/** * \file * \brief Cartesian point / 2D vector and related operations *//* * Authors: * Michael G. Sloan * Nathan Hurst * Krzysztof KosiƄski * * Copyright (C) 2006-2009 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include #include #include <2geom/angle.h> #include <2geom/coord.h> #include <2geom/point.h> #include <2geom/transforms.h> namespace Geom { /** * @class Point * @brief Two-dimensional point that doubles as a vector. * * Points in 2Geom are represented in Cartesian coordinates, e.g. as a pair of numbers * that store the X and Y coordinates. Each point is also a vector in \f$\mathbb{R}^2\f$ * from the origin (point at 0,0) to the stored coordinates, * and has methods implementing several vector operations (like length()). * * @section OpNotePoint Operator note * * Most operators are provided by Boost operator helpers, so they are not visible in this class. * If @a p, @a q, @a r denote points, @a s a floating-point scalar, and @a m a transformation matrix, * then the following operations are available: * @code p += q; p -= q; r = p + q; r = p - q; p *= s; p /= s; q = p * s; q = s * p; q = p / s; p *= m; q = p * m; q = m * p; @endcode * It is possible to left-multiply a point by a matrix, even though mathematically speaking * this is undefined. The result is a point identical to that obtained by right-multiplying. * * @ingroup Primitives */ Point Point::polar(Coord angle) { Point ret; Coord remainder = Angle(angle).radians0(); if (are_near(remainder, 0) || are_near(remainder, 2*M_PI)) { ret[X] = 1; ret[Y] = 0; } else if (are_near(remainder, M_PI/2)) { ret[X] = 0; ret[Y] = 1; } else if (are_near(remainder, M_PI)) { ret[X] = -1; ret[Y] = 0; } else if (are_near(remainder, 3*M_PI/2)) { ret[X] = 0; ret[Y] = -1; } else { sincos(angle, ret[Y], ret[X]); } return ret; } /** @brief Normalize the vector representing the point. * After this method returns, the length of the vector will be 1 (unless both coordinates are * zero - the zero point will be returned then). The function tries to handle infinite * coordinates gracefully. If any of the coordinates are NaN, the function will do nothing. * @post \f$-\epsilon < \left|this\right| - 1 < \epsilon\f$ * @see unit_vector(Geom::Point const &) */ void Point::normalize() { double len = hypot(_pt[0], _pt[1]); if(len == 0) return; if(std::isnan(len)) return; static double const inf = HUGE_VAL; if(len != inf) { *this /= len; } else { unsigned n_inf_coords = 0; /* Delay updating pt in case neither coord is infinite. */ Point tmp; for ( unsigned i = 0 ; i < 2 ; ++i ) { if ( _pt[i] == inf ) { ++n_inf_coords; tmp[i] = 1.0; } else if ( _pt[i] == -inf ) { ++n_inf_coords; tmp[i] = -1.0; } else { tmp[i] = 0.0; } } switch (n_inf_coords) { case 0: { /* Can happen if both coords are near +/-DBL_MAX. */ *this /= 4.0; len = hypot(_pt[0], _pt[1]); assert(len != inf); *this /= len; break; } case 1: { *this = tmp; break; } case 2: { *this = tmp * sqrt(0.5); break; } } } } /** @brief Compute the first norm (Manhattan distance) of @a p. * This is equal to the sum of absolutes values of the coordinates. * @return \f$|p_X| + |p_Y|\f$ * @relates Point */ Coord L1(Point const &p) { Coord d = 0; for ( int i = 0 ; i < 2 ; i++ ) { d += fabs(p[i]); } return d; } /** @brief Compute the infinity norm (maximum norm) of @a p. * @return \f$\max(|p_X|, |p_Y|)\f$ * @relates Point */ Coord LInfty(Point const &p) { Coord const a(fabs(p[0])); Coord const b(fabs(p[1])); return ( a < b || std::isnan(b) ? b : a ); } /** @brief True if the point has both coordinates zero. * NaNs are treated as not equal to zero. * @relates Point */ bool is_zero(Point const &p) { return ( p[0] == 0 && p[1] == 0 ); } /** @brief True if the point has a length near 1. The are_near() function is used. * @relates Point */ bool is_unit_vector(Point const &p, Coord eps) { return are_near(L2(p), 1.0, eps); } /** @brief Return the angle between the point and the +X axis. * @return Angle in \f$(-\pi, \pi]\f$. * @relates Point */ Coord atan2(Point const &p) { return std::atan2(p[Y], p[X]); } /** @brief Compute the angle between a and b relative to the origin. * The computation is done by projecting b onto the basis defined by a, rot90(a). * @return Angle in \f$(-\pi, \pi]\f$. * @relates Point */ Coord angle_between(Point const &a, Point const &b) { return std::atan2(cross(a,b), dot(a,b)); } /** @brief Create a normalized version of a point. * This is equivalent to copying the point and calling its normalize() method. * The returned point will be (0,0) if the argument has both coordinates equal to zero. * If any coordinate is NaN, this function will do nothing. * @param a Input point * @return Point on the unit circle in the same direction from origin as a, or the origin * if a has both coordinates equal to zero * @relates Point */ Point unit_vector(Point const &a) { Point ret(a); ret.normalize(); return ret; } /** @brief Return the "absolute value" of the point's vector. * This is defined in terms of the default lexicographical ordering. If the point is "larger" * that the origin (0, 0), its negation is returned. You can check whether * the points' vectors have the same direction (e.g. lie * on the same line passing through the origin) using * @code abs(a).normalize() == abs(b).normalize() @endcode * To check with some margin of error, use * @code are_near(abs(a).normalize(), abs(b).normalize()) @endcode * Although naively this should take the absolute value of each coordinate, such an operation * is not very useful. * @relates Point */ Point abs(Point const &b) { Point ret; if (b[Y] < 0.0) { ret = -b; } else if (b[Y] == 0.0) { ret = b[X] < 0.0 ? -b : b; } else { ret = b; } return ret; } /** @brief Transform the point by the specified matrix. */ Point &Point::operator*=(Affine const &m) { double x = _pt[X], y = _pt[Y]; for(int i = 0; i < 2; i++) { _pt[i] = x * m[i] + y * m[i + 2] + m[i + 4]; } return *this; } /** @brief Snap the angle B - A - dir to multiples of \f$2\pi/n\f$. * The 'dir' argument must be normalized (have unit length), otherwise the result * is undefined. * @return Point with the same distance from A as B, with a snapped angle. * @post distance(A, B) == distance(A, result) * @post angle_between(result - A, dir) == \f$2k\pi/n, k \in \mathbb{N}\f$ * @relates Point */ Point constrain_angle(Point const &A, Point const &B, unsigned int n, Point const &dir) { // for special cases we could perhaps use explicit testing (which might be faster) if (n == 0.0) { return B; } Point diff(B - A); double angle = -angle_between(diff, dir); double k = round(angle * (double)n / (2.0*M_PI)); return A + dir * Rotate(k * 2.0 * M_PI / (double)n) * L2(diff); } std::ostream &operator<<(std::ostream &out, const Geom::Point &p) { out << "(" << format_coord_nice(p[X]) << ", " << format_coord_nice(p[Y]) << ")"; return out; } } // end namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :