// SPDX-License-Identifier: GPL-2.0-or-later /* * Boolean operation live path effect * * Copyright (C) 2016-2017 Michael Soegtrop * * Released under GNU GPL v2+, read the file 'COPYING' for more information. */ #include #include #include #include #include "live_effects/lpe-bool.h" #include "2geom/affine.h" #include "2geom/bezier-curve.h" #include "2geom/path-sink.h" #include "2geom/path.h" #include "2geom/svg-path-parser.h" #include "display/curve.h" #include "object/sp-shape.h" #include "seltrans.h" #include "svg/svg.h" #include "ui/tools/select-tool.h" #include "helper/geom.h" #include "splivarot.h" #include "livarot/Path.h" #include "livarot/Shape.h" #include "livarot/path-description.h" namespace Inkscape { namespace LivePathEffect { // Define an extended boolean operation type static const Util::EnumData BoolOpData[LPEBool::bool_op_ex_count] = { { LPEBool::bool_op_ex_union, N_("union"), "union" }, { LPEBool::bool_op_ex_inters, N_("intersection"), "inters" }, { LPEBool::bool_op_ex_diff, N_("difference"), "diff" }, { LPEBool::bool_op_ex_symdiff, N_("symmetric difference"), "symdiff" }, { LPEBool::bool_op_ex_cut, N_("division"), "cut" }, // Note on naming of operations: // bool_op_cut is called "Division" in the manu, see sp_selected_path_cut // bool_op_slice is called "Cut path" in the menu, see sp_selected_path_slice { LPEBool::bool_op_ex_slice, N_("cut"), "slice" }, { LPEBool::bool_op_ex_slice_inside, N_("cut inside"), "slice-inside" }, { LPEBool::bool_op_ex_slice_outside, N_("cut outside"), "slice-outside" }, }; static const Util::EnumDataConverter BoolOpConverter(BoolOpData, sizeof(BoolOpData) / sizeof(*BoolOpData)); static const Util::EnumData FillTypeData[] = { { fill_oddEven, N_("even-odd"), "oddeven" }, { fill_nonZero, N_("non-zero"), "nonzero" }, { fill_positive, N_("positive"), "positive" }, { fill_justDont, N_("take from object"), "from-curve" } }; static const Util::EnumDataConverter FillTypeConverter(FillTypeData, sizeof(FillTypeData) / sizeof(*FillTypeData)); static const Util::EnumData FillTypeDataThis[] = { { fill_oddEven, N_("even-odd"), "oddeven" }, { fill_nonZero, N_("non-zero"), "nonzero" }, { fill_positive, N_("positive"), "positive" } }; static const Util::EnumDataConverter FillTypeConverterThis(FillTypeDataThis, sizeof(FillTypeDataThis) / sizeof(*FillTypeDataThis)); LPEBool::LPEBool(LivePathEffectObject *lpeobject) : Effect(lpeobject) , operand_path(_("Operand path:"), _("Operand for the boolean operation"), "operand-path", &wr, this) , bool_operation(_("Operation:"), _("Boolean Operation"), "operation", BoolOpConverter, &wr, this, bool_op_ex_union) , swap_operands(_("Swap operands"), _("Swap operands (useful e.g. for difference)"), "swap-operands", &wr, this) , hide_linked(_("Hide Linked"), _("Hide linked path"), "hide-linked", &wr, this, true) , rmv_inner( _("Remove inner"), _("For cut operations: remove inner (non-contour) lines of cutting path to avoid invisible extra points"), "rmv-inner", &wr, this) , fill_type_this(_("Fill type this:"), _("Fill type (winding mode) for this path"), "filltype-this", FillTypeConverterThis, &wr, this, fill_oddEven) , fill_type_operand(_("Fill type operand:"), _("Fill type (winding mode) for operand path"), "filltype-operand", FillTypeConverter, &wr, this, fill_justDont) { registerParameter(&operand_path); registerParameter(&bool_operation); registerParameter(&swap_operands); registerParameter(&hide_linked); registerParameter(&rmv_inner); registerParameter(&fill_type_this); registerParameter(&fill_type_operand); show_orig_path = true; operand = dynamic_cast(operand_path.getObject()); contdown = 0; } LPEBool::~LPEBool() = default; void LPEBool::resetDefaults(SPItem const * /*item*/) { } bool cmp_cut_position(const Path::cut_position &a, const Path::cut_position &b) { return a.piece == b.piece ? a.t < b.t : a.piece < b.piece; } Geom::PathVector sp_pathvector_boolop_slice_intersect(Geom::PathVector const &pathva, Geom::PathVector const &pathvb, bool inside, fill_typ fra, fill_typ frb) { // This is similar to sp_pathvector_boolop/bool_op_slice, but keeps only edges inside the cutter area. // The code is also based on sp_pathvector_boolop_slice. // // We have two paths on input // - a closed area which is used to cut out pieces from a contour (called area below) // - a contour which is cut into pieces by the border of thr area (called contour below) // // The code below works in the following steps // (a) Convert the area to a shape, so that we can ask the winding number for any point // (b) Add both, the contour and the area to a single shape and intersect them // (c) Find the intersection points between area border and contour (vector toCut) // (d) Split the original contour at the intersection points // (e) check for each contour edge in combined shape if its center is inside the area - if not discard it // (f) create a vector of all inside edges // (g) convert the piece numbers to the piece numbers after applying the cuts // (h) fill a bool vector with information which pieces are in // (i) filter the descr_cmd of the result path with this bool vector // // The main inefficiency here is step (e) because I use a winding function of the area-shape which goes // through the complete edge list for each point I ask for, so effort is n-edges-contour * n-edges-area. // It is tricky to improve this without building into the livarot code. // One way might be to decide at the intersection points which edges touching the intersection points are // in by making a loop through all edges on the intersection vertex. Since this is a directed non intersecting // graph, this should provide sufficient information. // But since I anyway will change this to the new mechanism some time speed is fairly ok, I didn't look into this. // extract the livarot Paths from the source objects // also get the winding rule specified in the style // Livarot's outline of arcs is broken. So convert the path to linear and cubics only, for which the outline is created correctly. Path *contour_path = Path_for_pathvector(pathv_to_linear_and_cubic_beziers(pathva)); Path *area_path = Path_for_pathvector(pathv_to_linear_and_cubic_beziers(pathvb)); // Shapes from above paths Shape *area_shape = new Shape; Shape *combined_shape = new Shape; Shape *combined_inters = new Shape; // Add the area (process to intersection free shape) area_path->ConvertWithBackData(1.0); area_path->Fill(combined_shape, 1); // Convert this to a shape with full winding information area_shape->ConvertToShape(combined_shape, frb); // Add the contour to the combined path (just add, no winding processing) contour_path->ConvertWithBackData(1.0); contour_path->Fill(combined_shape, 0, true, false, false); // Intersect the area and the contour - no fill processing combined_inters->ConvertToShape(combined_shape, fill_justDont); // Result path Path *result_path = new Path; result_path->SetBackData(false); // Cutting positions for contour std::vector toCut; if (combined_inters->hasBackData()) { // should always be the case, but ya never know { for (int i = 0; i < combined_inters->numberOfPoints(); i++) { if (combined_inters->getPoint(i).totalDegree() > 2) { // possibly an intersection // we need to check that at least one edge from the source path is incident to it // before we declare it's an intersection int cb = combined_inters->getPoint(i).incidentEdge[FIRST]; int nbOrig = 0; int nbOther = 0; int piece = -1; float t = 0.0; while (cb >= 0 && cb < combined_inters->numberOfEdges()) { if (combined_inters->ebData[cb].pathID == 0) { // the source has an edge incident to the point, get its position on the path piece = combined_inters->ebData[cb].pieceID; if (combined_inters->getEdge(cb).st == i) { t = combined_inters->ebData[cb].tSt; } else { t = combined_inters->ebData[cb].tEn; } nbOrig++; } if (combined_inters->ebData[cb].pathID == 1) { nbOther++; // the cut is incident to this point } cb = combined_inters->NextAt(i, cb); } if (nbOrig > 0 && nbOther > 0) { // point incident to both path and cut: an intersection // note that you only keep one position on the source; you could have degenerate // cases where the source crosses itself at this point, and you wouyld miss an intersection Path::cut_position cutpos; cutpos.piece = piece; cutpos.t = t; toCut.push_back(cutpos); } } } } { // remove the edges from the intersection polygon int i = combined_inters->numberOfEdges() - 1; for (; i >= 0; i--) { if (combined_inters->ebData[i].pathID == 1) { combined_inters->SubEdge(i); } else { const Shape::dg_arete &edge = combined_inters->getEdge(i); const Shape::dg_point &start = combined_inters->getPoint(edge.st); const Shape::dg_point &end = combined_inters->getPoint(edge.en); Geom::Point mid = 0.5 * (start.x + end.x); int wind = area_shape->PtWinding(mid); if (wind == 0) { combined_inters->SubEdge(i); } } } } } // create a vector of pieces, which are in the intersection std::vector inside_pieces(combined_inters->numberOfEdges()); for (int i = 0; i < combined_inters->numberOfEdges(); i++) { inside_pieces[i].piece = combined_inters->ebData[i].pieceID; // Use the t middle point, this is safe to compare with values from toCut in the presence of roundoff errors inside_pieces[i].t = 0.5 * (combined_inters->ebData[i].tSt + combined_inters->ebData[i].tEn); } std::sort(inside_pieces.begin(), inside_pieces.end(), cmp_cut_position); // sort cut positions std::sort(toCut.begin(), toCut.end(), cmp_cut_position); // Compute piece ids after ConvertPositionsToMoveTo { int idIncr = 0; std::vector::iterator itPiece = inside_pieces.begin(); std::vector::iterator itCut = toCut.begin(); while (itPiece != inside_pieces.end()) { while (itCut != toCut.end() && cmp_cut_position(*itCut, *itPiece)) { ++itCut; idIncr += 2; } itPiece->piece += idIncr; ++itPiece; } } // Copy the original path to result and cut at the intersection points result_path->Copy(contour_path); result_path->ConvertPositionsToMoveTo(toCut.size(), toCut.data()); // cut where you found intersections // Create an array of bools which states which pieces are in std::vector inside_flags(result_path->descr_cmd.size(), false); for (auto & inside_piece : inside_pieces) { inside_flags[ inside_piece.piece ] = true; // also enable the element -1 to get the MoveTo if (inside_piece.piece >= 1) { inside_flags[ inside_piece.piece - 1 ] = true; } } #if 0 // CONCEPT TESTING //Check if the inside/outside verdict is consistent - just for testing the concept // Retrieve the pieces int nParts = 0; Path **parts = result_path->SubPaths(nParts, false); // Each piece should be either fully in or fully out int iPiece = 0; for (int iPart = 0; iPart < nParts; iPart++) { bool andsum = true; bool orsum = false; for (int iCmd = 0; iCmd < parts[iPart]->descr_cmd.size(); iCmd++, iPiece++) { andsum = andsum && inside_flags[ iPiece ]; orsum = andsum || inside_flags[ iPiece ]; } if (andsum != orsum) { g_warning("Inconsistent inside/outside verdict for part=%d", iPart); } } g_free(parts); #endif // iterate over the commands of a path and keep those which are inside int iDest = 0; for (int iSrc = 0; iSrc < result_path->descr_cmd.size(); iSrc++) { if (inside_flags[iSrc] == inside) { result_path->descr_cmd[iDest++] = result_path->descr_cmd[iSrc]; } else { delete result_path->descr_cmd[iSrc]; } } result_path->descr_cmd.resize(iDest); delete combined_inters; delete combined_shape; delete area_shape; delete contour_path; delete area_path; gchar *result_str = result_path->svg_dump_path(); Geom::PathVector outres = Geom::parse_svg_path(result_str); // CONCEPT TESTING g_warning( "%s", result_str ); g_free(result_str); delete result_path; return outres; } // remove inner contours Geom::PathVector sp_pathvector_boolop_remove_inner(Geom::PathVector const &pathva, fill_typ fra) { Geom::PathVector patht; Path *patha = Path_for_pathvector(pathv_to_linear_and_cubic_beziers(pathva)); Shape *shape = new Shape; Shape *shapeshape = new Shape; Path *resultp = new Path; resultp->SetBackData(false); patha->ConvertWithBackData(0.1); patha->Fill(shape, 0); shapeshape->ConvertToShape(shape, fra); shapeshape->ConvertToForme(resultp, 1, &patha); delete shape; delete shapeshape; delete patha; gchar *result_str = resultp->svg_dump_path(); Geom::PathVector resultpv = Geom::parse_svg_path(result_str); g_free(result_str); delete resultp; return resultpv; } static fill_typ GetFillTyp(SPItem *item) { SPCSSAttr *css = sp_repr_css_attr(item->getRepr(), "style"); gchar const *val = sp_repr_css_property(css, "fill-rule", nullptr); if (val && strcmp(val, "nonzero") == 0) { return fill_nonZero; } else if (val && strcmp(val, "evenodd") == 0) { return fill_oddEven; } else { return fill_nonZero; } } void LPEBool::doBeforeEffect(SPLPEItem const *lpeitem) { // operand->set_transform(i2anc_affine(sp_lpe_item, sp_lpe_item->parent)); SPDocument *document = getSPDoc(); if (!document) { return; } Inkscape::XML::Document *xml_doc = document->getReprDoc(); SPItem *current_operand = dynamic_cast(operand_path.getObject()); if (!current_operand) { if (operand) { operand->setHidden(false); } operand = nullptr; } if (current_operand && operand != current_operand) { if (operand) { operand->setHidden(false); } operand = current_operand; } if (operand && operand->parent && sp_lpe_item && sp_lpe_item->parent != operand->parent) { // TODO: reposition new operand on doOnRemove if keep_paths is false Inkscape::XML::Node *copy = operand->getRepr()->duplicate(xml_doc); SPItem *relocated_operand = dynamic_cast(sp_lpe_item->parent->appendChildRepr(copy)); Inkscape::GC::release(copy); operand->deleteObject(); operand = relocated_operand; Glib::ustring itemid = operand->getId(); operand_path.linkitem(itemid); } // TODO: make 2 methods to globaly inform to a LPE item when is grabbed // and when the transform is applyed both callers can be in Inkscape::SelTrans in grab and ungrab functions SPDesktop *desktop = SP_ACTIVE_DESKTOP; if (desktop && operand) { Inkscape::Selection *selection = desktop->getSelection(); Inkscape::UI::Tools::SelectTool *selectool = dynamic_cast(desktop->event_context); gint cdown = 2; if (selectool && selectool->_seltrans && selectool->_seltrans->isGrabbed()) { cdown = 3; } if (!is_load && desktop && selection && operand && operand->isHidden() && hide_linked && contdown != 1) { selection->add(operand); contdown = cdown; } if (contdown == 1 && desktop && selection && operand && operand->isHidden() && hide_linked) { selection->remove(operand); } if (contdown > 0) { --contdown; } if (is_load) { contdown = 1; } if (operand_path.linksToPath() && operand) { SPItem *itemsel = selection->singleItem(); if (operand->isHidden() && hide_linked && itemsel && itemsel == operand) { hide_linked.param_setValue(false); hide_linked.write_to_SVG(); } } } } void LPEBool::doEffect(SPCurve *curve) { Geom::PathVector path_in = curve->get_pathvector(); if (operand == SP_ITEM(current_shape)) { g_warning("operand and current shape are the same"); operand_path.param_set_default(); return; } if (operand_path.linksToPath() && operand) { if (!operand->isHidden() && hide_linked) { operand->setHidden(true); } if (operand->isHidden() && !hide_linked) { operand->setHidden(false); } bool_op_ex op = bool_operation.get_value(); bool swap = !(swap_operands.get_value()); Geom::Affine current_affine = sp_item_transform_repr(sp_lpe_item); Geom::Affine operand_affine = sp_item_transform_repr(operand); Geom::PathVector operand_pv = operand_path.get_pathvector(); path_in *= current_affine; operand_pv *= operand_affine; Geom::PathVector path_a = swap ? operand_pv : path_in; Geom::PathVector path_b = swap ? path_in : operand_pv; // TODO: I would like to use the original objects fill rule if the UI selected rule is fill_justDont. // But it doesn't seem possible to access them from here, because SPCurve is not derived from SPItem. // The nearest function in the call stack, where this is available is SPLPEItem::performPathEffect (this is then an SPItem) // For the parameter curve, this is possible. // fill_typ fill_this = fill_type_this. get_value()!=fill_justDont ? fill_type_this.get_value() : GetFillTyp( curve ) ; fill_typ fill_this = fill_type_this.get_value(); fill_typ fill_operand = fill_type_operand.get_value() != fill_justDont ? fill_type_operand.get_value() : GetFillTyp(operand_path.getObject()); fill_typ fill_a = swap ? fill_operand : fill_this; fill_typ fill_b = swap ? fill_this : fill_operand; if (rmv_inner.get_value()) { path_b = sp_pathvector_boolop_remove_inner(path_b, fill_b); } Geom::PathVector path_out; if (op == bool_op_ex_slice) { // For slicing, the bool op is added to the line group which is sliced, not the cut path. This swapped order is correct. path_out = sp_pathvector_boolop(path_b, path_a, to_bool_op(op), fill_b, fill_a); } else if (op == bool_op_ex_slice_inside) { path_out = sp_pathvector_boolop_slice_intersect(path_a, path_b, true, fill_a, fill_b); } else if (op == bool_op_ex_slice_outside) { path_out = sp_pathvector_boolop_slice_intersect(path_a, path_b, false, fill_a, fill_b); } else { path_out = sp_pathvector_boolop(path_a, path_b, to_bool_op(op), fill_a, fill_b); } curve->set_pathvector(path_out * current_affine.inverse()); } } void LPEBool::doOnRemove(SPLPEItem const * /*lpeitem*/) { // set "keep paths" hook on sp-lpe-item.cpp SPItem *operand = dynamic_cast(operand_path.getObject()); if (operand_path.linksToPath() && operand) { if (keep_paths) { if (operand->isHidden()) { operand->deleteObject(true); } } else { if (operand->isHidden()) { operand->setHidden(false); } } } } // TODO: Migrate the tree next function to effect.cpp/h to avoid duplication void LPEBool::doOnVisibilityToggled(SPLPEItem const * /*lpeitem*/) { SPItem *operand = dynamic_cast(operand_path.getObject()); if (operand_path.linksToPath() && operand) { if (!is_visible) { operand->setHidden(false); } } } } // namespace LivePathEffect } /* namespace Inkscape */