/* Axis-aligned rectangle * * Authors: * Michael Sloan * Krzysztof KosiƄski * Copyright 2007-2011 Authors * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. */ #include <2geom/rect.h> #include <2geom/transforms.h> namespace Geom { Point align_factors(Align g) { Point p; switch (g) { case ALIGN_XMIN_YMIN: p[X] = 0.0; p[Y] = 0.0; break; case ALIGN_XMID_YMIN: p[X] = 0.5; p[Y] = 0.0; break; case ALIGN_XMAX_YMIN: p[X] = 1.0; p[Y] = 0.0; break; case ALIGN_XMIN_YMID: p[X] = 0.0; p[Y] = 0.5; break; case ALIGN_XMID_YMID: p[X] = 0.5; p[Y] = 0.5; break; case ALIGN_XMAX_YMID: p[X] = 1.0; p[Y] = 0.5; break; case ALIGN_XMIN_YMAX: p[X] = 0.0; p[Y] = 1.0; break; case ALIGN_XMID_YMAX: p[X] = 0.5; p[Y] = 1.0; break; case ALIGN_XMAX_YMAX: p[X] = 1.0; p[Y] = 1.0; break; default: break; } return p; } /** @brief Transform the rectangle by an affine. * The result of the transformation might not be axis-aligned. The return value * of this operation will be the smallest axis-aligned rectangle containing * all points of the true result. */ Rect &Rect::operator*=(Affine const &m) { Point pts[4]; for (unsigned i=0; i<4; ++i) pts[i] = corner(i) * m; Coord minx = std::min(std::min(pts[0][X], pts[1][X]), std::min(pts[2][X], pts[3][X])); Coord miny = std::min(std::min(pts[0][Y], pts[1][Y]), std::min(pts[2][Y], pts[3][Y])); Coord maxx = std::max(std::max(pts[0][X], pts[1][X]), std::max(pts[2][X], pts[3][X])); Coord maxy = std::max(std::max(pts[0][Y], pts[1][Y]), std::max(pts[2][Y], pts[3][Y])); f[X].setMin(minx); f[X].setMax(maxx); f[Y].setMin(miny); f[Y].setMax(maxy); return *this; } Affine Rect::transformTo(Rect const &viewport, Aspect const &aspect) const { // 1. translate viewbox to origin Geom::Affine total = Translate(-min()); // 2. compute scale Geom::Point vdims = viewport.dimensions(); Geom::Point dims = dimensions(); Geom::Scale scale(vdims[X] / dims[X], vdims[Y] / dims[Y]); if (aspect.align == ALIGN_NONE) { // apply non-uniform scale total *= scale * Translate(viewport.min()); } else { double uscale = 0; if (aspect.expansion == EXPANSION_MEET) { uscale = std::min(scale[X], scale[Y]); } else { uscale = std::max(scale[X], scale[Y]); } scale = Scale(uscale); // compute offset for align Geom::Point offset = vdims - dims * scale; offset *= Scale(align_factors(aspect.align)); total *= scale * Translate(viewport.min() + offset); } return total; } Coord distanceSq(Point const &p, Rect const &rect) { double dx = 0, dy = 0; if ( p[X] < rect.left() ) { dx = p[X] - rect.left(); } else if ( p[X] > rect.right() ) { dx = rect.right() - p[X]; } if (p[Y] < rect.top() ) { dy = rect.top() - p[Y]; } else if ( p[Y] > rect.bottom() ) { dy = p[Y] - rect.bottom(); } return dx*dx+dy*dy; } /** @brief Returns the smallest distance between p and rect. * @relates Rect */ Coord distance(Point const &p, Rect const &rect) { // copy of distanceSq, because we need to use hypot() double dx = 0, dy = 0; if ( p[X] < rect.left() ) { dx = p[X] - rect.left(); } else if ( p[X] > rect.right() ) { dx = rect.right() - p[X]; } if (p[Y] < rect.top() ) { dy = rect.top() - p[Y]; } else if ( p[Y] > rect.bottom() ) { dy = p[Y] - rect.bottom(); } return hypot(dx, dy); } Coord distanceSq(Point const &p, OptRect const &rect) { if (!rect) return std::numeric_limits::max(); return distanceSq(p, *rect); } Coord distance(Point const &p, OptRect const &rect) { if (!rect) return std::numeric_limits::max(); return distance(p, *rect); } } // namespace Geom /* Local Variables: mode:c++ c-file-style:"stroustrup" c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +)) indent-tabs-mode:nil fill-column:99 End: */ // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :