summaryrefslogtreecommitdiffstats
path: root/src/live_effects/lpe-embrodery-stitch-ordering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/live_effects/lpe-embrodery-stitch-ordering.cpp')
-rw-r--r--src/live_effects/lpe-embrodery-stitch-ordering.cpp1141
1 files changed, 1141 insertions, 0 deletions
diff --git a/src/live_effects/lpe-embrodery-stitch-ordering.cpp b/src/live_effects/lpe-embrodery-stitch-ordering.cpp
new file mode 100644
index 0000000..ae22edf
--- /dev/null
+++ b/src/live_effects/lpe-embrodery-stitch-ordering.cpp
@@ -0,0 +1,1141 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Sub-path Ordering functions for embroidery stitch LPE (Implementation)
+ *
+ * Copyright (C) 2016 Michael Soegtrop
+ *
+ * Released under GNU GPL v2+, read the file 'COPYING' for more information.
+ */
+
+#include "live_effects/lpe-embrodery-stitch-ordering.h"
+
+#include <numeric>
+
+namespace Inkscape {
+namespace LivePathEffect {
+namespace LPEEmbroderyStitchOrdering {
+
+using namespace Geom;
+
+// ==================== Debug Trace Macros ====================
+
+// ATTENTION: both level and area macros must be enabled for tracing
+
+// These macros are for enabling certain levels of tracing
+#define DebugTrace1(list) // g_warning list
+#define DebugTrace2(list) // g_warning list
+
+// These macros are for enabling certain areas of tracing
+#define DebugTraceGrouping(list) // list
+#define DebugTraceTSP(list) // list
+
+// Combinations of above
+#define DebugTrace1TSP(list) DebugTraceTSP( DebugTrace1(list) )
+#define DebugTrace2TSP(list) DebugTraceTSP( DebugTrace2(list) )
+
+// ==================== Template Utilities ====================
+
+// Delete all objects pointed to by a vector and clear the vector
+
+template< typename T > void delete_and_clear(std::vector<T> &vector)
+{
+ for (typename std::vector<T>::iterator it = vector.begin(); it != vector.end(); ++it) {
+ delete *it;
+ }
+ vector.clear();
+}
+
+// Assert that there are no duplicates in a vector
+
+template< typename T > void assert_unique(std::vector<T> &vector)
+{
+ typename std::vector<T> copy = vector;
+ std::sort(copy.begin(), copy.end());
+ assert(std::unique(copy.begin(), copy.end()) == copy.end());
+}
+
+// remove element(s) by value
+
+template< typename T > void remove_by_value(std::vector<T> *vector, const T &value)
+{
+ vector->erase(std::remove(vector->begin(), vector->end(), value), vector->end());
+}
+
+// fill a vector with increasing elements (similar to C++11 iota)
+// iota is included in some C++ libraries, not in other (it is always included for C++11)
+// To avoid issues, use our own name (not iota)
+
+template<class OutputIterator, class Counter>
+void fill_increasing(OutputIterator begin, OutputIterator end, Counter counter)
+{
+ while (begin != end) {
+ *begin++ = counter++;
+ }
+}
+
+// check if an iteratable sequence contains an element
+
+template<class InputIterator, class Element>
+bool contains(InputIterator begin, InputIterator end, const Element &elem)
+{
+ while (begin != end) {
+ if (*begin == elem) {
+ return true;
+ }
+ ++begin;
+ }
+ return false;
+}
+
+// Check if a vector contains an element
+
+template<class Element>
+bool contains(std::vector<Element> const &vector, const Element &elem)
+{
+ return contains(vector.begin(), vector.end(), elem);
+}
+
+// ==================== Multi-dimensional iterator functions ====================
+
+// Below are 3 simple template functions to do triangle/pyramid iteration (without diagonal).
+// Here is a sample of iterating over 5 elements in 3 dimensions:
+//
+// 0 1 2
+// 0 1 3
+// 0 1 4
+// 0 2 3
+// 0 2 4
+// 1 2 4
+// 1 3 4
+// 2 3 4
+// end end end
+//
+// If the number of elements is less then the number of dimensions, the number of dimensions is reduced automatically.
+//
+// I thought about creating an iterator class for this, but it doesn't match that well, so I used functions on iterator vectors.
+
+// Initialize a vector of iterators
+
+template<class Iterator>
+void triangleit_begin(std::vector<Iterator> &iterators, Iterator const &begin, Iterator const &end, size_t n)
+{
+ iterators.clear();
+ // limit number of dimensions to number of elements
+ size_t n1 = end - begin;
+ n = std::min(n, n1);
+ if (n) {
+ iterators.push_back(begin);
+ for (int i = 1; i < n; i++) {
+ iterators.push_back(iterators.back() + 1);
+ }
+ }
+}
+
+// Increment a vector of iterators
+
+template<class Iterator>
+void triangleit_incr(std::vector<Iterator> &iterators, Iterator const &end)
+{
+ size_t n = iterators.size();
+
+ for (int i = 0; i < n; i++) {
+ iterators[n - 1 - i]++;
+ // Each dimension ends at end-i, so that there are elements left for the i higher dimensions
+ if (iterators[n - 1 - i] != end - i) {
+ // Assign increasing numbers to the higher dimension
+ for (int j = n - i; j < n; j++) {
+ iterators[j] = iterators[j - 1] + 1;
+ }
+ return;
+ }
+ }
+}
+
+// Check if a vector of iterators is at the end
+
+template<class Iterator>
+bool triangleit_test(std::vector<Iterator> &iterators, Iterator const &end)
+{
+ if (iterators.empty()) {
+ return false;
+ } else {
+ return iterators.back() != end;
+ }
+}
+
+// ==================== Trivial Ordering Functions ====================
+
+// Sub-path reordering: do nothing - keep original order
+
+void OrderingOriginal(std::vector<OrderingInfo> &infos)
+{
+}
+
+// Sub-path reordering: reverse every other sub path
+
+void OrderingZigZag(std::vector<OrderingInfo> &infos, bool revfirst)
+{
+ for (auto & info : infos) {
+ info.reverse = (info.index & 1) == (revfirst ? 0 : 1);
+ }
+}
+
+// Sub-path reordering: continue with the neartest start or end point of yet unused sub paths
+
+void OrderingClosest(std::vector<OrderingInfo> &infos, bool revfirst)
+{
+ std::vector<OrderingInfo> result;
+ result.reserve(infos.size());
+
+ result.push_back(infos[0]);
+ result.back().reverse = revfirst;
+ Point p = result.back().GetEndRev();
+
+ infos[0].used = true;
+
+
+ for (unsigned int iRnd = 1; iRnd < infos.size(); iRnd++) {
+ // find closest point to p
+ unsigned iBest = 0;
+ bool revBest = false;
+ Coord distBest = infinity();
+
+ for (std::vector<OrderingInfo>::iterator it = infos.begin(); it != infos.end(); ++it) {
+ it->index = it - infos.begin();
+ it->reverse = (it->index & 1) != 0;
+
+ if (!it->used) {
+ Coord dist = distance(p, it->GetBegOrig());
+ if (dist < distBest) {
+ distBest = dist;
+ iBest = it - infos.begin();
+ revBest = false;
+ }
+
+ dist = distance(p, it->GetEndOrig());
+ if (dist < distBest) {
+ distBest = dist;
+ iBest = it - infos.begin();
+ revBest = true;
+ }
+ }
+ }
+
+ result.push_back(infos[iBest]);
+ result.back().reverse = revBest;
+ p = result.back().GetEndRev();
+ infos[iBest].used = true;
+ }
+
+ infos = result;
+}
+
+// ==================== Traveling Salesman k-opt Ordering Function and Utilities ====================
+
+// A Few notes on this:
+// - This is a relatively simple Lin-type k-opt algorithm, but the grouping optimizations done make it already quite complex.
+// - The main Ordering Function is OrderingAdvanced
+// - Lines which start at the end of another line are connected and treated as one (struct OrderingInfoEx)
+// - Groups of zig-zag OrderingInfoEx are grouped (struct OrderingGroup) if both ends of the segment mutually agree with a next neighbor.
+// These groups are treated as a unit in the TSP algorithm.
+// The only option is to reverse the first segment, so that a group has 4 end points, 2 of which are used externally.
+// - Run a k-opt (k=2..5) Lin like Traveling Salesman Problem algorithm on the groups as a unit and the remaining edges.
+// See https://en.wikipedia.org/wiki/Travelling_salesman_problem#Iterative_improvement
+// The algorithm uses a greedy nearest neighbor as start configuration and does not use repeated random starts.
+// - The algorithm searches an open tour (rather than a closed one), so the longest segment in the closed path is ignored.
+// - TODO: it might be faster to use k=3 with a few random starting patterns instead of k=5
+// - TODO: it is surely wiser to implement e.g. Lin-Kenrighan TSP, but the simple k-opt works ok.
+// - TODO(EASY): add a jump distance, above which threads are removed and make the length of this jump distance constant and large,
+// so that mostly the number of jumps is optimized
+
+// Find 2 nearest points to given point
+
+void OrderingPoint::FindNearest2(const std::vector<OrderingInfoEx *> &infos)
+{
+ // This implementation is not terribly elegant (unSTLish).
+ // But for the first 2 elements using e.g. partial_sort is not simpler.
+
+ Coord dist0 = infinity();
+ Coord dist1 = infinity();
+ nearest[0] = nullptr;
+ nearest[1] = nullptr;
+
+ for (auto info : infos) {
+ Coord dist = distance(point, info->beg.point);
+ if (dist < dist1) {
+ if (&info->beg != this && &info->end != this) {
+ if (dist < dist0) {
+ nearest[1] = nearest[0];
+ nearest[0] = &info->beg;
+ dist1 = dist0;
+ dist0 = dist;
+ } else {
+ nearest[1] = &info->beg;
+ dist1 = dist;
+ }
+ }
+ }
+
+ dist = distance(point, info->end.point);
+ if (dist < dist1) {
+ if (&info->beg != this && &info->end != this) {
+ if (dist < dist0) {
+ nearest[1] = nearest[0];
+ nearest[0] = &info->end;
+ dist1 = dist0;
+ dist0 = dist;
+ } else {
+ nearest[1] = &info->end;
+ dist1 = dist;
+ }
+ }
+ }
+ }
+}
+
+// Check if "this" is among the nearest of its nearest
+
+void OrderingPoint::EnforceMutual()
+{
+ if (nearest[0] && !(this == nearest[0]->nearest[0] || this == nearest[0]->nearest[1])) {
+ nearest[0] = nullptr;
+ }
+
+ if (nearest[1] && !(this == nearest[1]->nearest[0] || this == nearest[1]->nearest[1])) {
+ nearest[1] = nullptr;
+ }
+
+ if (nearest[1] && !nearest[0]) {
+ nearest[0] = nearest[1];
+ nearest[1] = nullptr;
+ }
+}
+
+// Check if the subpath indices of this and other are the same, otherwise zero both nearest
+
+void OrderingPoint::EnforceSymmetric(const OrderingPoint &other)
+{
+ if (nearest[0] && !(
+ (other.nearest[0] && nearest[0]->infoex == other.nearest[0]->infoex) ||
+ (other.nearest[1] && nearest[0]->infoex == other.nearest[1]->infoex)
+ )) {
+ nearest[0] = nullptr;
+ }
+
+ if (nearest[1] && !(
+ (other.nearest[0] && nearest[1]->infoex == other.nearest[0]->infoex) ||
+ (other.nearest[1] && nearest[1]->infoex == other.nearest[1]->infoex)
+ )) {
+ nearest[1] = nullptr;
+ }
+
+ if (nearest[1] && !nearest[0]) {
+ nearest[0] = nearest[1];
+ nearest[1] = nullptr;
+ }
+}
+
+void OrderingPoint::Dump()
+{
+ // COMENTED TO SUPRESS WARNING UNUSED AUTOR TAKE IT UNCOMENTED
+ // Coord dist0 = nearest[0] ? distance(point, nearest[0]->point) : -1.0;
+ // Coord dist1 = nearest[1] ? distance(point, nearest[1]->point) : -1.0;
+ // int idx0 = nearest[0] ? nearest[0]->infoex->idx : -1;
+ // int idx1 = nearest[1] ? nearest[1]->infoex->idx : -1;
+ DebugTrace2(("I=%d X=%.5lf Y=%.5lf d1=%.3lf d2=%.3lf i1=%d i2=%d", infoex->idx, point.x(), 297.0 - point.y(), dist0, dist1, idx0, idx1));
+}
+
+
+// If this element can be grouped (has neighbours) but is not yet grouped, create a new group
+
+void OrderingInfoEx::MakeGroup(std::vector<OrderingInfoEx *> &infos, std::vector<OrderingGroup *> *groups)
+{
+ if (grouped || !beg.HasNearest() || !end.HasNearest()) {
+ return;
+ }
+
+ groups->push_back(new OrderingGroup(groups->size()));
+
+ // Add neighbors recursively
+ AddToGroup(infos, groups->back());
+}
+
+// Add this and all connected elements to the group
+
+void OrderingInfoEx::AddToGroup(std::vector<OrderingInfoEx *> &infos, OrderingGroup *group)
+{
+ if (grouped || !beg.HasNearest() || !end.HasNearest()) {
+ return;
+ }
+
+ group->items.push_back(this);
+ grouped = true;
+ // Note: beg and end neighbors have been checked to be symmetric
+ if (beg.nearest[0]) {
+ beg.nearest[0]->infoex->AddToGroup(infos, group);
+ }
+ if (beg.nearest[1]) {
+ beg.nearest[1]->infoex->AddToGroup(infos, group);
+ }
+ if (end.nearest[0]) {
+ end.nearest[0]->infoex->AddToGroup(infos, group);
+ }
+ if (end.nearest[1]) {
+ end.nearest[1]->infoex->AddToGroup(infos, group);
+ }
+}
+
+// Constructor
+
+OrderingGroupNeighbor::OrderingGroupNeighbor(OrderingGroupPoint *me, OrderingGroupPoint *other) :
+ point(other),
+ distance(Geom::distance(me->point, other->point))
+{
+}
+
+// Comparison function for sorting by distance
+
+bool OrderingGroupNeighbor::Compare(const OrderingGroupNeighbor &a, const OrderingGroupNeighbor &b)
+{
+ return a.distance < b.distance;
+}
+
+// Find the nearest unused neighbor point
+
+OrderingGroupNeighbor *OrderingGroupPoint::FindNearestUnused()
+{
+ for (auto & it : nearest) {
+ if (!it.point->used) {
+ DebugTrace1TSP(("Nearest: group %d, size %d, point %d, nghb %d, xFrom %.4lf, yFrom %.4lf, xTo %.4lf, yTo %.4lf, dist %.4lf",
+ it->point->group->index, it->point->group->items.size(), it->point->indexInGroup, it - nearest.begin(),
+ point.x(), 297 - point.y(),
+ it->point->point.x(), 297 - it->point->point.y(),
+ it->distance));
+ return &it;
+ }
+ }
+
+ // it shouldn't happen that we can't find any point at all
+ assert(0);
+ return nullptr;
+}
+
+// Return the other end in the group of the point
+
+OrderingGroupPoint *OrderingGroupPoint::GetOtherEndGroup()
+{
+ return group->endpoints[ indexInGroup ^ 1 ];
+}
+
+// Return the alternate point (if one exists), 0 otherwise
+
+OrderingGroupPoint *OrderingGroupPoint::GetAltPointGroup()
+{
+ if (group->nEndPoints < 4) {
+ return nullptr;
+ }
+
+ OrderingGroupPoint *alt = group->endpoints[ indexInGroup ^ 2 ];
+ return alt->used ? nullptr : alt;
+}
+
+
+// Sets the rev flags in the group assuming that the group starts with this point
+
+void OrderingGroupPoint::SetRevInGroup()
+{
+ // If this is not a front point, the item list needs to be reversed
+ group->revItemList = !front;
+
+ // If this is not a begin point, the items need to be reversed
+ group->revItems = !begin;
+}
+
+// Mark an end point as used and also mark the two other alternating points as used
+// Returns the used point
+
+void OrderingGroupPoint::UsePoint()
+{
+ group->UsePoint(indexInGroup);
+}
+
+// Mark an end point as unused and possibly also mark the two other alternating points as unused
+// Returns the used point
+
+void OrderingGroupPoint::UnusePoint()
+{
+ group->UnusePoint(indexInGroup);
+}
+
+// Return the other end in the connection
+OrderingGroupPoint *OrderingGroupPoint::GetOtherEndConnection()
+{
+ assert(connection);
+ assert(connection->points[ indexInConnection ] == this);
+ assert(connection->points[ indexInConnection ^ 1 ]);
+
+ return connection->points[ indexInConnection ^ 1 ];
+}
+
+
+// Set the end points of a group from the items
+
+void OrderingGroup::SetEndpoints()
+{
+ assert(items.size() >= 1);
+
+ if (items.size() == 1) {
+ // A simple line:
+ //
+ // b0-front--e1
+
+ nEndPoints = 2;
+ endpoints[0] = new OrderingGroupPoint(items.front()->beg.point, this, 0, true, true);
+ endpoints[1] = new OrderingGroupPoint(items.front()->end.point, this, 1, false, true);
+ } else {
+ // If the number of elements is even, the group is
+ // either from items.front().beg to items.back().beg
+ // or from items.front().end to items.back().end:
+ // Below: b=beg, e=end, numbers are end point indices
+ //
+ // b0-front--e b0-front--e2
+ // | |
+ // b---------e b---------e
+ // | |
+ // b---------e b---------e
+ // | |
+ // b1-back---e b1-back---e3
+ //
+ //
+ // if the number of elements is odd, it is crossed:
+ //
+ // b0-front--e b--front--e2
+ // | |
+ // b---------e b---------e
+ // | |
+ // b--back---e1 b3-back---e
+ //
+ // TODO: this is not true with the following kind of pattern
+ //
+ // b--front--e
+ // b---------e
+ // b--------e
+ // b--back--e
+ //
+ // Here only one connection is possible, from front.end to back.beg
+ //
+ // TODO: also this is not true if segment direction is alternating
+ //
+ // TOTO: => Just see where you end up from front().begin and front().end
+ //
+ // the numbering is such that either end points 0 and 1 are used or 2 and 3.
+ int cross = items.size() & 1 ? 2 : 0;
+ nEndPoints = 4;
+
+ endpoints[0 ] = new OrderingGroupPoint(items.front()->beg.point, this, 0, true, true);
+ endpoints[1 ^ cross] = new OrderingGroupPoint(items.back() ->beg.point, this, 1 ^ cross, true, false);
+ endpoints[2 ] = new OrderingGroupPoint(items.front()->end.point, this, 2, false, true);
+ endpoints[3 ^ cross] = new OrderingGroupPoint(items.back() ->end.point, this, 3 ^ cross, false, false);
+ }
+}
+
+// Add all points from another group as neighbors
+
+void OrderingGroup::AddNeighbors(OrderingGroup *nghb)
+{
+ for (int iThis = 0; iThis < nEndPoints; iThis++) {
+ for (int iNghb = 0; iNghb < nghb->nEndPoints; iNghb++) {
+ endpoints[iThis]->nearest.emplace_back(endpoints[iThis], nghb->endpoints[iNghb]);
+ }
+ }
+}
+
+// Mark an end point as used and also mark the two other alternating points as used
+// Returns the used point
+
+OrderingGroupPoint *OrderingGroup::UsePoint(int index)
+{
+ assert(index < nEndPoints);
+ assert(!endpoints[index]->used);
+ endpoints[index]->used = true;
+ if (nEndPoints == 4) {
+ int offs = index < 2 ? 2 : 0;
+ endpoints[0 + offs]->used = true;
+ endpoints[1 + offs]->used = true;
+ }
+
+ return endpoints[index];
+}
+
+// Mark an end point as unused and possibly also mark the two other alternating points as unused
+// Returns the used point
+
+void OrderingGroup::UnusePoint(int index)
+{
+ assert(index < nEndPoints);
+ assert(endpoints[index]->used);
+ endpoints[index]->used = false;
+
+ if (nEndPoints == 4 && !endpoints[index ^ 1]->used) {
+ int offs = index < 2 ? 2 : 0;
+ endpoints[0 + offs]->used = false;
+ endpoints[1 + offs]->used = false;
+ }
+}
+
+// Add an end point
+void OrderingSegment::AddPoint(OrderingGroupPoint *point)
+{
+ assert(point);
+ assert(nEndPoints < 4);
+ endpoints[ nEndPoints++ ] = point;
+
+ // If both ends of a group are added and the group has 4 points, add the other two as well
+ if (nEndPoints == 2 && endpoints[0]->group == endpoints[1]->group) {
+ OrderingGroup *group = endpoints[0]->group;
+ if (group->nEndPoints == 4) {
+ for (int i = 0; i < 4; i++) {
+ endpoints[i] = group->endpoints[i];
+ }
+ nEndPoints = 4;
+ }
+ }
+}
+
+// Get begin point (taking swap and end bit into account
+OrderingGroupPoint *OrderingSegment::GetBeginPoint(unsigned int iSwap, unsigned int iEnd)
+{
+ int iPoint = ((iEnd >> endbit) & 1) + (((iSwap >> swapbit) & 1) << 1);
+ assert(iPoint < nEndPoints);
+ return endpoints[iPoint];
+}
+
+// Get end point (taking swap and end bit into account
+OrderingGroupPoint *OrderingSegment::GetEndPoint(unsigned int iSwap, unsigned int iEnd)
+{
+ int iPoint = (((iEnd >> endbit) & 1) ^ 1) + (((iSwap >> swapbit) & 1) << 1);
+ assert(iPoint < nEndPoints);
+ return endpoints[iPoint];
+}
+
+
+// Find the next unused point in list
+std::vector<OrderingGroupPoint *>::iterator FindUnusedAndUse(std::vector<OrderingGroupPoint *> *unusedPoints, std::vector<OrderingGroupPoint *>::iterator const from)
+{
+ for (std::vector<OrderingGroupPoint *>::iterator it = from; it != unusedPoints->end(); ++it) {
+ if (!(*it)->used) {
+ (*it)->UsePoint();
+ return it;
+ }
+ }
+ return unusedPoints->end();
+}
+
+// Find the shortest reconnect between the given points
+
+bool FindShortestReconnect(std::vector<OrderingSegment> &segments, std::vector<OrderingGroupConnection *> &connections, std::vector<OrderingGroupConnection *> &allconnections, OrderingGroupConnection **longestConnect, Coord *total, Coord olddist)
+{
+ // Find the longest connection outside of the active set
+ // The longest segment is then the longest of this longest outside segment and all inside segments
+ OrderingGroupConnection *longestOutside = nullptr;
+
+ if (contains(connections, *longestConnect)) {
+ // The longest connection is inside the active set, so we need to search for the longest outside
+ Coord length = 0.0;
+ for (auto & allconnection : allconnections) {
+ if (allconnection->Distance() > length) {
+ if (!contains(connections, allconnection)) {
+ longestOutside = allconnection;
+ length = allconnection->Distance();
+ }
+ }
+ }
+ } else {
+ longestOutside = *longestConnect;
+ }
+
+ // length of longestConnect outside
+ Coord longestOutsideLength = longestOutside ? longestOutside->Distance() : 0.0;
+
+ // We measure length without the longest, so subtract the longest length from the old distance
+ olddist -= (*longestConnect)->Distance();
+
+ // Assign a swap bit and end bit to each active connection
+ int nEndBits = 0;
+ int nSwapBits = 0;
+ for (auto & segment : segments) {
+ segment.endbit = nEndBits++;
+ if (segment.nEndPoints == 4) {
+ segment.swapbit = nSwapBits++;
+ } else {
+ // bit 32 should always be 0
+ segment.swapbit = 31;
+ }
+ }
+
+ unsigned int swapMask = (1U << nSwapBits) - 1;
+ unsigned int endMask = (1U << nEndBits) - 1;
+
+ // Create a permutation vector
+ std::vector<int> permutation(segments.size());
+ fill_increasing(permutation.begin(), permutation.end(), 0);
+
+ // best improvement
+ bool improved = false;
+ Coord distBest = olddist;
+ std::vector<int> permutationBest;
+ unsigned int iSwapBest;
+ unsigned int iEndBest;
+ int nTrials = 0;
+
+ // Loop over the permutations
+ do {
+ // Loop over the swap bits
+ unsigned int iSwap = 0;
+ do {
+ // Loop over the end bits
+ unsigned int iEnd = 0;
+ do {
+ // Length of all active connections
+ Coord lengthTotal = 0;
+ // Length of longest connection (active or inactive)
+ Coord lengthLongest = longestOutsideLength;
+
+ // Close the loop with the end point of the last segment
+ OrderingGroupPoint *prevend = segments[permutation.back()].GetEndPoint(iSwap, iEnd);
+ for (int & it : permutation) {
+ OrderingGroupPoint *thisbeg = segments[it].GetBeginPoint(iSwap, iEnd);
+ Coord length = Geom::distance(thisbeg->point, prevend->point);
+ lengthTotal += length;
+ if (length > lengthLongest) {
+ lengthLongest = length;
+ }
+ prevend = segments[it].GetEndPoint(iSwap, iEnd);
+ }
+ lengthTotal -= lengthLongest;
+
+ // If there is an improvement, remember the best selection
+ if (lengthTotal + 1e-6 < distBest) {
+ improved = true;
+ distBest = lengthTotal;
+ permutationBest = permutation;
+ iSwapBest = iSwap;
+ iEndBest = iEnd;
+
+ // Just debug printing
+ OrderingGroupPoint *prevend = segments[permutation.back()].GetEndPoint(iSwap, iEnd);
+ for (int & it : permutation) {
+ // COMENTED TO SUPRESS WARNING UNUSED AUTOR TAKE IT UNCOMENTED
+ //OrderingGroupPoint *thisbeg = segments[it].GetBeginPoint(iSwap, iEnd);
+ DebugTrace2TSP(("IMP 0F=%d %d %.6lf", thisbeg->group->index, thisbeg->indexInGroup, Geom::distance(thisbeg->point, prevend->point)));
+ DebugTrace2TSP(("IMP 0T=%d %d %.6lf", prevend->group->index, prevend->indexInGroup, Geom::distance(thisbeg->point, prevend->point)));
+ prevend = segments[it].GetEndPoint(iSwap, iEnd);
+ }
+ }
+
+ nTrials++;
+
+ // bit 0 is always 0, because the first segment is kept fixed
+ iEnd += 2;
+ } while (iEnd & endMask);
+ iSwap++;
+ } while (iSwap & swapMask);
+ // first segment is kept fixed
+ } while (std::next_permutation(permutation.begin() + 1, permutation.end()));
+
+ if (improved) {
+ DebugTrace2TSP(("Improvement %lf->%lf in %d", olddist, distBest, nTrials));
+ // change the connections
+
+ for (std::vector<OrderingGroupConnection *>::iterator it = connections.begin(); it != connections.end(); ++it) {
+ DebugTrace2TSP(("WAS 0F=%d %d %.6lf", (*it)->points[0]->group->index, (*it)->points[0]->indexInGroup, (*it)->Distance()));
+ DebugTrace2TSP(("WAS 0T=%d %d %.6lf", (*it)->points[1]->group->index, (*it)->points[1]->indexInGroup, (*it)->Distance()));
+ }
+ DebugTrace2TSP(("OLDDIST %.6lf delta %.6lf", olddist, olddist - (*longestConnect)->Distance()));
+ DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[0]->group->index, (*longestConnect)->points[0]->indexInGroup, (*longestConnect)->Distance()));
+ DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[1]->group->index, (*longestConnect)->points[1]->indexInGroup, (*longestConnect)->Distance()));
+
+ int perm = permutationBest.back();
+
+ for (std::vector<OrderingGroupConnection *>::iterator it = connections.begin(); it != connections.end(); ++it) {
+ (*it)->Connect(1, segments[ perm ].GetEndPoint(iSwapBest, iEndBest));
+ perm = permutationBest[ it - connections.begin() ];
+ (*it)->Connect(0, segments[ perm ].GetBeginPoint(iSwapBest, iEndBest));
+
+ }
+
+ for (std::vector<OrderingGroupConnection *>::iterator it = connections.begin(); it != connections.end(); ++it) {
+ DebugTrace2TSP(("IS 0F=%d %d %.6lf", (*it)->points[0]->group->index, (*it)->points[0]->indexInGroup, (*it)->Distance()));
+ DebugTrace2TSP(("IS 0T=%d %d %.6lf", (*it)->points[1]->group->index, (*it)->points[1]->indexInGroup, (*it)->Distance()));
+ }
+
+ (*longestConnect) = longestOutside;
+ for (auto & connection : connections) {
+ if (connection->Distance() > (*longestConnect)->Distance()) {
+ *longestConnect = connection;
+ }
+ }
+ DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[0]->group->index, (*longestConnect)->points[0]->indexInGroup, (*longestConnect)->Distance()));
+ DebugTrace2TSP(("LONG =%d %d %.6lf", (*longestConnect)->points[1]->group->index, (*longestConnect)->points[1]->indexInGroup, (*longestConnect)->Distance()));
+ }
+
+ return improved;
+}
+
+// Check if connections form a tour
+void AssertIsTour(std::vector<OrderingGroup *> &groups, std::vector<OrderingGroupConnection *> &connections, OrderingGroupConnection *longestConnection)
+{
+ for (auto & connection : connections) {
+ for (auto pnt : connection->points) {
+ assert(pnt->connection == connection);
+ assert(pnt->connection->points[pnt->indexInConnection] == pnt);
+ assert(pnt->group->endpoints[pnt->indexInGroup] == pnt);
+ }
+ }
+
+ Coord length1 = 0;
+ Coord longest1 = 0;
+ OrderingGroupPoint *current = connections.front()->points[0];
+
+ for (unsigned int n = 0; n < connections.size(); n++) {
+ DebugTrace2TSP(("Tour test 1 %p g=%d/%d c=%d/%d %p %p %.6lf %.3lf %.3lf %d %d %d", current, current->group->index, current->indexInGroup, current->connection->index, current->indexInConnection, current->connection->points[0], current->connection->points[1], current->connection->Distance(), current->point.x(), 297 - current->point.y(), current->begin, current->front, current->group->items.size()));
+ Coord length = current->connection->Distance();
+ length1 += length;
+ longest1 = std::max(length, longest1);
+ current = current->GetOtherEndConnection();
+
+ DebugTrace2TSP(("Tour test 2 %p g=%d/%d c=%d/%d %p %p %.6lf %.3lf %.3lf %d %d %d", current, current->group->index, current->indexInGroup, current->connection->index, current->indexInConnection, current->connection->points[0], current->connection->points[1], current->connection->Distance(), current->point.x(), 297 - current->point.y(), current->begin, current->front, current->group->items.size()));
+ current = current->GetOtherEndGroup();
+ }
+ DebugTrace2TSP(("Tour test 3 %p g=%d/%d c=%d/%d %p %p", current, current->group->index, current->indexInGroup, current->connection->index, current->indexInConnection, current->connection->points[0], current->connection->points[1]));
+ assert(current == connections.front()->points[0]);
+
+ // The other direction
+ Coord length2 = 0;
+ Coord longest2 = 0;
+ current = connections.front()->points[0];
+ for (unsigned int n = 0; n < connections.size(); n++) {
+ current = current->GetOtherEndGroup();
+ Coord length = current->connection->Distance();
+ length2 += length;
+ longest2 = std::max(length, longest2);
+ current = current->GetOtherEndConnection();
+ }
+ assert(current == connections.front()->points[0]);
+
+ DebugTrace1TSP(("Tour length %.6lf(%.6lf) longest %.6lf(%.6lf) remaining %.6lf(%.6lf)", length1, length2, longest1, longest2, length1 - longest1, length2 - longest2));
+}
+
+// Bring a tour into linear order after a modification
+
+/* I would like to avoid this.
+ * It is no problem to travel a tour with changing directions using the GetOtherEnd functions,
+ * but it is difficult to know the segments, that is which endpoint of a connection is connected to which by the unmodified pieces of the tour.
+ * In the end it is probably better to implement the Lin-Kernighan algorithm which avoids this problem by creating connected changes. */
+
+void LinearizeTour(std::vector<OrderingGroupConnection *> &connections)
+{
+ OrderingGroupPoint *current = connections.front()->points[0];
+
+ for (unsigned int iNew = 0; iNew < connections.size(); iNew++) {
+ // swap the connection at location n with the current connection
+ OrderingGroupConnection *connection = current->connection;
+ unsigned int iOld = connection->index;
+ assert(connections[iOld] == connection);
+
+ connections[iOld] = connections[iNew];
+ connections[iNew] = connection;
+ connections[iOld]->index = iOld;
+ connections[iNew]->index = iNew;
+
+ // swap the points of a connection
+ assert(current == connection->points[0] || current == connection->points[1]);
+ if (current != connection->points[0]) {
+ connection->points[1] = connection->points[0];
+ connection->points[0] = current;
+ connection->points[1]->indexInConnection = 1;
+ connection->points[0]->indexInConnection = 0;
+ }
+
+ current = current->GetOtherEndConnection();
+ current = current->GetOtherEndGroup();
+ }
+}
+
+// Use some Traveling Salesman Problem (TSP) like heuristics to bring several groups into a
+// order with as short as possible interconnection paths
+
+void OrderGroups(std::vector<OrderingGroup *> *groups, const int nDims)
+{
+ // There is no point in ordering just one group
+ if (groups->size() <= 1) {
+ return;
+ }
+
+ // Initialize the endpoints for all groups
+ for (auto & group : *groups) {
+ group->SetEndpoints();
+ }
+
+ // Find the neighboring points for all end points of all groups and sort by distance
+ for (std::vector<OrderingGroup *>::iterator itThis = groups->begin(); itThis != groups->end(); ++itThis) {
+ for (int i = 0; i < (*itThis)->nEndPoints; i++) {
+ // This can be up to 2x too large, but still better than incrementing the size
+ (*itThis)->endpoints[i]->nearest.reserve(4 * groups->size());
+ }
+
+ for (std::vector<OrderingGroup *>::iterator itNghb = groups->begin(); itNghb != groups->end(); ++itNghb) {
+ if (itThis != itNghb) {
+ (*itThis)->AddNeighbors(*itNghb);
+ }
+ }
+
+ for (int i = 0; i < (*itThis)->nEndPoints; i++) {
+ std::sort((*itThis)->endpoints[i]->nearest.begin(), (*itThis)->endpoints[i]->nearest.end(), OrderingGroupNeighbor::Compare);
+ }
+ }
+
+ // =========== Step 1: Create a simple nearest neighbor chain ===========
+
+ // Vector of connection points
+ std::vector<OrderingGroupConnection *> connections;
+ connections.reserve(groups->size());
+ // Total Jump Distance
+ Coord total = 0.0;
+
+ // Start with the first group and connect always with nearest unused point
+ OrderingGroupPoint *crnt = groups->front()->endpoints[0];
+
+ // The longest connection is ignored (we don't want cycles)
+ OrderingGroupConnection *longestConnect = nullptr;
+
+ for (unsigned int nConnected = 0; nConnected < groups->size(); nConnected++) {
+ // Mark both end points of the current segment as used
+ crnt->UsePoint();
+ crnt = crnt->GetOtherEndGroup();
+ crnt->UsePoint();
+
+ // if this is the last segment, Mark start point of first segment as unused,
+ // so that the end can connect to it
+ if (nConnected == groups->size() - 1) {
+ groups->front()->endpoints[0]->UnusePoint();
+ }
+
+ // connect to next segment
+ OrderingGroupNeighbor *nghb = crnt->FindNearestUnused();
+ connections.push_back(new OrderingGroupConnection(crnt, nghb->point, connections.size()));
+ total += nghb->distance;
+ crnt = nghb->point;
+
+ if (!longestConnect || nghb->distance > longestConnect->Distance()) {
+ longestConnect = connections.back();
+ }
+ }
+
+ DebugTrace1TSP(("Total jump distance %.3lf (closed)", total));
+ DebugTrace1TSP(("Total jump distance %.3lf (open)", total - longestConnect->Distance()));
+
+ AssertIsTour(*groups, connections, longestConnect);
+
+ // =========== Step 2: Choose nDims segments to clear and reconnect ===========
+
+ bool improvement;
+ int nRuns = 0;
+ int nTrials = 0;
+ int nImprovements = 0;
+
+ do {
+ improvement = false;
+ nRuns ++;
+ std::vector< std::vector<OrderingGroupConnection *>::iterator > iterators;
+
+ for (
+ triangleit_begin(iterators, connections.begin(), connections.end(), nDims);
+ triangleit_test(iterators, connections.end());
+ triangleit_incr(iterators, connections.end())
+ ) {
+ nTrials ++;
+
+ Coord dist = 0;
+
+ std::vector<OrderingSegment> segments(iterators.size());
+ std::vector<OrderingGroupConnection *> changedconnections;
+ changedconnections.reserve(3);
+ OrderingGroupConnection *prev = *iterators.back();
+
+
+ for (size_t i = 0; i < iterators.size(); i++) {
+ dist += (*iterators[i])->Distance();
+ segments[i].AddPoint(prev->points[1]);
+ segments[i].AddPoint((*iterators[i])->points[0]);
+ prev = *iterators[i];
+ changedconnections.push_back(*iterators[i]);
+ }
+
+ if (FindShortestReconnect(segments, changedconnections, connections, &longestConnect, &total, dist)) {
+ nImprovements ++;
+
+ AssertIsTour(*groups, connections, longestConnect);
+ LinearizeTour(connections);
+ AssertIsTour(*groups, connections, longestConnect);
+ improvement = true;
+ }
+ }
+ } while (improvement && nRuns < 10);
+
+ DebugTrace1TSP(("Finished after %d rounds, %d trials, %d improvements", nRuns, nTrials, nImprovements));
+
+ // =========== Step N: Create vector of groups from vector of connection points ===========
+
+ std::vector<OrderingGroup *> result;
+ result.reserve(groups->size());
+
+ // Go through the groups starting with the longest connection (which is this way left out)
+ {
+ OrderingGroupPoint *current = longestConnect->points[1];
+
+ for (unsigned int n = 0; n < connections.size(); n++) {
+ result.push_back(current->group);
+ current->SetRevInGroup();
+ current = current->GetOtherEndGroup();
+ current = current->GetOtherEndConnection();
+ }
+ }
+
+ assert(result.size() == groups->size());
+ assert_unique(result);
+
+ delete_and_clear(connections);
+
+ *groups = result;
+}
+
+// Global optimization of path length
+
+void OrderingAdvanced(std::vector<OrderingInfo> &infos, int nDims)
+{
+ if (infos.size() < 3) {
+ return;
+ }
+
+ // Create extended ordering info vector and copy data from normal ordering info
+ std::vector<OrderingInfoEx *> infoex;
+ infoex.reserve(infos.size());
+
+ for (std::vector<OrderingInfo>::const_iterator it = infos.begin(); it != infos.end();) {
+ // Note: This assumes that the index in the OrderingInfo matches the vector index!
+ infoex.push_back(new OrderingInfoEx(*it, infoex.size()));
+ ++it;
+ while (it != infos.end() && it->begOrig == infoex.back()->end.point) {
+ infoex.back()->end.point = it->endOrig;
+ infoex.back()->origIndices.push_back(it->index);
+ ++it;
+ }
+ }
+
+ // Find closest 2 points for each point and enforce that 2nd nearest is not further away than 1.8xthe nearest
+ // If this is not the case, clear nearest and 2nd nearest point
+ for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
+ (*it)->beg.FindNearest2(infoex);
+ (*it)->end.FindNearest2(infoex);
+ }
+
+ DebugTraceGrouping(
+ DebugTrace2(("STEP1"));
+ for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
+ (*it)->beg.Dump();
+ (*it)->end.Dump();
+ }
+ )
+
+ // Make sure the nearest points are mutual
+ for (auto & it : infoex) {
+ it->beg.EnforceMutual();
+ it->end.EnforceMutual();
+ }
+
+ DebugTraceGrouping(
+ DebugTrace2(("STEP2"));
+ for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
+ (*it)->beg.Dump();
+ (*it)->end.Dump();
+ }
+ )
+
+ // Make sure the nearest points for begin and end lead to the same sub-path (same index)
+ for (auto & it : infoex) {
+ it->beg.EnforceSymmetric(it->end);
+ it->end.EnforceSymmetric(it->beg);
+ }
+
+ DebugTraceGrouping(
+ DebugTrace2(("STEP3"));
+ for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
+ (*it)->beg.Dump();
+ (*it)->end.Dump();
+ }
+ )
+
+ // The remaining nearest neighbors should be 100% non ambiguous, so group them
+ std::vector<OrderingGroup *> groups;
+ for (std::vector<OrderingInfoEx *>::iterator it = infoex.begin(); it != infoex.end(); ++it) {
+ (*it)->MakeGroup(infoex, &groups);
+ }
+
+ // Create single groups for ungrouped lines
+ std::vector<OrderingInfo> result;
+ result.reserve(infos.size());
+ int nUngrouped = 0;
+ for (auto & it : infoex) {
+ if (!it->grouped) {
+ groups.push_back(new OrderingGroup(groups.size()));
+ groups.back()->items.push_back(it);
+ nUngrouped++;
+ }
+ }
+
+ DebugTraceGrouping(
+ DebugTrace2(("Ungrouped lines = %d", nUngrouped));
+ DebugTrace2(("%d Groups found", groups.size()));
+ for (std::vector<OrderingGroup *>::iterator it = groups.begin(); it != groups.end(); ++it) {
+ DebugTrace2(("Group size %d", (*it)->items.size()));
+ }
+ )
+
+ // Order groups, so that the connection path gets shortest
+ OrderGroups(&groups, nDims);
+
+ // Copy grouped lines to output
+ for (auto & group : groups) {
+ for (unsigned int iItem = 0; iItem < group->items.size(); iItem++) {
+ unsigned int iItemRev = group->revItemList ? group->items.size() - 1 - iItem : iItem;
+ OrderingInfoEx *item = group->items[iItemRev];
+
+ // If revItems is false, even items shall have reverse=false
+ // In this case ( ( iItem & 1 ) == 0 )== true, revItems=false, (true==false) == false
+ bool reverse = ((iItem & 1) == 0) == group->revItems;
+ if (!reverse) {
+ for (int & origIndice : item->origIndices) {
+ result.push_back(infos[origIndice]);
+ result.back().reverse = false;
+ }
+ } else {
+ for (std::vector<int>::reverse_iterator itOrig = item->origIndices.rbegin(); itOrig != item->origIndices.rend(); ++itOrig) {
+ result.push_back(infos[*itOrig]);
+ result.back().reverse = true;
+ }
+ }
+ }
+ result.back().connect = true;
+ }
+
+
+ delete_and_clear(groups);
+ delete_and_clear(infoex);
+
+ infos = result;
+}
+
+} // namespace LPEEmbroderyStitchOrdering
+} // namespace LivePathEffect
+} // namespace Inkscape