summaryrefslogtreecommitdiffstats
path: root/share/extensions/draw_from_triangle.py
blob: 32de00ab058f5968de5c92f1f06a3802d939c625 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2007 John Beard john.j.beard@gmail.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
"""
This extension allows you to draw various triangle constructions
It requires a path to be selected
It will use the first three nodes of this path

Dimensions of a triangle__

       /`__
      / a_c``--__
     /           ``--__ s_a
s_b /                  ``--__
   /a_a                    a_b`--__
  /--------------------------------``B
 A              s_b
"""

from math import acos, cos, pi, sin, sqrt, tan

import inkex
from inkex import PathElement, Circle

(X, Y) = range(2)

# DRAWING ROUTINES

# draw an SVG triangle given in trilinar coords
def draw_SVG_circle(rad, centre, params, style, name, parent):  # draw an SVG circle with a given radius as trilinear coordinates
    if rad == 0:  # we want a dot
        r = style.d_rad  # get the dot width from the style
        circ_style = {'stroke': style.d_col, 'stroke-width': str(style.d_th), 'fill': style.d_fill}
    else:
        r = rad  # use given value
        circ_style = {'stroke': style.c_col, 'stroke-width': str(style.c_th), 'fill': style.c_fill}

    cx, cy = get_cartesian_pt(centre, params)
    circ_attribs = {'cx': str(cx), 'cy': str(cy), 'r': str(r)}
    elem = parent.add(Circle(**circ_attribs))
    elem.style = circ_style
    elem.label = name


# draw an SVG triangle given in trilinar coords
def draw_SVG_tri(vert_mat, params, style, name, parent):
    p1, p2, p3 = get_cartesian_tri(vert_mat, params)  # get the vertex matrix in cartesian points
    elem = parent.add(PathElement())
    elem.path = 'M ' + str(p1[0]) + ',' + str(p1[1]) +\
                ' L ' + str(p2[0]) + ',' + str(p2[1]) +\
                ' L ' + str(p3[0]) + ',' + str(p3[1]) +\
                ' L ' + str(p1[0]) + ',' + str(p1[1]) + ' z'
    elem.style = {'stroke': style.l_col, 'stroke-width': str(style.l_th), 'fill': style.l_fill}
    elem.label = name


# draw an SVG line segment between the given (raw) points
def draw_SVG_line(a, b, style, name, parent):
    (x1, y1) = a
    (x2, y2) = b
    line = parent.add(PathElement())
    line.style = {'stroke': style.l_col, 'stroke-width': str(style.l_th), 'fill': style.l_fill}
    line.path = 'M ' + str(x1) + ',' + str(y1) + ' L ' + str(x2) + ',' + str(y2)
    line.lavel = name


# lines from each vertex to a corresponding point in trilinears
def draw_vertex_lines(vert_mat, params, width, name, parent):
    for i in range(3):
        oppositepoint = get_cartesian_pt(vert_mat[i], params)
        draw_SVG_line(params[3][-i % 3], oppositepoint, width, name + ':' + str(i), parent)


# MATHEMATICAL ROUTINES

def distance(a, b):
    """find the pythagorean distance"""
    (x0, y0) = a
    (x1, y1) = b
    return sqrt((x0 - x1) * (x0 - x1) + (y0 - y1) * (y0 - y1))


def vector_from_to(a, b):
    """get the vector from (x0,y0) to (x1,y1)"""
    return b[X] - a[X], b[Y], a[Y]


def get_cartesian_pt(t, p):  # get the cartesian coordinates from a trilinear set
    denom = p[0][0] * t[0] + p[0][1] * t[1] + p[0][2] * t[2]
    c1 = p[0][1] * t[1] / denom
    c2 = p[0][2] * t[2] / denom
    return c1 * p[2][1][0] + c2 * p[2][0][0], c1 * p[2][1][1] + c2 * p[2][0][1]


def get_cartesian_tri(arg, params):
    """get the cartesian points from a trilinear vertex matrix"""
    (t11, t12, t13), (t21, t22, t23), (t31, t32, t33) = arg
    p1 = get_cartesian_pt((t11, t12, t13), params)
    p2 = get_cartesian_pt((t21, t22, t23), params)
    p3 = get_cartesian_pt((t31, t32, t33), params)
    return p1, p2, p3


def angle_from_3_sides(a, b, c):  # return the angle opposite side c
    cosx = (a * a + b * b - c * c) / (2 * a * b)  # use the cosine rule
    return acos(cosx)


def translate_string(string, os):  # translates s_a, a_a, etc to params[x][y], with cyclic offset
    string = string.replace('s_a', 'params[0][' + str((os + 0) % 3) + ']')  # replace with ref. to the relvant values,
    string = string.replace('s_b', 'params[0][' + str((os + 1) % 3) + ']')  # cycled by i
    string = string.replace('s_c', 'params[0][' + str((os + 2) % 3) + ']')
    string = string.replace('a_a', 'params[1][' + str((os + 0) % 3) + ']')
    string = string.replace('a_b', 'params[1][' + str((os + 1) % 3) + ']')
    string = string.replace('a_c', 'params[1][' + str((os + 2) % 3) + ']')
    string = string.replace('area', 'params[4][0]')
    string = string.replace('semiperim', 'params[4][1]')
    return string


def pt_from_tcf(tcf, params):  # returns a trilinear triplet from a triangle centre function
    trilin_pts = []  # will hold the final points
    for i in range(3):
        temp = tcf  # read in the tcf
        temp = translate_string(temp, i)
        func = eval('lambda params: ' + temp.strip('"'))  # the function leading to the trilinar element
        trilin_pts.append(func(params))  # evaluate the function for the first trilinear element
    return trilin_pts


# SVG DATA PROCESSING

def get_n_points_from_path(node, n):
    """returns a list of first n points (x,y) in an SVG path-representing node"""
    points = list(node.path.control_points)
    if len(points) < 3:
        return []
    return points[:3]

# EXTRA MATHS FUNCTIONS
def sec(x):  # secant(x)
    if x == pi / 2 or x == -pi / 2 or x == 3 * pi / 2 or x == -3 * pi / 2:  # sec(x) is undefined
        return 100000000000
    else:
        return 1 / cos(x)


def csc(x):  # cosecant(x)
    if x == 0 or x == pi or x == 2 * pi or x == -2 * pi:  # csc(x) is undefined
        return 100000000000
    else:
        return 1 / sin(x)


def cot(x):  # cotangent(x)
    if x == 0 or x == pi or x == 2 * pi or x == -2 * pi:  # cot(x) is undefined
        return 100000000000
    else:
        return 1 / tan(x)


class Style(object):  # container for style information
    def __init__(self, svg):
        # dot markers
        self.d_rad = svg.unittouu('4px')  # dot marker radius
        self.d_th = svg.unittouu('2px')  # stroke width
        self.d_fill = '#aaaaaa'  # fill colour
        self.d_col = '#000000'  # stroke colour

        # lines
        self.l_th = svg.unittouu('2px')
        self.l_fill = 'none'
        self.l_col = '#000000'

        # circles
        self.c_th = svg.unittouu('2px')
        self.c_fill = 'none'
        self.c_col = '#000000'


class DrawFromTriangle(inkex.EffectExtension):
    def add_arguments(self, pars):
        pars.add_argument("--tab")
        # PRESET POINT OPTIONS
        pars.add_argument("--circumcircle", type=inkex.Boolean, default=False)
        pars.add_argument("--circumcentre", type=inkex.Boolean, default=False)
        pars.add_argument("--incircle", type=inkex.Boolean, default=False)
        pars.add_argument("--incentre", type=inkex.Boolean, default=False)
        pars.add_argument("--contact_tri", type=inkex.Boolean, default=False)
        pars.add_argument("--excircles", type=inkex.Boolean, default=False)
        pars.add_argument("--excentres", type=inkex.Boolean, default=False)
        pars.add_argument("--extouch_tri", type=inkex.Boolean, default=False)
        pars.add_argument("--excentral_tri", type=inkex.Boolean, default=False)
        pars.add_argument("--orthocentre", type=inkex.Boolean, default=False)
        pars.add_argument("--orthic_tri", type=inkex.Boolean, default=False)
        pars.add_argument("--altitudes", type=inkex.Boolean, default=False)
        pars.add_argument("--anglebisectors", type=inkex.Boolean, default=False)
        pars.add_argument("--centroid", type=inkex.Boolean, default=False)
        pars.add_argument("--ninepointcentre", type=inkex.Boolean, default=False)
        pars.add_argument("--ninepointcircle", type=inkex.Boolean, default=False)
        pars.add_argument("--symmedians", type=inkex.Boolean, default=False)
        pars.add_argument("--sym_point", type=inkex.Boolean, default=False)
        pars.add_argument("--sym_tri", type=inkex.Boolean, default=False)
        pars.add_argument("--gergonne_pt", type=inkex.Boolean, default=False)
        pars.add_argument("--nagel_pt", type=inkex.Boolean, default=False)
        # CUSTOM POINT OPTIONS
        pars.add_argument("--mode", default='trilin')
        pars.add_argument("--cust_str", default='s_a')
        pars.add_argument("--cust_pt", type=inkex.Boolean, default=False)
        pars.add_argument("--cust_radius", type=inkex.Boolean, default=False)
        pars.add_argument("--radius", default='s_a')
        pars.add_argument("--isogonal_conj", type=inkex.Boolean, default=False)
        pars.add_argument("--isotomic_conj", type=inkex.Boolean, default=False)

    def effect(self):
        so = self.options  # shorthand

        pts = []  # initialise in case nothing is selected and following loop is not executed
        for node in self.svg.selection.filter(inkex.PathElement).values():
            # find the (x,y) coordinates of the first 3 points of the path
            pts = get_n_points_from_path(node, 3)

        if len(pts) == 3:  # if we have right number of nodes, else skip and end program
            st = Style(self.svg)  # style for dots, lines and circles

            # CREATE A GROUP TO HOLD ALL GENERATED ELEMENTS IN
            # Hold relative to point A (pt[0])
            layer = self.svg.get_current_layer().add(inkex.Group.new('TriangleElements'))
            layer.transform = 'translate(' + str(pts[0][0]) + ',' + str(pts[0][1]) + ')'

            # GET METRICS OF THE TRIANGLE
            # vertices in the local coordinates (set pt[0] to be the origin)
            vtx = [[0, 0],
                   [pts[1][0] - pts[0][0], pts[1][1] - pts[0][1]],
                   [pts[2][0] - pts[0][0], pts[2][1] - pts[0][1]]]

            s_a = distance(vtx[1], vtx[2])  # get the scalar side lengths
            s_b = distance(vtx[0], vtx[1])
            s_c = distance(vtx[0], vtx[2])
            sides = (s_a, s_b, s_c)  # side list for passing to functions easily and for indexing

            a_a = angle_from_3_sides(s_b, s_c, s_a)  # angles in radians
            a_b = angle_from_3_sides(s_a, s_c, s_b)
            a_c = angle_from_3_sides(s_a, s_b, s_c)
            angles = (a_a, a_b, a_c)

            ab = vector_from_to(vtx[0], vtx[1])  # vector from a to b
            ac = vector_from_to(vtx[0], vtx[2])  # vector from a to c
            bc = vector_from_to(vtx[1], vtx[2])  # vector from b to c
            vecs = (ab, ac)  # vectors for finding cartesian point from trilinears

            semiperim = (s_a + s_b + s_c) / 2.0  # semiperimeter
            area = sqrt(semiperim * (semiperim - s_a) * (semiperim - s_b) * (semiperim - s_c))  # area of the triangle by heron's formula
            uvals = (area, semiperim)  # useful values

            params = (sides, angles, vecs, vtx, uvals)  # all useful triangle parameters in one object

            # BEGIN DRAWING
            if so.circumcentre or so.circumcircle:
                r = s_a * s_b * s_c / (4 * area)
                pt = (cos(a_a), cos(a_b), cos(a_c))
                if so.circumcentre:
                    draw_SVG_circle(0, pt, params, st, 'Circumcentre', layer)
                if so.circumcircle:
                    draw_SVG_circle(r, pt, params, st, 'Circumcircle', layer)

            if so.incentre or so.incircle:
                pt = [1, 1, 1]
                if so.incentre:
                    draw_SVG_circle(0, pt, params, st, 'Incentre', layer)
                if so.incircle:
                    r = area / semiperim
                    draw_SVG_circle(r, pt, params, st, 'Incircle', layer)

            if so.contact_tri:
                t1 = s_b * s_c / (-s_a + s_b + s_c)
                t2 = s_a * s_c / (s_a - s_b + s_c)
                t3 = s_a * s_b / (s_a + s_b - s_c)
                v_mat = ((0, t2, t3), (t1, 0, t3), (t1, t2, 0))
                draw_SVG_tri(v_mat, params, st, 'ContactTriangle', layer)

            if so.extouch_tri:
                t1 = (-s_a + s_b + s_c) / s_a
                t2 = (s_a - s_b + s_c) / s_b
                t3 = (s_a + s_b - s_c) / s_c
                v_mat = ((0, t2, t3), (t1, 0, t3), (t1, t2, 0))
                draw_SVG_tri(v_mat, params, st, 'ExtouchTriangle', layer)

            if so.orthocentre:
                pt = pt_from_tcf('cos(a_b)*cos(a_c)', params)
                draw_SVG_circle(0, pt, params, st, 'Orthocentre', layer)

            if so.orthic_tri:
                v_mat = [[0, sec(a_b), sec(a_c)], [sec(a_a), 0, sec(a_c)], [sec(a_a), sec(a_b), 0]]
                draw_SVG_tri(v_mat, params, st, 'OrthicTriangle', layer)

            if so.centroid:
                pt = [1 / s_a, 1 / s_b, 1 / s_c]
                draw_SVG_circle(0, pt, params, st, 'Centroid', layer)

            if so.ninepointcentre or so.ninepointcircle:
                pt = [cos(a_b - a_c), cos(a_c - a_a), cos(a_a - a_b)]
                if so.ninepointcentre:
                    draw_SVG_circle(0, pt, params, st, 'NinePointCentre', layer)
                if so.ninepointcircle:
                    r = s_a * s_b * s_c / (8 * area)
                    draw_SVG_circle(r, pt, params, st, 'NinePointCircle', layer)

            if so.altitudes:
                v_mat = [[0, sec(a_b), sec(a_c)], [sec(a_a), 0, sec(a_c)], [sec(a_a), sec(a_b), 0]]
                draw_vertex_lines(v_mat, params, st, 'Altitude', layer)

            if so.anglebisectors:
                v_mat = ((0, 1, 1), (1, 0, 1), (1, 1, 0))
                draw_vertex_lines(v_mat, params, st, 'AngleBisectors', layer)

            if so.excircles or so.excentres or so.excentral_tri:
                v_mat = ((-1, 1, 1), (1, -1, 1), (1, 1, -1))
                if so.excentral_tri:
                    draw_SVG_tri(v_mat, params, st, 'ExcentralTriangle', layer)
                for i in range(3):
                    if so.excircles:
                        r = area / (semiperim - sides[i])
                        draw_SVG_circle(r, v_mat[i], params, st, 'Excircle:' + str(i), layer)
                    if so.excentres:
                        draw_SVG_circle(0, v_mat[i], params, st, 'Excentre:' + str(i), layer)

            if so.sym_tri or so.symmedians:
                v_mat = ((0, s_b, s_c), (s_a, 0, s_c), (s_a, s_b, 0))
                if so.sym_tri:
                    draw_SVG_tri(v_mat, params, st, 'SymmedialTriangle', layer)
                if so.symmedians:
                    draw_vertex_lines(v_mat, params, st, 'Symmedian', layer)

            if so.sym_point:
                pt = (s_a, s_b, s_c)
                draw_SVG_circle(0, pt, params, st, 'SymmmedianPoint', layer)

            if so.gergonne_pt:
                pt = pt_from_tcf('1/(s_a*(s_b+s_c-s_a))', params)
                draw_SVG_circle(0, pt, params, st, 'GergonnePoint', layer)

            if so.nagel_pt:
                pt = pt_from_tcf('(s_b+s_c-s_a)/s_a', params)
                draw_SVG_circle(0, pt, params, st, 'NagelPoint', layer)

            if so.cust_pt or so.cust_radius or so.isogonal_conj or so.isotomic_conj:
                pt = []  # where we will store the point in trilinears
                if so.mode == 'trilin':  # if we are receiving from trilinears
                    for i in range(3):
                        strings = so.cust_str.split(':')  # get split string
                        strings[i] = translate_string(strings[i], 0)
                        func = eval('lambda params: ' + strings[i].strip('"'))  # the function leading to the trilinar element
                        pt.append(func(params))  # evaluate the function for the trilinear element
                else:  # we need a triangle function
                    string = so.cust_str  # don't need to translate, as the pt_from_tcf function does that for us
                    pt = pt_from_tcf(string, params)  # get the point from the tcf directly

                if so.cust_pt:  # draw the point
                    draw_SVG_circle(0, pt, params, st, 'CustomTrilinearPoint', layer)
                if so.cust_radius:  # draw the circle with given radius
                    strings = translate_string(so.radius, 0)
                    func = eval('lambda params: ' + strings.strip('"'))  # the function leading to the radius
                    r = func(params)
                    draw_SVG_circle(r, pt, params, st, 'CustomTrilinearCircle', layer)
                if so.isogonal_conj:
                    isogonal = [0, 0, 0]
                    for i in range(3):
                        isogonal[i] = 1 / pt[i]
                    draw_SVG_circle(0, isogonal, params, st, 'CustomIsogonalConjugate', layer)
                if so.isotomic_conj:
                    isotomic = [0, 0, 0]
                    for i in range(3):
                        isotomic[i] = 1 / (params[0][i] * params[0][i] * pt[i])
                    draw_SVG_circle(0, isotomic, params, st, 'CustomIsotomicConjugate', layer)


if __name__ == '__main__':
    DrawFromTriangle().run()