/** @file * @brief Circle shape *//* * Authors: * Marco Cecchetti * Krzysztof KosiƄski * * Copyright 2008-2014 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/circle.h> #include <2geom/ellipse.h> #include <2geom/elliptical-arc.h> #include <2geom/numeric/fitting-tool.h> #include <2geom/numeric/fitting-model.h> namespace Geom { Rect Circle::boundsFast() const { Point rr(_radius, _radius); Rect bbox(_center - rr, _center + rr); return bbox; } void Circle::setCoefficients(Coord A, Coord B, Coord C, Coord D) { if (A == 0) { THROW_RANGEERROR("square term coefficient == 0"); } //std::cerr << "B = " << B << " C = " << C << " D = " << D << std::endl; Coord b = B / A; Coord c = C / A; Coord d = D / A; _center[X] = -b/2; _center[Y] = -c/2; Coord r2 = _center[X] * _center[X] + _center[Y] * _center[Y] - d; if (r2 < 0) { THROW_RANGEERROR("ray^2 < 0"); } _radius = std::sqrt(r2); } void Circle::coefficients(Coord &A, Coord &B, Coord &C, Coord &D) const { A = 1; B = -2 * _center[X]; C = -2 * _center[Y]; D = _center[X] * _center[X] + _center[Y] * _center[Y] - _radius * _radius; } std::vector Circle::coefficients() const { std::vector c(4); coefficients(c[0], c[1], c[2], c[3]); return c; } Zoom Circle::unitCircleTransform() const { Zoom ret(_radius, _center / _radius); return ret; } Zoom Circle::inverseUnitCircleTransform() const { if (_radius == 0) { THROW_RANGEERROR("degenerate circle does not have an inverse unit circle transform"); } Zoom ret(1/_radius, Translate(-_center)); return ret; } Point Circle::initialPoint() const { Point p(_center); p[X] += _radius; return p; } Point Circle::pointAt(Coord t) const { return _center + Point::polar(t) * _radius; } Coord Circle::valueAt(Coord t, Dim2 d) const { Coord delta = (d == X ? std::cos(t) : std::sin(t)); return _center[d] + delta * _radius; } Coord Circle::timeAt(Point const &p) const { if (_center == p) return 0; return atan2(p - _center); } Coord Circle::nearestTime(Point const &p) const { return timeAt(p); } bool Circle::contains(Rect const &r) const { for (unsigned i = 0; i < 4; ++i) { if (!contains(r.corner(i))) return false; } return true; } bool Circle::contains(Circle const &other) const { Coord cdist = distance(_center, other._center); Coord rdist = fabs(_radius - other._radius); return cdist <= rdist; } bool Circle::intersects(Line const &l) const { // http://mathworld.wolfram.com/Circle-LineIntersection.html Coord dr = l.vector().length(); Coord r = _radius; Coord D = cross(l.initialPoint(), l.finalPoint()); Coord delta = r*r * dr*dr - D*D; if (delta >= 0) return true; return false; } bool Circle::intersects(Circle const &other) const { Coord cdist = distance(_center, other._center); Coord rsum = _radius + other._radius; return cdist <= rsum; } std::vector Circle::intersect(Line const &l) const { // http://mathworld.wolfram.com/Circle-LineIntersection.html Coord dr = l.vector().length(); Coord dx = l.vector().x(); Coord dy = l.vector().y(); Coord D = cross(l.initialPoint() - _center, l.finalPoint() - _center); Coord delta = _radius*_radius * dr*dr - D*D; std::vector result; if (delta < 0) return result; if (delta == 0) { Coord ix = (D*dy) / (dr*dr); Coord iy = (-D*dx) / (dr*dr); Point ip(ix, iy); ip += _center; result.push_back(ShapeIntersection(timeAt(ip), l.timeAt(ip), ip)); return result; } Coord sqrt_delta = std::sqrt(delta); Coord signmod = dy < 0 ? -1 : 1; Coord i1x = (D*dy + signmod * dx * sqrt_delta) / (dr*dr); Coord i1y = (-D*dx + fabs(dy) * sqrt_delta) / (dr*dr); Point i1p(i1x, i1y); i1p += _center; Coord i2x = (D*dy - signmod * dx * sqrt_delta) / (dr*dr); Coord i2y = (-D*dx - fabs(dy) * sqrt_delta) / (dr*dr); Point i2p(i2x, i2y); i2p += _center; result.push_back(ShapeIntersection(timeAt(i1p), l.timeAt(i1p), i1p)); result.push_back(ShapeIntersection(timeAt(i2p), l.timeAt(i2p), i2p)); return result; } std::vector Circle::intersect(LineSegment const &l) const { std::vector result = intersect(Line(l)); filter_line_segment_intersections(result); return result; } std::vector Circle::intersect(Circle const &other) const { std::vector result; if (*this == other) { THROW_INFINITESOLUTIONS(); } if (contains(other)) return result; if (!intersects(other)) return result; // See e.g. http://mathworld.wolfram.com/Circle-CircleIntersection.html // Basically, we figure out where is the third point of a triangle // with two points in the centers and with edge lengths equal to radii Point cv = other._center - _center; Coord d = cv.length(); Coord R = radius(), r = other.radius(); if (d == R + r) { Point px = lerp(R / d, _center, other._center); Coord T = timeAt(px), t = other.timeAt(px); result.push_back(ShapeIntersection(T, t, px)); return result; } // q is the distance along the line between centers to the perpendicular line // that goes through both intersections. Coord q = (d*d - r*r + R*R) / (2*d); Point qp = lerp(q/d, _center, other._center); // The triangle given by the points: // _center, qp, intersection // is a right triangle. Determine the distance between qp and intersection // using the Pythagorean theorem. Coord h = std::sqrt(R*R - q*q); Point qd = (h/d) * cv.cw(); // now compute the intersection points Point x1 = qp + qd; Point x2 = qp - qd; result.push_back(ShapeIntersection(timeAt(x1), other.timeAt(x1), x1)); result.push_back(ShapeIntersection(timeAt(x2), other.timeAt(x2), x2)); return result; } /** @param inner a point whose angle with the circle center is inside the angle that the arc spans */ EllipticalArc * Circle::arc(Point const& initial, Point const& inner, Point const& final) const { // TODO native implementation! Ellipse e(_center[X], _center[Y], _radius, _radius, 0); return e.arc(initial, inner, final); } bool Circle::operator==(Circle const &other) const { if (_center != other._center) return false; if (_radius != other._radius) return false; return true; } D2 Circle::toSBasis() const { D2 B; Linear bo = Linear(0, 2 * M_PI); B[0] = cos(bo,4); B[1] = sin(bo,4); B = B * _radius + _center; return B; } void Circle::fit(std::vector const& points) { size_t sz = points.size(); if (sz < 2) { THROW_RANGEERROR("fitting error: too few points passed"); } if (sz == 2) { _center = points[0] * 0.5 + points[1] * 0.5; _radius = distance(points[0], points[1]) / 2; return; } NL::LFMCircle model; NL::least_squeares_fitter fitter(model, sz); for (size_t i = 0; i < sz; ++i) { fitter.append(points[i]); } fitter.update(); NL::Vector z(sz, 0.0); model.instance(*this, fitter.result(z)); } bool are_near(Circle const &a, Circle const &b, Coord eps) { // to check whether no point on a is further than eps from b, // we check two things: // 1. if radii differ by more than eps, there is definitely a point that fails // 2. if they differ by less, we check the centers. They have to be closer // together if the radius differs, since the maximum distance will be // equal to sum of radius difference and distance between centers. if (!are_near(a.radius(), b.radius(), eps)) return false; Coord adjusted_eps = eps - fabs(a.radius() - b.radius()); return are_near(a.center(), b.center(), adjusted_eps); } std::ostream &operator<<(std::ostream &out, Circle const &c) { out << "Circle(" << c.center() << ", " << format_coord_nice(c.radius()) << ")"; return out; } } // end namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :