/** * \brief Various geometrical calculations. */ #include <2geom/geom.h> #include <2geom/point.h> #include #include <2geom/rect.h> using std::swap; namespace Geom { enum IntersectorKind { intersects = 0, parallel, coincident, no_intersection }; /** * Finds the intersection of the two (infinite) lines * defined by the points p such that dot(n0, p) == d0 and dot(n1, p) == d1. * * If the two lines intersect, then \a result becomes their point of * intersection; otherwise, \a result remains unchanged. * * This function finds the intersection of the two lines (infinite) * defined by n0.X = d0 and x1.X = d1. The algorithm is as follows: * To compute the intersection point use kramer's rule: * \verbatim * convert lines to form * ax + by = c * dx + ey = f * * ( * e.g. a = (x2 - x1), b = (y2 - y1), c = (x2 - x1)*x1 + (y2 - y1)*y1 * ) * * In our case we use: * a = n0.x d = n1.x * b = n0.y e = n1.y * c = d0 f = d1 * * so: * * adx + bdy = cd * adx + aey = af * * bdy - aey = cd - af * (bd - ae)y = cd - af * * y = (cd - af)/(bd - ae) * * repeat for x and you get: * * x = (fb - ce)/(bd - ae) \endverbatim * * If the denominator (bd-ae) is 0 then the lines are parallel, if the * numerators are 0 then the lines coincide. * * \todo Why not use existing but outcommented code below * (HAVE_NEW_INTERSECTOR_CODE)? */ IntersectorKind line_intersection(Geom::Point const &n0, double const d0, Geom::Point const &n1, double const d1, Geom::Point &result) { double denominator = dot(Geom::rot90(n0), n1); double X = n1[Geom::Y] * d0 - n0[Geom::Y] * d1; /* X = (-d1, d0) dot (n0[Y], n1[Y]) */ if (denominator == 0) { if ( X == 0 ) { return coincident; } else { return parallel; } } double Y = n0[Geom::X] * d1 - n1[Geom::X] * d0; result = Geom::Point(X, Y) / denominator; return intersects; } /* ccw exists as a building block */ int intersector_ccw(const Geom::Point& p0, const Geom::Point& p1, const Geom::Point& p2) /* Determine which way a set of three points winds. */ { Geom::Point d1 = p1 - p0; Geom::Point d2 = p2 - p0; /* compare slopes but avoid division operation */ double c = dot(Geom::rot90(d1), d2); if(c > 0) return +1; // ccw - do these match def'n in header? if(c < 0) return -1; // cw /* Colinear [or NaN]. Decide the order. */ if ( ( d1[0] * d2[0] < 0 ) || ( d1[1] * d2[1] < 0 ) ) { return -1; // p2 < p0 < p1 } else if ( dot(d1,d1) < dot(d2,d2) ) { return +1; // p0 <= p1 < p2 } else { return 0; // p0 <= p2 <= p1 } } /** Determine whether the line segment from p00 to p01 intersects the infinite line passing through p10 and p11. This doesn't find the point of intersection, use the line_intersect function above, or the segment_intersection interface below. \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. */ bool line_segment_intersectp(Geom::Point const &p00, Geom::Point const &p01, Geom::Point const &p10, Geom::Point const &p11) { if(p00 == p01) return false; if(p10 == p11) return false; return ((intersector_ccw(p00, p01, p10) * intersector_ccw(p00, p01, p11)) <= 0 ); } /** Determine whether two line segments intersect. This doesn't find the point of intersection, use the line_intersect function above, or the segment_intersection interface below. \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. */ bool segment_intersectp(Geom::Point const &p00, Geom::Point const &p01, Geom::Point const &p10, Geom::Point const &p11) { if(p00 == p01) return false; if(p10 == p11) return false; /* true iff ( (the p1 segment straddles the p0 infinite line) * and (the p0 segment straddles the p1 infinite line) ). */ return (line_segment_intersectp(p00, p01, p10, p11) && line_segment_intersectp(p10, p11, p00, p01)); } /** Determine whether \& where a line segments intersects an (infinite) line. If there is no intersection, then \a result remains unchanged. \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. **/ IntersectorKind line_segment_intersect(Geom::Point const &p00, Geom::Point const &p01, Geom::Point const &p10, Geom::Point const &p11, Geom::Point &result) { if(line_segment_intersectp(p00, p01, p10, p11)) { Geom::Point n0 = (p01 - p00).ccw(); double d0 = dot(n0,p00); Geom::Point n1 = (p11 - p10).ccw(); double d1 = dot(n1,p10); return line_intersection(n0, d0, n1, d1, result); } else { return no_intersection; } } /** Determine whether \& where two line segments intersect. If the two segments don't intersect, then \a result remains unchanged. \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. **/ IntersectorKind segment_intersect(Geom::Point const &p00, Geom::Point const &p01, Geom::Point const &p10, Geom::Point const &p11, Geom::Point &result) { if(segment_intersectp(p00, p01, p10, p11)) { Geom::Point n0 = (p01 - p00).ccw(); double d0 = dot(n0,p00); Geom::Point n1 = (p11 - p10).ccw(); double d1 = dot(n1,p10); return line_intersection(n0, d0, n1, d1, result); } else { return no_intersection; } } /** Determine whether \& where two line segments intersect. If the two segments don't intersect, then \a result remains unchanged. \pre neither segment is zero-length; i.e. p00 != p01 and p10 != p11. **/ IntersectorKind line_twopoint_intersect(Geom::Point const &p00, Geom::Point const &p01, Geom::Point const &p10, Geom::Point const &p11, Geom::Point &result) { Geom::Point n0 = (p01 - p00).ccw(); double d0 = dot(n0,p00); Geom::Point n1 = (p11 - p10).ccw(); double d1 = dot(n1,p10); return line_intersection(n0, d0, n1, d1, result); } // this is used to compare points for std::sort below static bool is_less(Point const &A, Point const &B) { if (A[X] < B[X]) { return true; } else if (A[X] == B[X] && A[Y] < B[Y]) { return true; } else { return false; } } // TODO: this can doubtlessly be improved static void eliminate_duplicates_p(std::vector &pts) { unsigned int size = pts.size(); if (size < 2) return; if (size == 2) { if (pts[0] == pts[1]) { pts.pop_back(); } } else { std::sort(pts.begin(), pts.end(), &is_less); if (size == 3) { if (pts[0] == pts[1]) { pts.erase(pts.begin()); } else if (pts[1] == pts[2]) { pts.pop_back(); } } else { // we have size == 4 if (pts[2] == pts[3]) { pts.pop_back(); } if (pts[0] == pts[1]) { pts.erase(pts.begin()); } } } } /** Determine whether \& where an (infinite) line intersects a rectangle. * * \a c0, \a c1 are diagonal corners of the rectangle and * \a p1, \a p1 are distinct points on the line * * \return A list (possibly empty) of points of intersection. If two such points (say \a r0 and \a * r1) then it is guaranteed that the order of \a r0, \a r1 along the line is the same as the that * of \a c0, \a c1 (i.e., the vectors \a r1 - \a r0 and \a p1 - \a p0 point into the same * direction). */ std::vector rect_line_intersect(Geom::Point const &c0, Geom::Point const &c1, Geom::Point const &p0, Geom::Point const &p1) { using namespace Geom; std::vector results; Point A(c0); Point C(c1); Point B(A[X], C[Y]); Point D(C[X], A[Y]); Point res; if (line_segment_intersect(p0, p1, A, B, res) == intersects) { results.push_back(res); } if (line_segment_intersect(p0, p1, B, C, res) == intersects) { results.push_back(res); } if (line_segment_intersect(p0, p1, C, D, res) == intersects) { results.push_back(res); } if (line_segment_intersect(p0, p1, D, A, res) == intersects) { results.push_back(res); } eliminate_duplicates_p(results); if (results.size() == 2) { // sort the results so that the order is the same as that of p0 and p1 Point dir1 (results[1] - results[0]); Point dir2 (p1 - p0); if (dot(dir1, dir2) < 0) { swap(results[0], results[1]); } } return results; } /** Determine whether \& where an (infinite) line intersects a rectangle. * * \a c0, \a c1 are diagonal corners of the rectangle and * \a p1, \a p1 are distinct points on the line * * \return A list (possibly empty) of points of intersection. If two such points (say \a r0 and \a * r1) then it is guaranteed that the order of \a r0, \a r1 along the line is the same as the that * of \a c0, \a c1 (i.e., the vectors \a r1 - \a r0 and \a p1 - \a p0 point into the same * direction). */ boost::optional rect_line_intersect(Geom::Rect &r, Geom::LineSegment ls) { std::vector results; results = rect_line_intersect(r.min(), r.max(), ls[0], ls[1]); if(results.size() == 2) { return LineSegment(results[0], results[1]); } return boost::optional(); } boost::optional rect_line_intersect(Geom::Rect &r, Geom::Line l) { return rect_line_intersect(r, l.segment(0, 1)); } /** * polyCentroid: Calculates the centroid (xCentroid, yCentroid) and area of a polygon, given its * vertices (x[0], y[0]) ... (x[n-1], y[n-1]). It is assumed that the contour is closed, i.e., that * the vertex following (x[n-1], y[n-1]) is (x[0], y[0]). The algebraic sign of the area is * positive for counterclockwise ordering of vertices in x-y plane; otherwise negative. * Returned values: 0 for normal execution; 1 if the polygon is degenerate (number of vertices < 3); 2 if area = 0 (and the centroid is undefined). * for now we require the path to be a polyline and assume it is closed. **/ int centroid(std::vector const &p, Geom::Point& centroid, double &area) { const unsigned n = p.size(); if (n < 3) return 1; Geom::Point centroid_tmp(0,0); double atmp = 0; for (unsigned i = n-1, j = 0; j < n; i = j, j++) { const double ai = cross(p[j], p[i]); atmp += ai; centroid_tmp += (p[j] + p[i])*ai; // first moment. } area = atmp / 2; if (atmp != 0) { centroid = centroid_tmp / (3 * atmp); return 0; } return 2; } } /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :