# coding=utf-8 # # Copyright (C) 2008 Aaron Spike, aaron@ekips.org # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # """ Base class for HGPL Encoding """ import re import math import inkex from inkex.transforms import Transform from inkex.bezier import cspsubdiv from inkex.utils import fullmatch class NoPathError(ValueError): """Raise that paths not selected""" # Find the pen number in the layer number FIND_PEN = re.compile(r'\s*pen\s*(\d+)\s*', re.IGNORECASE) class hpglEncoder(object): """HPGL Encoder, used by others""" def __init__(self, effect): """ options: "resolutionX":float "resolutionY":float "pen":int "force:int "speed:int "orientation":string // "0", "90", "-90", "180" "mirrorX":bool "mirrorY":bool "center":bool "flat":float "overcut":float "toolOffset":float "precut":bool "autoAlign":bool """ self.options = effect.options self.doc = effect.svg self.docWidth = effect.svg.unittouu(effect.svg.get('width')) self.docHeight = effect.svg.unittouu(effect.svg.get('height')) self.hpgl = '' self.divergenceX = 'False' self.divergenceY = 'False' self.sizeX = 'False' self.sizeY = 'False' self.dryRun = True self.lastPoint = [0, 0, 0] self.lastPen = -1 self.offsetX = 0 self.offsetY = 0 self.scaleX = self.options.resolutionX / effect.svg.unittouu("1.0in") # dots per inch to dots per user unit self.scaleY = self.options.resolutionY / effect.svg.unittouu("1.0in") # dots per inch to dots per user unit scaleXY = (self.scaleX + self.scaleY) / 2 self.overcut = effect.svg.unittouu(str(self.options.overcut) + "mm") * scaleXY # mm to dots (plotter coordinate system) self.toolOffset = effect.svg.unittouu(str(self.options.toolOffset) + "mm") * scaleXY # mm to dots self.flat = self.options.flat / (1016 / ((self.options.resolutionX + self.options.resolutionY) / 2)) # scale flatness to resolution if self.toolOffset > 0.0: self.toolOffsetFlat = self.flat / self.toolOffset * 4.5 # scale flatness to offset else: self.toolOffsetFlat = 0.0 self.mirrorX = -1.0 if self.options.mirrorX else 1.0 self.mirrorY = 1.0 if self.options.mirrorY else -1.0 # process viewBox attribute to correct page scaling self.viewBoxTransformX = 1 self.viewBoxTransformY = 1 viewBox = effect.svg.get_viewbox() if viewBox and viewBox[2] and viewBox[3]: self.viewBoxTransformX = self.docWidth / effect.svg.unittouu(effect.svg.add_unit(viewBox[2])) self.viewBoxTransformY = self.docHeight / effect.svg.unittouu(effect.svg.add_unit(viewBox[3])) def getHpgl(self): """Return the HPGL instructions""" # dryRun to find edges transform = Transform([ [self.mirrorX * self.scaleX * self.viewBoxTransformX, 0.0, 0.0], [0.0, self.mirrorY * self.scaleY * self.viewBoxTransformY, 0.0]] ) transform.add_rotate(int(self.options.orientation)) self.vData = [['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0]] self.process_group(self.doc, transform) if self.divergenceX == 'False' or self.divergenceY == 'False' or self.sizeX == 'False' or self.sizeY == 'False': raise NoPathError("No paths found") # live run self.dryRun = False # move drawing according to various modifiers if self.options.autoAlign: if self.options.center: self.offsetX -= (self.sizeX - self.divergenceX) / 2 self.offsetY -= (self.sizeY - self.divergenceY) / 2 else: self.divergenceX = 0.0 self.divergenceY = 0.0 if self.options.center: if self.options.orientation == '0': self.offsetX -= (self.docWidth * self.scaleX) / 2 self.offsetY += (self.docHeight * self.scaleY) / 2 if self.options.orientation == '90': self.offsetY += (self.docWidth * self.scaleX) / 2 self.offsetX += (self.docHeight * self.scaleY) / 2 if self.options.orientation == '180': self.offsetX += (self.docWidth * self.scaleX) / 2 self.offsetY -= (self.docHeight * self.scaleY) / 2 if self.options.orientation == '270': self.offsetY -= (self.docWidth * self.scaleX) / 2 self.offsetX -= (self.docHeight * self.scaleY) / 2 else: if self.options.orientation == '0': self.offsetY += self.docHeight * self.scaleY if self.options.orientation == '90': self.offsetY += self.docWidth * self.scaleX self.offsetX += self.docHeight * self.scaleY if self.options.orientation == '180': self.offsetX += self.docWidth * self.scaleX if not self.options.center and self.toolOffset > 0.0: self.offsetX += self.toolOffset self.offsetY += self.toolOffset # initialize transformation matrix and cache transform = Transform([ [self.mirrorX * self.scaleX * self.viewBoxTransformX, 0.0, -float(self.divergenceX) + self.offsetX], [0.0, self.mirrorY * self.scaleY * self.viewBoxTransformY, -float(self.divergenceY) + self.offsetY] ]) transform.add_rotate(int(self.options.orientation)) self.vData = [['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0], ['', 'False', 0, 0]] # add move to zero point and precut if self.toolOffset > 0.0 and self.options.precut: if self.options.center: # position precut outside of drawing plus one time the tooloffset if self.offsetX >= 0.0: precutX = self.offsetX + self.toolOffset else: precutX = self.offsetX - self.toolOffset if self.offsetY >= 0.0: precutY = self.offsetY + self.toolOffset else: precutY = self.offsetY - self.toolOffset self.processOffset('PU', precutX, precutY, self.options.pen) self.processOffset('PD', precutX, precutY + self.toolOffset * 8, self.options.pen) else: self.processOffset('PU', 0, 0, self.options.pen) self.processOffset('PD', 0, self.toolOffset * 8, self.options.pen) # start conversion self.process_group(self.doc, transform) # shift an empty node in in order to process last node in cache if self.toolOffset > 0.0 and not self.dryRun: self.processOffset('PU', 0, 0, 0) return self.hpgl def process_group(self, group, transform): """flatten layers and groups to avoid recursion""" for child in group: if not isinstance(child, inkex.ShapeElement): continue if child.is_visible(): if isinstance(child, inkex.Group): self.process_group(child, transform) elif isinstance(child, inkex.PathElement): self.process_path(child, transform) else: # This only works for shape elements (not text yet!) new_elem = child.replace_with(child.to_path_element()) # Element is given composed transform b/c it's not added back to doc new_elem.transform = child.composed_transform() self.process_path(new_elem, transform) def get_pen_number(self, node): """Get pen number for node label (usually group)""" for parent in [node] + list(node.ancestors().values()): match = fullmatch(FIND_PEN, parent.label or '') if match: return int(match.group(1)) return int(self.options.pen) def process_path(self, node, transform): """Process the given element into a plotter path""" pen = self.get_pen_number(node) path = node.path.to_absolute()\ .transform(node.composed_transform())\ .transform(transform)\ .to_superpath() if path: cspsubdiv(path, self.flat) # path to HPGL commands oldPosX = 0.0 oldPosY = 0.0 for singlePath in path: cmd = 'PU' for singlePathPoint in singlePath: posX, posY = singlePathPoint[1] # check if point is repeating, if so, ignore if int(round(posX)) != int(round(oldPosX)) or int(round(posY)) != int(round(oldPosY)): self.processOffset(cmd, posX, posY, pen) cmd = 'PD' oldPosX = posX oldPosY = posY # perform overcut if self.overcut > 0.0 and not self.dryRun: # check if last and first points are the same, otherwise the path is not closed and no overcut can be performed if int(round(oldPosX)) == int(round(singlePath[0][1][0])) and int(round(oldPosY)) == int(round(singlePath[0][1][1])): overcutLength = 0 for singlePathPoint in singlePath: posX, posY = singlePathPoint[1] # check if point is repeating, if so, ignore if int(round(posX)) != int(round(oldPosX)) or int(round(posY)) != int(round(oldPosY)): overcutLength += self.getLength(oldPosX, oldPosY, posX, posY) if overcutLength >= self.overcut: newLength = self.changeLength(oldPosX, oldPosY, posX, posY, - (overcutLength - self.overcut)) self.processOffset(cmd, newLength[0], newLength[1], pen) break else: self.processOffset(cmd, posX, posY, pen) oldPosX = posX oldPosY = posY def getLength(self, x1, y1, x2, y2, absolute=True): """calc absolute or relative length between two points""" length = math.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2.0) if absolute: length = math.fabs(length) return length def changeLength(self, x1, y1, x2, y2, offset): """change length of line""" if offset < 0: offset = max( - self.getLength(x1, y1, x2, y2), offset) x = x2 + (x2 - x1) / self.getLength(x1, y1, x2, y2, False) * offset y = y2 + (y2 - y1) / self.getLength(x1, y1, x2, y2, False) * offset return [x, y] def processOffset(self, cmd, posX, posY, pen): # calculate offset correction (or don't) if self.toolOffset == 0.0 or self.dryRun: self.storePoint(cmd, posX, posY, pen) else: # insert data into cache self.vData.pop(0) self.vData.insert(3, [cmd, posX, posY, pen]) # decide if enough data is available if self.vData[2][1] != 'False': if self.vData[1][1] == 'False': self.storePoint(self.vData[2][0], self.vData[2][1], self.vData[2][2], self.vData[2][3]) else: # perform tool offset correction (It's a *tad* complicated, if you want to understand it draw the data as lines on paper) if self.vData[2][0] == 'PD': # If the 3rd entry in the cache is a pen down command make the line longer by the tool offset pointThree = self.changeLength(self.vData[1][1], self.vData[1][2], self.vData[2][1], self.vData[2][2], self.toolOffset) self.storePoint('PD', pointThree[0], pointThree[1], self.vData[2][3]) elif self.vData[0][1] != 'False': # Elif the 1st entry in the cache is filled with data and the 3rd entry is a pen up command shift # the 3rd entry by the current tool offset position according to the 2nd command pointThree = self.changeLength(self.vData[0][1], self.vData[0][2], self.vData[1][1], self.vData[1][2], self.toolOffset) pointThree[0] = self.vData[2][1] - (self.vData[1][1] - pointThree[0]) pointThree[1] = self.vData[2][2] - (self.vData[1][2] - pointThree[1]) self.storePoint('PU', pointThree[0], pointThree[1], self.vData[2][3]) else: # Else just write the 3rd entry pointThree = [self.vData[2][1], self.vData[2][2]] self.storePoint('PU', pointThree[0], pointThree[1], self.vData[2][3]) if self.vData[3][0] == 'PD': # If the 4th entry in the cache is a pen down command guide tool to next line with a circle between the prolonged 3rd and 4th entry if self.getLength(self.vData[2][1], self.vData[2][2], self.vData[3][1], self.vData[3][2]) >= self.toolOffset: pointFour = self.changeLength(self.vData[3][1], self.vData[3][2], self.vData[2][1], self.vData[2][2], - self.toolOffset) else: pointFour = self.changeLength(self.vData[2][1], self.vData[2][2], self.vData[3][1], self.vData[3][2], (self.toolOffset - self.getLength(self.vData[2][1], self.vData[2][2], self.vData[3][1], self.vData[3][2]))) # get angle start and angle vector angleStart = math.atan2(pointThree[1] - self.vData[2][2], pointThree[0] - self.vData[2][1]) angleVector = math.atan2(pointFour[1] - self.vData[2][2], pointFour[0] - self.vData[2][1]) - angleStart # switch direction when arc is bigger than 180° if angleVector > math.pi: angleVector -= math.pi * 2 elif angleVector < - math.pi: angleVector += math.pi * 2 # draw arc if angleVector >= 0: angle = angleStart + self.toolOffsetFlat while angle < angleStart + angleVector: self.storePoint('PD', self.vData[2][1] + math.cos(angle) * self.toolOffset, self.vData[2][2] + math.sin(angle) * self.toolOffset, self.vData[2][3]) angle += self.toolOffsetFlat else: angle = angleStart - self.toolOffsetFlat while angle > angleStart + angleVector: self.storePoint('PD', self.vData[2][1] + math.cos(angle) * self.toolOffset, self.vData[2][2] + math.sin(angle) * self.toolOffset, self.vData[2][3]) angle -= self.toolOffsetFlat self.storePoint('PD', pointFour[0], pointFour[1], self.vData[3][3]) def storePoint(self, command, x, y, pen): x = int(round(x)) y = int(round(y)) # skip when no change in movement if self.lastPoint[0] == command and self.lastPoint[1] == x and self.lastPoint[2] == y: return if self.dryRun: # find edges if self.divergenceX == 'False' or x < self.divergenceX: self.divergenceX = x if self.divergenceY == 'False' or y < self.divergenceY: self.divergenceY = y if self.sizeX == 'False' or x > self.sizeX: self.sizeX = x if self.sizeY == 'False' or y > self.sizeY: self.sizeY = y else: # store point if not self.options.center: # only positive values are allowed (usually) if x < 0: x = 0 if y < 0: y = 0 # select correct pen if self.lastPen != pen: self.hpgl += ';PU;SP%d' % pen # do not repeat command if command == 'PD' and self.lastPoint[0] == 'PD' and self.lastPen == pen: self.hpgl += ',%d,%d' % (x, y) else: self.hpgl += ';%s%d,%d' % (command, x, y) self.lastPen = pen self.lastPoint = [command, x, y]