/** @file * @brief Ellipse shape *//* * Authors: * Marco Cecchetti * Krzysztof KosiƄski * * Copyright 2008 authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #ifndef LIB2GEOM_SEEN_ELLIPSE_H #define LIB2GEOM_SEEN_ELLIPSE_H #include #include <2geom/angle.h> #include <2geom/bezier-curve.h> #include <2geom/exception.h> #include <2geom/forward.h> #include <2geom/line.h> #include <2geom/transforms.h> namespace Geom { class EllipticalArc; class Circle; /** @brief Set of points with a constant sum of distances from two foci. * * An ellipse can be specified in several ways. Internally, 2Geom uses * the SVG style representation: center, rays and angle between the +X ray * and the +X axis. Another popular way is to use an implicit equation, * which is as follows: * \f$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0\f$ * * @ingroup Shapes */ class Ellipse : boost::multipliable< Ellipse, Translate , boost::multipliable< Ellipse, Scale , boost::multipliable< Ellipse, Rotate , boost::multipliable< Ellipse, Zoom , boost::multipliable< Ellipse, Affine , boost::equality_comparable< Ellipse > > > > > > { Point _center; Point _rays; Angle _angle; public: Ellipse() {} Ellipse(Point const &c, Point const &r, Coord angle) : _center(c) , _rays(r) , _angle(angle) {} Ellipse(Coord cx, Coord cy, Coord rx, Coord ry, Coord angle) : _center(cx, cy) , _rays(rx, ry) , _angle(angle) {} Ellipse(double A, double B, double C, double D, double E, double F) { setCoefficients(A, B, C, D, E, F); } /// Construct ellipse from a circle. Ellipse(Geom::Circle const &c); /// Set center, rays and angle. void set(Point const &c, Point const &r, Coord angle) { _center = c; _rays = r; _angle = angle; } /// Set center, rays and angle as constituent values. void set(Coord cx, Coord cy, Coord rx, Coord ry, Coord a) { _center[X] = cx; _center[Y] = cy; _rays[X] = rx; _rays[Y] = ry; _angle = a; } /// Set an ellipse by solving its implicit equation. void setCoefficients(double A, double B, double C, double D, double E, double F); /// Set the center. void setCenter(Point const &p) { _center = p; } /// Set the center by coordinates. void setCenter(Coord cx, Coord cy) { _center[X] = cx; _center[Y] = cy; } /// Set both rays of the ellipse. void setRays(Point const &p) { _rays = p; } /// Set both rays of the ellipse as coordinates. void setRays(Coord x, Coord y) { _rays[X] = x; _rays[Y] = y; } /// Set one of the rays of the ellipse. void setRay(Coord r, Dim2 d) { _rays[d] = r; } /// Set the angle the X ray makes with the +X axis. void setRotationAngle(Angle a) { _angle = a; } Point center() const { return _center; } Coord center(Dim2 d) const { return _center[d]; } /// Get both rays as a point. Point rays() const { return _rays; } /// Get one ray of the ellipse. Coord ray(Dim2 d) const { return _rays[d]; } /// Get the angle the X ray makes with the +X axis. Angle rotationAngle() const { return _angle; } /// Get the point corresponding to the +X ray of the ellipse. Point initialPoint() const; /// Get the point corresponding to the +X ray of the ellipse. Point finalPoint() const { return initialPoint(); } /** @brief Create an ellipse passing through the specified points * At least five points have to be specified. */ void fit(std::vector const& points); /** @brief Create an elliptical arc from a section of the ellipse. * This is mainly useful to determine the flags of the new arc. * The passed points should lie on the ellipse, otherwise the results * will be undefined. * @param ip Initial point of the arc * @param inner Point in the middle of the arc, used to pick one of two possibilities * @param fp Final point of the arc * @return Newly allocated arc, delete when no longer used */ EllipticalArc *arc(Point const &ip, Point const &inner, Point const &fp); /** @brief Return an ellipse with less degrees of freedom. * The canonical form always has the angle less than \f$\frac{\pi}{2}\f$, * and zero if the rays are equal (i.e. the ellipse is a circle). */ Ellipse canonicalForm() const; void makeCanonical(); /** @brief Compute the transform that maps the unit circle to this ellipse. * Each ellipse can be interpreted as a translated, scaled and rotate unit circle. * This function returns the transform that maps the unit circle to this ellipse. * @return Transform from unit circle to the ellipse */ Affine unitCircleTransform() const; /** @brief Compute the transform that maps this ellipse to the unit circle. * This may be a little more precise and/or faster than simply using * unitCircleTransform().inverse(). An exception will be thrown for * degenerate ellipses. */ Affine inverseUnitCircleTransform() const; LineSegment majorAxis() const { return ray(X) >= ray(Y) ? axis(X) : axis(Y); } LineSegment minorAxis() const { return ray(X) < ray(Y) ? axis(X) : axis(Y); } LineSegment semimajorAxis(int sign = 1) const { return ray(X) >= ray(Y) ? semiaxis(X, sign) : semiaxis(Y, sign); } LineSegment semiminorAxis(int sign = 1) const { return ray(X) < ray(Y) ? semiaxis(X, sign) : semiaxis(Y, sign); } LineSegment axis(Dim2 d) const; LineSegment semiaxis(Dim2 d, int sign = 1) const; /// Get the tight-fitting bounding box of the ellipse. Rect boundsExact() const; /// Get the coefficients of the ellipse's implicit equation. std::vector coefficients() const; void coefficients(Coord &A, Coord &B, Coord &C, Coord &D, Coord &E, Coord &F) const; /** @brief Evaluate a point on the ellipse. * The parameter range is \f$[0, 2\pi)\f$; larger and smaller values * wrap around. */ Point pointAt(Coord t) const; /// Evaluate a single coordinate of a point on the ellipse. Coord valueAt(Coord t, Dim2 d) const; /** @brief Find the time value of a point on an ellipse. * If the point is not on the ellipse, the returned time value will correspond * to an intersection with a ray from the origin passing through the point * with the ellipse. Note that this is NOT the nearest point on the ellipse. */ Coord timeAt(Point const &p) const; /// Get the value of the derivative at time t normalized to unit length. Point unitTangentAt(Coord t) const; /// Check whether the ellipse contains the given point. bool contains(Point const &p) const; /// Compute intersections with an infinite line. std::vector intersect(Line const &line) const; /// Compute intersections with a line segment. std::vector intersect(LineSegment const &seg) const; /// Compute intersections with another ellipse. std::vector intersect(Ellipse const &other) const; /// Compute intersections with a 2D Bezier polynomial. std::vector intersect(D2 const &other) const; Ellipse &operator*=(Translate const &t) { _center *= t; return *this; } Ellipse &operator*=(Scale const &s) { _center *= s; _rays *= s; return *this; } Ellipse &operator*=(Zoom const &z) { _center *= z; _rays *= z.scale(); return *this; } Ellipse &operator*=(Rotate const &r); Ellipse &operator*=(Affine const &m); /// Compare ellipses for exact equality. bool operator==(Ellipse const &other) const; }; /** @brief Test whether two ellipses are approximately the same. * This will check whether no point on ellipse a is further away from * the corresponding point on ellipse b than precision. * @relates Ellipse */ bool are_near(Ellipse const &a, Ellipse const &b, Coord precision = EPSILON); /** @brief Outputs ellipse data, useful for debugging. * @relates Ellipse */ std::ostream &operator<<(std::ostream &out, Ellipse const &e); } // end namespace Geom #endif // LIB2GEOM_SEEN_ELLIPSE_H /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :