
+ debug(std::cout << Left << " , " << Right << std::endl);
+ find_bernstein_roots(Left, depth+1, left_t, split_t);
+ find_bernstein_roots(Right, depth+1, split_t, right_t);
+ }
+}
+
+double Bernsteins::secant(Bezier const &bz) {
+ double s = 0, t = 1;
+ double e = 1e-14;
+ int side = 0;
+ double r, fs = bz.at0(), ft = bz.at1();
+
+ for (size_t n = 0; n < 100; ++n)
+ {
+ r = (fs*t - ft*s) / (fs - ft);
+ if (fabs(t-s) < e * fabs(t+s)) {
+ debug(std::cout << "error small " << fabs(t-s)
+ << ", accepting solution " << r
+ << "after " << n << "iterations\n");
+ return r;
+ }
+
+ double fr = bz.valueAt(r);
+
+ if (fr * ft > 0)
+ {
+ t = r; ft = fr;
+ if (side == -1) fs /= 2;
+ side = -1;
+ }
+ else if (fs * fr > 0)
+ {
+ s = r; fs = fr;
+ if (side == +1) ft /= 2;
+ side = +1;
+ }
+ else break;
+ }
+ return r;
+}
+
+};
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :