/** @file * @brief Ellipse shape *//* * Authors: * Marco Cecchetti * Krzysztof KosiƄski * * Copyright 2008-2014 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/ellipse.h> #include <2geom/elliptical-arc.h> #include <2geom/numeric/fitting-tool.h> #include <2geom/numeric/fitting-model.h> namespace Geom { Ellipse::Ellipse(Geom::Circle const &c) : _center(c.center()) , _rays(c.radius(), c.radius()) , _angle(0) {} void Ellipse::setCoefficients(double A, double B, double C, double D, double E, double F) { double den = 4*A*C - B*B; if (den == 0) { THROW_RANGEERROR("den == 0, while computing ellipse centre"); } _center[X] = (B*E - 2*C*D) / den; _center[Y] = (B*D - 2*A*E) / den; // evaluate the a coefficient of the ellipse equation in normal form // E(x,y) = a*(x-cx)^2 + b*(x-cx)*(y-cy) + c*(y-cy)^2 = 1 // where b = a*B , c = a*C, (cx,cy) == centre double num = A * sqr(_center[X]) + B * _center[X] * _center[Y] + C * sqr(_center[Y]) - F; //evaluate ellipse rotation angle _angle = std::atan2( -B, -(A - C) )/2; // evaluate the length of the ellipse rays double sinrot, cosrot; sincos(_angle, sinrot, cosrot); double cos2 = cosrot * cosrot; double sin2 = sinrot * sinrot; double cossin = cosrot * sinrot; den = A * cos2 + B * cossin + C * sin2; if (den == 0) { THROW_RANGEERROR("den == 0, while computing 'rx' coefficient"); } double rx2 = num / den; if (rx2 < 0) { THROW_RANGEERROR("rx2 < 0, while computing 'rx' coefficient"); } _rays[X] = std::sqrt(rx2); den = C * cos2 - B * cossin + A * sin2; if (den == 0) { THROW_RANGEERROR("den == 0, while computing 'ry' coefficient"); } double ry2 = num / den; if (ry2 < 0) { THROW_RANGEERROR("ry2 < 0, while computing 'rx' coefficient"); } _rays[Y] = std::sqrt(ry2); // the solution is not unique so we choose always the ellipse // with a rotation angle between 0 and PI/2 makeCanonical(); } Point Ellipse::initialPoint() const { Coord sinrot, cosrot; sincos(_angle, sinrot, cosrot); Point p(ray(X) * cosrot + center(X), ray(X) * sinrot + center(Y)); return p; } Affine Ellipse::unitCircleTransform() const { Affine ret = Scale(ray(X), ray(Y)) * Rotate(_angle); ret.setTranslation(center()); return ret; } Affine Ellipse::inverseUnitCircleTransform() const { if (ray(X) == 0 || ray(Y) == 0) { THROW_RANGEERROR("a degenerate ellipse doesn't have an inverse unit circle transform"); } Affine ret = Translate(-center()) * Rotate(-_angle) * Scale(1/ray(X), 1/ray(Y)); return ret; } LineSegment Ellipse::axis(Dim2 d) const { Point a(0, 0), b(0, 0); a[d] = -1; b[d] = 1; LineSegment ls(a, b); ls.transform(unitCircleTransform()); return ls; } LineSegment Ellipse::semiaxis(Dim2 d, int sign) const { Point a(0, 0), b(0, 0); b[d] = sgn(sign); LineSegment ls(a, b); ls.transform(unitCircleTransform()); return ls; } Rect Ellipse::boundsExact() const { Angle extremes[2][2]; double sinrot, cosrot; sincos(_angle, sinrot, cosrot); extremes[X][0] = std::atan2( -ray(Y) * sinrot, ray(X) * cosrot ); extremes[X][1] = extremes[X][0] + M_PI; extremes[Y][0] = std::atan2( ray(Y) * cosrot, ray(X) * sinrot ); extremes[Y][1] = extremes[Y][0] + M_PI; Rect result; for (unsigned d = 0; d < 2; ++d) { result[d] = Interval(valueAt(extremes[d][0], d ? Y : X), valueAt(extremes[d][1], d ? Y : X)); } return result; } std::vector