/* * Authors: * Lauris Kaplinski * Michael G. Sloan * * This code is in public domain */ #include <2geom/affine.h> #include <2geom/point.h> #include <2geom/polynomial.h> #include <2geom/utils.h> namespace Geom { /** Creates a Affine given an axis and origin point. * The axis is represented as two vectors, which represent skew, rotation, and scaling in two dimensions. * from_basis(Point(1, 0), Point(0, 1), Point(0, 0)) would return the identity matrix. \param x_basis the vector for the x-axis. \param y_basis the vector for the y-axis. \param offset the translation applied by the matrix. \return The new Affine. */ //NOTE: Inkscape's version is broken, so when including this version, you'll have to search for code with this func Affine from_basis(Point const &x_basis, Point const &y_basis, Point const &offset) { return Affine(x_basis[X], x_basis[Y], y_basis[X], y_basis[Y], offset [X], offset [Y]); } Point Affine::xAxis() const { return Point(_c[0], _c[1]); } Point Affine::yAxis() const { return Point(_c[2], _c[3]); } /// Gets the translation imparted by the Affine. Point Affine::translation() const { return Point(_c[4], _c[5]); } void Affine::setXAxis(Point const &vec) { for(int i = 0; i < 2; i++) _c[i] = vec[i]; } void Affine::setYAxis(Point const &vec) { for(int i = 0; i < 2; i++) _c[i + 2] = vec[i]; } /// Sets the translation imparted by the Affine. void Affine::setTranslation(Point const &loc) { for(int i = 0; i < 2; i++) _c[i + 4] = loc[i]; } /** Calculates the amount of x-scaling imparted by the Affine. This is the scaling applied to * the original x-axis region. It is \emph{not} the overall x-scaling of the transformation. * Equivalent to L2(m.xAxis()). */ double Affine::expansionX() const { return sqrt(_c[0] * _c[0] + _c[1] * _c[1]); } /** Calculates the amount of y-scaling imparted by the Affine. This is the scaling applied before * the other transformations. It is \emph{not} the overall y-scaling of the transformation. * Equivalent to L2(m.yAxis()). */ double Affine::expansionY() const { return sqrt(_c[2] * _c[2] + _c[3] * _c[3]); } void Affine::setExpansionX(double val) { double exp_x = expansionX(); if (exp_x != 0.0) { //TODO: best way to deal with it is to skip op? double coef = val / expansionX(); for (unsigned i = 0; i < 2; ++i) { _c[i] *= coef; } } } void Affine::setExpansionY(double val) { double exp_y = expansionY(); if (exp_y != 0.0) { //TODO: best way to deal with it is to skip op? double coef = val / expansionY(); for (unsigned i = 2; i < 4; ++i) { _c[i] *= coef; } } } /** Sets this matrix to be the Identity Affine. */ void Affine::setIdentity() { _c[0] = 1.0; _c[1] = 0.0; _c[2] = 0.0; _c[3] = 1.0; _c[4] = 0.0; _c[5] = 0.0; } /** @brief Check whether this matrix is an identity matrix. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ */ bool Affine::isIdentity(Coord eps) const { return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents a pure translation. * Will return true for the identity matrix, which represents a zero translation. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{array}\right]\f$ */ bool Affine::isTranslation(Coord eps) const { return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps); } /** @brief Check whether this matrix represents a pure nonzero translation. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{array}\right]\f$ and \f$a, b \neq 0\f$ */ bool Affine::isNonzeroTranslation(Coord eps) const { return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && (!are_near(_c[4], 0.0, eps) || !are_near(_c[5], 0.0, eps)); } /** @brief Check whether this matrix represents pure scaling. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{array}\right]\f$. */ bool Affine::isScale(Coord eps) const { if (isSingular(eps)) return false; return are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents pure, nonzero scaling. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ and \f$a, b \neq 1\f$. */ bool Affine::isNonzeroScale(Coord eps) const { if (isSingular(eps)) return false; return (!are_near(_c[0], 1.0, eps) || !are_near(_c[3], 1.0, eps)) && //NOTE: these are the diags, and the next line opposite diags are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents pure uniform scaling. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$. */ bool Affine::isUniformScale(Coord eps) const { if (isSingular(eps)) return false; return are_near(fabs(_c[0]), fabs(_c[3]), eps) && are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents pure, nonzero uniform scaling. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$ * and \f$a_1, a_2 \neq 1\f$. */ bool Affine::isNonzeroUniformScale(Coord eps) const { if (isSingular(eps)) return false; // we need to test both c0 and c3 to handle the case of flips, // which should be treated as nonzero uniform scales return !(are_near(_c[0], 1.0, eps) && are_near(_c[3], 1.0, eps)) && are_near(fabs(_c[0]), fabs(_c[3]), eps) && are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents a pure rotation. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */ bool Affine::isRotation(Coord eps) const { return are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) && are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps); } /** @brief Check whether this matrix represents a pure, nonzero rotation. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & b & 0 \\ -b & a & 0 \\ 0 & 0 & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */ bool Affine::isNonzeroRotation(Coord eps) const { return !are_near(_c[0], 1.0, eps) && are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) && are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps); } /** @brief Check whether this matrix represents a non-zero rotation about any point. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & b & 0 \\ -b & a & 0 \\ c & d & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */ bool Affine::isNonzeroNonpureRotation(Coord eps) const { return !are_near(_c[0], 1.0, eps) && are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) && are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps); } /** @brief For a (possibly non-pure) non-zero-rotation matrix, calculate the rotation center. * @pre The matrix must be a non-zero-rotation matrix to prevent division by zero, see isNonzeroNonpureRotation(). * @return The rotation center x, the solution to the equation * \f$A x = x\f$. */ Point Affine::rotationCenter() const { Coord x = (_c[2]*_c[5]+_c[4]-_c[4]*_c[3]) / (1-_c[3]-_c[0]+_c[0]*_c[3]-_c[2]*_c[1]); Coord y = (_c[1]*x + _c[5]) / (1 - _c[3]); return Point(x,y); }; /** @brief Check whether this matrix represents pure horizontal shearing. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$. */ bool Affine::isHShear(Coord eps) const { return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents pure, nonzero horizontal shearing. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */ bool Affine::isNonzeroHShear(Coord eps) const { return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) && !are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents pure vertical shearing. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$. */ bool Affine::isVShear(Coord eps) const { return are_near(_c[0], 1.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents pure, nonzero vertical shearing. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */ bool Affine::isNonzeroVShear(Coord eps) const { return are_near(_c[0], 1.0, eps) && !are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps); } /** @brief Check whether this matrix represents zooming. * Zooming is any combination of translation and uniform non-flipping scaling. * It preserves angles, ratios of distances between arbitrary points * and unit vectors of line segments. * @param eps Numerical tolerance * @return True iff the matrix is invertible and of the form * \f$\left[\begin{array}{ccc} a & 0 & 0 \\ 0 & a & 0 \\ b & c & 1 \end{array}\right]\f$. */ bool Affine::isZoom(Coord eps) const { if (isSingular(eps)) return false; return are_near(_c[0], _c[3], eps) && are_near(_c[1], 0, eps) && are_near(_c[2], 0, eps); } /** @brief Check whether the transformation preserves areas of polygons. * This means that the transformation can be any combination of translation, rotation, * shearing and squeezing (non-uniform scaling such that the absolute value of the product * of Y-scale and X-scale is 1). * @param eps Numerical tolerance * @return True iff \f$|\det A| = 1\f$. */ bool Affine::preservesArea(Coord eps) const { return are_near(descrim2(), 1.0, eps); } /** @brief Check whether the transformation preserves angles between lines. * This means that the transformation can be any combination of translation, uniform scaling, * rotation and flipping. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & b & 0 \\ -b & a & 0 \\ c & d & 1 \end{array}\right]\f$ or \f$\left[\begin{array}{ccc} -a & b & 0 \\ b & a & 0 \\ c & d & 1 \end{array}\right]\f$. */ bool Affine::preservesAngles(Coord eps) const { if (isSingular(eps)) return false; return (are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) || (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps)); } /** @brief Check whether the transformation preserves distances between points. * This means that the transformation can be any combination of translation, * rotation and flipping. * @param eps Numerical tolerance * @return True iff the matrix is of the form * \f$\left[\begin{array}{ccc} a & b & 0 \\ -b & a & 0 \\ c & d & 1 \end{array}\right]\f$ or \f$\left[\begin{array}{ccc} -a & b & 0 \\ b & a & 0 \\ c & d & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */ bool Affine::preservesDistances(Coord eps) const { return ((are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) || (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps))) && are_near(_c[0] * _c[0] + _c[1] * _c[1], 1.0, eps); } /** @brief Check whether this transformation flips objects. * A transformation flips objects if it has a negative scaling component. */ bool Affine::flips() const { return det() < 0; } /** @brief Check whether this matrix is singular. * Singular matrices have no inverse, which means that applying them to a set of points * results in a loss of information. * @param eps Numerical tolerance * @return True iff the determinant is near zero. */ bool Affine::isSingular(Coord eps) const { return are_near(det(), 0.0, eps); } /** @brief Compute the inverse matrix. * Inverse is a matrix (denoted \f$A^{-1}\f$) such that \f$AA^{-1} = A^{-1}A = I\f$. * Singular matrices have no inverse (for example a matrix that has two of its columns equal). * For such matrices, the identity matrix will be returned instead. * @param eps Numerical tolerance * @return Inverse of the matrix, or the identity matrix if the inverse is undefined. * @post (m * m.inverse()).isIdentity() == true */ Affine Affine::inverse() const { Affine d; double mx = std::max(fabs(_c[0]) + fabs(_c[1]), fabs(_c[2]) + fabs(_c[3])); // a random matrix norm (either l1 or linfty if(mx > 0) { Geom::Coord const determ = det(); if (!rel_error_bound(std::sqrt(fabs(determ)), mx)) { Geom::Coord const ideterm = 1.0 / (determ); d._c[0] = _c[3] * ideterm; d._c[1] = -_c[1] * ideterm; d._c[2] = -_c[2] * ideterm; d._c[3] = _c[0] * ideterm; d._c[4] = (-_c[4] * d._c[0] - _c[5] * d._c[2]); d._c[5] = (-_c[4] * d._c[1] - _c[5] * d._c[3]); } else { d.setIdentity(); } } else { d.setIdentity(); } return d; } /** @brief Calculate the determinant. * @return \f$\det A\f$. */ Coord Affine::det() const { // TODO this can overflow return _c[0] * _c[3] - _c[1] * _c[2]; } /** @brief Calculate the square of the descriminant. * This is simply the absolute value of the determinant. * @return \f$|\det A|\f$. */ Coord Affine::descrim2() const { return fabs(det()); } /** @brief Calculate the descriminant. * If the matrix doesn't contain a shearing or non-uniform scaling component, this value says * how will the length of any line segment change after applying this transformation * to arbitrary objects on a plane. The new length will be * @code line_seg.length() * m.descrim()) @endcode * @return \f$\sqrt{|\det A|}\f$. */ Coord Affine::descrim() const { return sqrt(descrim2()); } /** @brief Combine this transformation with another one. * After this operation, the matrix will correspond to the transformation * obtained by first applying the original version of this matrix, and then * applying @a m. */ Affine &Affine::operator*=(Affine const &o) { Coord nc[6]; for(int a = 0; a < 5; a += 2) { for(int b = 0; b < 2; b++) { nc[a + b] = _c[a] * o._c[b] + _c[a + 1] * o._c[b + 2]; } } for(int a = 0; a < 6; ++a) { _c[a] = nc[a]; } _c[4] += o._c[4]; _c[5] += o._c[5]; return *this; } //TODO: What's this!?! /** Given a matrix m such that unit_circle = m*x, this returns the * quadratic form x*A*x = 1. * @relates Affine */ Affine elliptic_quadratic_form(Affine const &m) { double od = m[0] * m[1] + m[2] * m[3]; Affine ret (m[0]*m[0] + m[1]*m[1], od, od, m[2]*m[2] + m[3]*m[3], 0, 0); return ret; // allow NRVO } Eigen::Eigen(Affine const &m) { double const B = -m[0] - m[3]; double const C = m[0]*m[3] - m[1]*m[2]; std::vector v = solve_quadratic(1, B, C); for (unsigned i = 0; i < v.size(); ++i) { values[i] = v[i]; vectors[i] = unit_vector(rot90(Point(m[0] - values[i], m[1]))); } for (unsigned i = v.size(); i < 2; ++i) { values[i] = 0; vectors[i] = Point(0,0); } } Eigen::Eigen(double m[2][2]) { double const B = -m[0][0] - m[1][1]; double const C = m[0][0]*m[1][1] - m[1][0]*m[0][1]; std::vector v = solve_quadratic(1, B, C); for (unsigned i = 0; i < v.size(); ++i) { values[i] = v[i]; vectors[i] = unit_vector(rot90(Point(m[0][0] - values[i], m[0][1]))); } for (unsigned i = v.size(); i < 2; ++i) { values[i] = 0; vectors[i] = Point(0,0); } } /** @brief Nearness predicate for affine transforms. * @returns True if all entries of matrices are within eps of each other. * @relates Affine */ bool are_near(Affine const &a, Affine const &b, Coord eps) { return are_near(a[0], b[0], eps) && are_near(a[1], b[1], eps) && are_near(a[2], b[2], eps) && are_near(a[3], b[3], eps) && are_near(a[4], b[4], eps) && are_near(a[5], b[5], eps); } } //namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :