# coding=utf-8 # # Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru # Copyright (C) 2005 Aaron Spike, aaron@ekips.org # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # pylint: disable=invalid-name,too-many-locals # """ Bezier calculations """ import cmath import math import numpy from .transforms import DirectedLineSegment from .localization import inkex_gettext as _ # bez = ((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) def pointdistance(point_a, point_b): """The straight line distance between two points""" return math.sqrt(((point_b[0] - point_a[0]) ** 2) + ((point_b[1] - point_a[1]) ** 2)) def between_point(point_a, point_b, time=0.5): """Returns the point between point a and point b""" return point_a[0] + time * (point_b[0] - point_a[0]),\ point_a[1] + time * (point_b[1] - point_a[1]) def percent_point(point_a, point_b, percent=50.0): """Returns between_point but takes percent instead of 0.0-1.0""" return between_point(point_a, point_b, percent / 100.0) def root_wrapper(root_a, root_b, root_c, root_d): """Get the Cubic function, moic formular of roots, simple root""" if root_a: # Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots mono_a, mono_b, mono_c = (root_b / root_a, root_c / root_a, root_d / root_a) m = 2.0 * mono_a ** 3 - 9.0 * mono_a * mono_b + 27.0 * mono_c k = mono_a ** 2 - 3.0 * mono_b n = m ** 2 - 4.0 * k ** 3 w1 = -.5 + .5 * cmath.sqrt(-3.0) w2 = -.5 - .5 * cmath.sqrt(-3.0) if n < 0: m1 = pow(complex((m + cmath.sqrt(n)) / 2), 1. / 3) n1 = pow(complex((m - cmath.sqrt(n)) / 2), 1. / 3) else: if m + math.sqrt(n) < 0: m1 = -pow(-(m + math.sqrt(n)) / 2, 1. / 3) else: m1 = pow((m + math.sqrt(n)) / 2, 1. / 3) if m - math.sqrt(n) < 0: n1 = -pow(-(m - math.sqrt(n)) / 2, 1. / 3) else: n1 = pow((m - math.sqrt(n)) / 2, 1. / 3) return (-1. / 3 * (mono_a + m1 + n1), -1. / 3 * (mono_a + w1 * m1 + w2 * n1), -1. / 3 * (mono_a + w2 * m1 + w1 * n1)) elif root_b: det = root_c ** 2.0 - 4.0 * root_b * root_d if det: return ( (-root_c + cmath.sqrt(det)) / (2.0 * root_b), (-root_c - cmath.sqrt(det)) / (2.0 * root_b)) return (-root_c / (2.0 * root_b),) elif root_c: return (1.0 * (-root_d / root_c),) return () def bezlenapprx(sp1, sp2): """Return the aproximate length between two beziers""" return pointdistance(sp1[1], sp1[2]) \ + pointdistance(sp1[2], sp2[0]) \ + pointdistance(sp2[0], sp2[1]) def cspbezsplit(sp1, sp2, time=0.5): """Split a cubic bezier at the time period""" m1 = tpoint(sp1[1], sp1[2], time) m2 = tpoint(sp1[2], sp2[0], time) m3 = tpoint(sp2[0], sp2[1], time) m4 = tpoint(m1, m2, time) m5 = tpoint(m2, m3, time) m = tpoint(m4, m5, time) return [[sp1[0][:], sp1[1][:], m1], [m4, m, m5], [m3, sp2[1][:], sp2[2][:]]] def cspbezsplitatlength(sp1, sp2, length=0.5, tolerance=0.001): """Split a cubic bezier at length""" bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:]) time = beziertatlength(bez, length, tolerance) return cspbezsplit(sp1, sp2, time) def cspseglength(sp1, sp2, tolerance=0.001): """Get cubic bezier segment length""" bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:]) return bezierlength(bez, tolerance) def csplength(csp): """Get cubic bezier length""" total = 0 lengths = [] for sp in csp: lengths.append([]) for i in range(1, len(sp)): l = cspseglength(sp[i - 1], sp[i]) lengths[-1].append(l) total += l return lengths, total def bezierparameterize(bez): """Return the bezier parameter size""" ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez # parametric bezier x0 = bx0 y0 = by0 cx = 3 * (bx1 - x0) bx = 3 * (bx2 - bx1) - cx ax = bx3 - x0 - cx - bx cy = 3 * (by1 - y0) by = 3 * (by2 - by1) - cy ay = by3 - y0 - cy - by return ax, ay, bx, by, cx, cy, x0, y0 def linebezierintersect(arg_a, bez): """Where a line and bezier intersect""" ((lx1, ly1), (lx2, ly2)) = arg_a # parametric line dd = lx1 cc = lx2 - lx1 bb = ly1 aa = ly2 - ly1 if aa: coef1 = cc / aa coef2 = 1 else: coef1 = 1 coef2 = aa / cc ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez) # cubic intersection coefficients a = coef1 * ay - coef2 * ax b = coef1 * by - coef2 * bx c = coef1 * cy - coef2 * cx d = coef1 * (y0 - bb) - coef2 * (x0 - dd) roots = root_wrapper(a, b, c, d) retval = [] for i in roots: if isinstance(i, complex) and i.imag == 0: i = i.real if not isinstance(i, complex) and 0 <= i <= 1: retval.append(bezierpointatt(bez, i)) return retval def bezierpointatt(bez, t): """Get coords at the given time point along a bezier curve""" ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez) x = ax * (t ** 3) + bx * (t ** 2) + cx * t + x0 y = ay * (t ** 3) + by * (t ** 2) + cy * t + y0 return x, y def bezierslopeatt(bez, t): """Get slope at the given time point along a bezier curve""" ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez) dx = 3 * ax * (t ** 2) + 2 * bx * t + cx dy = 3 * ay * (t ** 2) + 2 * by * t + cy return dx, dy def beziertatslope(bez, d): """Reverse; get time from slope along a bezier curve""" ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez) (dy, dx) = d # quadratic coefficients of slope formula if dx: slope = 1.0 * (dy / dx) a = 3 * ay - 3 * ax * slope b = 2 * by - 2 * bx * slope c = cy - cx * slope elif dy: slope = 1.0 * (dx / dy) a = 3 * ax - 3 * ay * slope b = 2 * bx - 2 * by * slope c = cx - cy * slope else: return [] roots = root_wrapper(0, a, b, c) retval = [] for i in roots: if isinstance(i, complex) and i.imag == 0: i = i.real if not isinstance(i, complex) and 0 <= i <= 1: retval.append(i) return retval def tpoint(p1, p2, t): """Linearly interpolate between p1 and p2. t = 0.0 returns p1, t = 1.0 returns p2. :return: Interpolated point :rtype: tuple :param p1: First point as sequence of two floats :param p2: Second point as sequence of two floats :param t: Number between 0.0 and 1.0 :type t: float """ x1, y1 = p1 x2, y2 = p2 return x1 + t * (x2 - x1), y1 + t * (y2 - y1) def beziersplitatt(bez, t): """Split bezier at given time""" ((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez m1 = tpoint((bx0, by0), (bx1, by1), t) m2 = tpoint((bx1, by1), (bx2, by2), t) m3 = tpoint((bx2, by2), (bx3, by3), t) m4 = tpoint(m1, m2, t) m5 = tpoint(m2, m3, t) m = tpoint(m4, m5, t) return ((bx0, by0), m1, m4, m), (m, m5, m3, (bx3, by3)) def addifclose(bez, l, error=0.001): """Gravesen, Add if the line is closed, in-place addition to array l""" box = 0 for i in range(1, 4): box += pointdistance(bez[i - 1], bez[i]) chord = pointdistance(bez[0], bez[3]) if (box - chord) > error: first, second = beziersplitatt(bez, 0.5) addifclose(first, l, error) addifclose(second, l, error) else: l[0] += (box / 2.0) + (chord / 2.0) # balfax, balfbx, balfcx, balfay, balfby, balfcy = 0, 0, 0, 0, 0, 0 def balf(t, args): """Bezier Arc Length Function""" ax, bx, cx, ay, by, cy = args retval = (ax * (t ** 2) + bx * t + cx) ** 2 + (ay * (t ** 2) + by * t + cy) ** 2 return math.sqrt(retval) def simpson(a, b, n_limit, tolerance, balarg): """It's not known what this function does...""" n = 2 multiplier = (b - a) / 6.0 endsum = balf(a, balarg) + balf(b, balarg) interval = (b - a) / 2.0 asum = 0.0 bsum = balf(a + interval, balarg) est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) est0 = 2.0 * est1 # print(multiplier, endsum, interval, asum, bsum, est1, est0) while n < n_limit and abs(est1 - est0) > tolerance: n *= 2 multiplier /= 2.0 interval /= 2.0 asum += bsum bsum = 0.0 est0 = est1 for i in range(1, n, 2): bsum += balf(a + (i * interval), balarg) est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum)) # print(multiplier, endsum, interval, asum, bsum, est1, est0) return est1 def bezierlength(bez, tolerance=0.001, time=1.0): """Get length of bezier curve""" ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez) return simpson(0.0, time, 4096, tolerance, [3 * ax, 2 * bx, cx, 3 * ay, 2 * by, cy]) def beziertatlength(bez, l=0.5, tolerance=0.001): """Get bezier curve time at the length specified""" curlen = bezierlength(bez, tolerance, 1.0) time = 1.0 tdiv = time targetlen = l * curlen diff = curlen - targetlen while abs(diff) > tolerance: tdiv /= 2.0 if diff < 0: time += tdiv else: time -= tdiv curlen = bezierlength(bez, tolerance, time) diff = curlen - targetlen return time def maxdist(bez): """Get maximum distance within bezier curve""" seg = DirectedLineSegment(bez[0], bez[3]) return max(seg.distance_to_point(*bez[1]), seg.distance_to_point(*bez[2])) def cspsubdiv(csp, flat): """Sub-divide cubic sub-paths""" for sp in csp: subdiv(sp, flat) def subdiv(sp, flat, i=1): """sub divide bezier curve""" while i < len(sp): p0 = sp[i - 1][1] p1 = sp[i - 1][2] p2 = sp[i][0] p3 = sp[i][1] bez = (p0, p1, p2, p3) mdist = maxdist(bez) if mdist <= flat: i += 1 else: one, two = beziersplitatt(bez, 0.5) sp[i - 1][2] = one[1] sp[i][0] = two[2] p = [one[2], one[3], two[1]] sp[i:1] = [p] def csparea(csp): """Get area in cubic sub-path""" MAT_AREA = numpy.array([[0, 2, 1, -3], [-2, 0, 1, 1], [-1, -1, 0, 2], [3, -1, -2, 0]]) area = 0.0 for sp in csp: if len(sp) < 2: continue for x, coord in enumerate(sp): # calculate polygon area area += 0.5 * sp[x - 1][1][0] * (coord[1][1] - sp[x - 2][1][1]) for i in range(1, len(sp)): # add contribution from cubic Bezier vec_x = numpy.array([sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]]) vec_y = numpy.array([sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]]) vex = numpy.matmul(vec_x, MAT_AREA) area += 0.15 * numpy.matmul(vex, vec_y.T) return -area def cspcofm(csp): """Get cubic sub-path coefficient""" MAT_COFM_0 = numpy.array([[0, 35, 10, -45], [-35, 0, 12, 23], [-10, -12, 0, 22], [45, -23, -22, 0]]) MAT_COFM_1 = numpy.array([[0, 15, 3, -18], [-15, 0, 9, 6], [-3, -9, 0, 12], [18, -6, -12, 0]]) MAT_COFM_2 = numpy.array([[0, 12, 6, -18], [-12, 0, 9, 3], [-6, -9, 0, 15], [18, -3, -15, 0]]) MAT_COFM_3 = numpy.array([[0, 22, 23, -45], [-22, 0, 12, 10], [-23, -12, 0, 35], [45, -10, -35, 0]]) area = csparea(csp) xc = 0.0 yc = 0.0 if abs(area) < 1.e-8: raise ValueError(_("Area is zero, cannot calculate Center of Mass")) for sp in csp: for x, coord in enumerate(sp): # calculate polygon moment xc += sp[x - 1][1][1] * (sp[x - 2][1][0] - coord[1][0]) \ * (sp[x - 2][1][0] + sp[x - 1][1][0] + coord[1][0]) / 6 yc += sp[x - 1][1][0] * (coord[1][1] - sp[x - 2][1][1]) \ * (sp[x - 2][1][1] + sp[x - 1][1][1] + coord[1][1]) / 6 for i in range(1, len(sp)): # add contribution from cubic Bezier vec_x = numpy.array([sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]]) vec_y = numpy.array([sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]]) def _mul(MAT): return numpy.matmul(numpy.matmul(vec_x, MAT), vec_y.T) vec_t = numpy.array([ _mul(MAT_COFM_0), _mul(MAT_COFM_1), _mul(MAT_COFM_2), _mul(MAT_COFM_3) ]) xc += numpy.matmul(vec_x, vec_t.T) / 280 yc += numpy.matmul(vec_y, vec_t.T) / 280 return -xc / area, -yc / area