Ellipse::coefficients() const { std::vector c(6); coefficients(c[0], c[1], c[2], c[3], c[4], c[5]); return c; } void Ellipse::coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const { if (ray(X) == 0 || ray(Y) == 0) { THROW_RANGEERROR("a degenerate ellipse doesn't have an implicit form"); } double cosrot, sinrot; sincos(_angle, sinrot, cosrot); double cos2 = cosrot * cosrot; double sin2 = sinrot * sinrot; double cossin = cosrot * sinrot; double invrx2 = 1 / (ray(X) * ray(X)); double invry2 = 1 / (ray(Y) * ray(Y)); A = invrx2 * cos2 + invry2 * sin2; B = 2 * (invrx2 - invry2) * cossin; C = invrx2 * sin2 + invry2 * cos2; D = -2 * A * center(X) - B * center(Y); E = -2 * C * center(Y) - B * center(X); F = A * center(X) * center(X) + B * center(X) * center(Y) + C * center(Y) * center(Y) - 1; } void Ellipse::fit(std::vector const &points) { size_t sz = points.size(); if (sz < 5) { THROW_RANGEERROR("fitting error: too few points passed"); } NL::LFMEllipse model; NL::least_squeares_fitter fitter(model, sz); for (size_t i = 0; i < sz; ++i) { fitter.append(points[i]); } fitter.update(); NL::Vector z(sz, 0.0); model.instance(*this, fitter.result(z)); } EllipticalArc * Ellipse::arc(Point const &ip, Point const &inner, Point const &fp) { // This is resistant to degenerate ellipses: // both flags evaluate to false in that case. bool large_arc_flag = false; bool sweep_flag = false; // Determination of large arc flag: // large_arc is false when the inner point is on the same side // of the center---initial point line as the final point, AND // is on the same side of the center---final point line as the // initial point. // Additionally, large_arc is always false when we have exactly // 1/2 of an arc, i.e. the cross product of the center -> initial point // and center -> final point vectors is zero. // Negating the above leads to the condition for large_arc being true. Point fv = fp - _center; Point iv = ip - _center; Point innerv = inner - _center; double ifcp = cross(fv, iv); if (ifcp != 0 && (sgn(cross(fv, innerv)) != sgn(ifcp) || sgn(cross(iv, innerv)) != sgn(-ifcp))) { large_arc_flag = true; } //cross(-iv, fv) && large_arc_flag // Determination of sweep flag: // For clarity, let's assume that Y grows up. Then the cross product // is positive for points on the left side of a vector and negative // on the right side of a vector. // // cross(?, v) > 0 // o-------------------> // cross(?, v) < 0 // // If the arc is small (large_arc_flag is false) and the final point // is on the right side of the vector initial point -> center, // we have to go in the direction of increasing angles // (counter-clockwise) and the sweep flag is true. // If the arc is large, the opposite is true, since we have to reach // the final point going the long way - in the other direction. // We can express this observation as: // cross(_center - ip, fp - _center) < 0 xor large_arc flag // This is equal to: // cross(-iv, fv) < 0 xor large_arc flag // But cross(-iv, fv) is equal to cross(fv, iv) due to antisymmetry // of the cross product, so we end up with the condition below. if ((ifcp < 0) ^ large_arc_flag) { sweep_flag = true; } EllipticalArc *ret_arc = new EllipticalArc(ip, ray(X), ray(Y), rotationAngle(), large_arc_flag, sweep_flag, fp); return ret_arc; } Ellipse &Ellipse::operator*=(Rotate const &r) { _angle += r.angle(); _center *= r; return *this; } Ellipse &Ellipse::operator*=(Affine const& m) { Affine a = Scale(ray(X), ray(Y)) * Rotate(_angle); Affine mwot = m.withoutTranslation(); Affine am = a * mwot; Point new_center = _center * m; if (are_near(am.descrim(), 0)) { double angle; if (am[0] != 0) { angle = std::atan2(am[2], am[0]); } else if (am[1] != 0) { angle = std::atan2(am[3], am[1]); } else { angle = M_PI/2; } Point v = Point::polar(angle) * am; _center = new_center; _rays[X] = L2(v); _rays[Y] = 0; _angle = atan2(v); return *this; } else if (mwot.isScale(0) && _angle.radians() == 0) { _rays[X] = _rays[X] * mwot[0]; _rays[Y] = _rays[Y] * mwot[3]; _center = new_center; return *this; } std::vector coeff = coefficients(); Affine q( coeff[0], coeff[1]/2, coeff[1]/2, coeff[2], 0, 0 ); Affine invm = mwot.inverse(); q = invm * q ; std::swap(invm[1], invm[2]); q *= invm; setCoefficients(q[0], 2*q[1], q[3], 0, 0, -1); _center = new_center; return *this; } Ellipse Ellipse::canonicalForm() const { Ellipse result(*this); result.makeCanonical(); return result; } void Ellipse::makeCanonical() { if (_rays[X] == _rays[Y]) { _angle = 0; return; } if (_angle < 0) { _angle += M_PI; } if (_angle >= M_PI/2) { std::swap(_rays[X], _rays[Y]); _angle -= M_PI/2; } } Point Ellipse::pointAt(Coord t) const { Point p = Point::polar(t); p *= unitCircleTransform(); return p; } Coord Ellipse::valueAt(Coord t, Dim2 d) const { Coord sinrot, cosrot, cost, sint; sincos(rotationAngle(), sinrot, cosrot); sincos(t, sint, cost); if ( d == X ) { return ray(X) * cosrot * cost - ray(Y) * sinrot * sint + center(X); } else { return ray(X) * sinrot * cost + ray(Y) * cosrot * sint + center(Y); } } Coord Ellipse::timeAt(Point const &p) const { // degenerate ellipse is basically a reparametrized line segment if (ray(X) == 0 || ray(Y) == 0) { if (ray(X) != 0) { return asin(Line(axis(X)).timeAt(p)); } else if (ray(Y) != 0) { return acos(Line(axis(Y)).timeAt(p)); } else { return 0; } } Affine iuct = inverseUnitCircleTransform(); return Angle(atan2(p * iuct)).radians0(); // return a value in [0, 2pi) } Point Ellipse::unitTangentAt(Coord t) const { Point p = Point::polar(t + M_PI/2); p *= unitCircleTransform().withoutTranslation(); p.normalize(); return p; } bool Ellipse::contains(Point const &p) const { Point tp = p * inverseUnitCircleTransform(); return tp.length() <= 1; } std::vector Ellipse::intersect(Line const &line) const { std::vector result; if (line.isDegenerate()) return result; if (ray(X) == 0 || ray(Y) == 0) { // TODO intersect with line segment. return result; } // Ax^2 + Bxy + Cy^2 + Dx + Ey + F Coord A, B, C, D, E, F; coefficients(A, B, C, D, E, F); Affine iuct = inverseUnitCircleTransform(); // generic case Coord a, b, c; line.coefficients(a, b, c); Point lv = line.vector(); if (fabs(lv[X]) > fabs(lv[Y])) { // y = -a/b x - c/b Coord q = -a/b; Coord r = -c/b; // substitute that into the ellipse equation, making it quadratic in x Coord I = A + B*q + C*q*q; // x^2 terms Coord J = B*r + C*2*q*r + D + E*q; // x^1 terms Coord K = C*r*r + E*r + F; // x^0 terms std::vector xs = solve_quadratic(I, J, K); for (unsigned i = 0; i < xs.size(); ++i) { Point p(xs[i], q*xs[i] + r); result.push_back(ShapeIntersection(atan2(p * iuct), line.timeAt(p), p)); } } else { Coord q = -b/a; Coord r = -c/a; Coord I = A*q*q + B*q + C; Coord J = A*2*q*r + B*r + D*q + E; Coord K = A*r*r + D*r + F; std::vector xs = solve_quadratic(I, J, K); for (unsigned i = 0; i < xs.size(); ++i) { Point p(q*xs[i] + r, xs[i]); result.push_back(ShapeIntersection(atan2(p * iuct), line.timeAt(p), p)); } } return result; } std::vector Ellipse::intersect(LineSegment const &seg) const { // we simply re-use the procedure for lines and filter out // results where the line time value is outside of the unit interval. std::vector result = intersect(Line(seg)); filter_line_segment_intersections(result); return result; } std::vector Ellipse::intersect(Ellipse const &other) const { // handle degenerate cases first if (ray(X) == 0 || ray(Y) == 0) { } // intersection of two ellipses can be solved analytically. // http://maptools.home.comcast.net/~maptools/BivariateQuadratics.pdf Coord A, B, C, D, E, F; Coord a, b, c, d, e, f; // NOTE: the order of coefficients is different to match the convention in the PDF above // Ax^2 + Bx^2 + Cx + Dy + Exy + F this->coefficients(A, E, B, C, D, F); other.coefficients(a, e, b, c, d, f); // Assume that Q is the ellipse equation given by uppercase letters // and R is the equation given by lowercase ones. An intersection exists when // there is a coefficient mu such that // mu Q + R = 0 // // This can be written in the following way: // // | ff cc/2 dd/2 | |1| // mu Q + R = [1 x y] | cc/2 aa ee/2 | |x| = 0 // | dd/2 ee/2 bb | |y| // // where aa = mu A + a and so on. The determinant can be explicitly written out, // giving an equation which is cubic in mu and can be solved analytically. Coord I, J, K, L; I = (-E*E*F + 4*A*B*F + C*D*E - A*D*D - B*C*C) / 4; J = -((E*E - 4*A*B) * f + (2*E*F - C*D) * e + (2*A*D - C*E) * d + (2*B*C - D*E) * c + (C*C - 4*A*F) * b + (D*D - 4*B*F) * a) / 4; K = -((e*e - 4*a*b) * F + (2*e*f - c*d) * E + (2*a*d - c*e) * D + (2*b*c - d*e) * C + (c*c - 4*a*f) * B + (d*d - 4*b*f) * A) / 4; L = (-e*e*f + 4*a*b*f + c*d*e - a*d*d - b*c*c) / 4; std::vector mus = solve_cubic(I, J, K, L); Coord mu = infinity(); std::vector result; // Now that we have solved for mu, we need to check whether the conic // determined by mu Q + R is reducible to a product of two lines. If it's not, // it means that there are no intersections. If it is, the intersections of these // lines with the original ellipses (if there are any) give the coordinates // of intersections. // Prefer middle root if there are three. // Out of three possible pairs of lines that go through four points of intersection // of two ellipses, this corresponds to cross-lines. These intersect the ellipses // at less shallow angles than the other two options. if (mus.size() == 3) { std::swap(mus[1], mus[0]); } for (unsigned i = 0; i < mus.size(); ++i) { Coord aa = mus[i] * A + a; Coord bb = mus[i] * B + b; Coord ee = mus[i] * E + e; Coord delta = ee*ee - 4*aa*bb; if (delta < 0) continue; mu = mus[i]; break; } // if no suitable mu was found, there are no intersections if (mu == infinity()) return result; Coord aa = mu * A + a; Coord bb = mu * B + b; Coord cc = mu * C + c; Coord dd = mu * D + d; Coord ee = mu * E + e; Coord ff = mu * F + f; unsigned line_num = 0; Line lines[2]; if (aa != 0) { bb /= aa; cc /= aa; dd /= aa; ee /= aa; /*ff /= aa;*/ Coord s = (ee + std::sqrt(ee*ee - 4*bb)) / 2; Coord q = ee - s; Coord alpha = (dd - cc*q) / (s - q); Coord beta = cc - alpha; line_num = 2; lines[0] = Line(1, q, alpha); lines[1] = Line(1, s, beta); } else if (bb != 0) { cc /= bb; /*dd /= bb;*/ ee /= bb; ff /= bb; Coord s = ee; Coord q = 0; Coord alpha = cc / ee; Coord beta = ff * ee / cc; line_num = 2; lines[0] = Line(q, 1, alpha); lines[1] = Line(s, 1, beta); } else if (ee != 0) { line_num = 2; lines[0] = Line(ee, 0, dd); lines[1] = Line(0, 1, cc/ee); } else if (cc != 0 || dd != 0) { line_num = 1; lines[0] = Line(cc, dd, ff); } // intersect with the obtained lines and report intersections for (unsigned li = 0; li < line_num; ++li) { std::vector as = intersect(lines[li]); std::vector bs = other.intersect(lines[li]); if (!as.empty() && as.size() == bs.size()) { for (unsigned i = 0; i < as.size(); ++i) { ShapeIntersection ix(as[i].first, bs[i].first, middle_point(as[i].point(), bs[i].point())); result.push_back(ix); } } } return result; } std::vector Ellipse::intersect(D2 const &b) const { Coord A, B, C, D, E, F; coefficients(A, B, C, D, E, F); Bezier x = A*b[X]*b[X] + B*b[X]*b[Y] + C*b[Y]*b[Y] + D*b[X] + E*b[Y] + F; std::vector r = x.roots(); std::vector result; for (unsigned i = 0; i < r.size(); ++i) { Point p = b.valueAt(r[i]); result.push_back(ShapeIntersection(timeAt(p), r[i], p)); } return result; } bool Ellipse::operator==(Ellipse const &other) const { if (_center != other._center) return false; Ellipse a = this->canonicalForm(); Ellipse b = other.canonicalForm(); if (a._rays != b._rays) return false; if (a._angle != b._angle) return false; return true; } bool are_near(Ellipse const &a, Ellipse const &b, Coord precision) { // We want to know whether no point on ellipse a is further than precision // from the corresponding point on ellipse b. To check this, we compute // the four extreme points at the end of each ray for each ellipse // and check whether they are sufficiently close. // First, we need to correct the angles on the ellipses, so that they are // no further than M_PI/4 apart. This can always be done by rotating // and exchanging axes. Ellipse ac = a, bc = b; if (distance(ac.rotationAngle(), bc.rotationAngle()).radians0() >= M_PI/2) { ac.setRotationAngle(ac.rotationAngle() + M_PI); } if (distance(ac.rotationAngle(), bc.rotationAngle()) >= M_PI/4) { Angle d1 = distance(ac.rotationAngle() + M_PI/2, bc.rotationAngle()); Angle d2 = distance(ac.rotationAngle() - M_PI/2, bc.rotationAngle()); Coord adj = d1.radians0() < d2.radians0() ? M_PI/2 : -M_PI/2; ac.setRotationAngle(ac.rotationAngle() + adj); ac.setRays(ac.ray(Y), ac.ray(X)); } // Do the actual comparison by computing four points on each ellipse. Point tps[] = {Point(1,0), Point(0,1), Point(-1,0), Point(0,-1)}; for (unsigned i = 0; i < 4; ++i) { if (!are_near(tps[i] * ac.unitCircleTransform(), tps[i] * bc.unitCircleTransform(), precision)) return false; } return true; } std::ostream &operator<<(std::ostream &out, Ellipse const &e) { out << "Ellipse(" << e.center() << ", " << e.rays() << ", " << format_coord_nice(e.rotationAngle()) << ")"; return out; } } // end namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :