1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2007 John Beard john.j.beard@gmail.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
This extension allows you to draw various triangle constructions
It requires a path to be selected
It will use the first three nodes of this path
Dimensions of a triangle__
/`__
/ a_c``--__
/ ``--__ s_a
s_b / ``--__
/a_a a_b`--__
/--------------------------------``B
A s_b
"""
from math import acos, cos, pi, sin, sqrt, tan
import inkex
from inkex import PathElement, Circle
(X, Y) = range(2)
# DRAWING ROUTINES
# draw an SVG triangle given in trilinar coords
def draw_SVG_circle(rad, centre, params, style, name, parent): # draw an SVG circle with a given radius as trilinear coordinates
if rad == 0: # we want a dot
r = style.d_rad # get the dot width from the style
circ_style = {'stroke': style.d_col, 'stroke-width': str(style.d_th), 'fill': style.d_fill}
else:
r = rad # use given value
circ_style = {'stroke': style.c_col, 'stroke-width': str(style.c_th), 'fill': style.c_fill}
cx, cy = get_cartesian_pt(centre, params)
circ_attribs = {'cx': str(cx), 'cy': str(cy), 'r': str(r)}
elem = parent.add(Circle(**circ_attribs))
elem.style = circ_style
elem.label = name
# draw an SVG triangle given in trilinar coords
def draw_SVG_tri(vert_mat, params, style, name, parent):
p1, p2, p3 = get_cartesian_tri(vert_mat, params) # get the vertex matrix in cartesian points
elem = parent.add(PathElement())
elem.path = 'M ' + str(p1[0]) + ',' + str(p1[1]) +\
' L ' + str(p2[0]) + ',' + str(p2[1]) +\
' L ' + str(p3[0]) + ',' + str(p3[1]) +\
' L ' + str(p1[0]) + ',' + str(p1[1]) + ' z'
elem.style = {'stroke': style.l_col, 'stroke-width': str(style.l_th), 'fill': style.l_fill}
elem.label = name
# draw an SVG line segment between the given (raw) points
def draw_SVG_line(a, b, style, name, parent):
(x1, y1) = a
(x2, y2) = b
line = parent.add(PathElement())
line.style = {'stroke': style.l_col, 'stroke-width': str(style.l_th), 'fill': style.l_fill}
line.path = 'M ' + str(x1) + ',' + str(y1) + ' L ' + str(x2) + ',' + str(y2)
line.lavel = name
# lines from each vertex to a corresponding point in trilinears
def draw_vertex_lines(vert_mat, params, width, name, parent):
for i in range(3):
oppositepoint = get_cartesian_pt(vert_mat[i], params)
draw_SVG_line(params[3][-i % 3], oppositepoint, width, name + ':' + str(i), parent)
# MATHEMATICAL ROUTINES
def distance(a, b):
"""find the pythagorean distance"""
(x0, y0) = a
(x1, y1) = b
return sqrt((x0 - x1) * (x0 - x1) + (y0 - y1) * (y0 - y1))
def vector_from_to(a, b):
"""get the vector from (x0,y0) to (x1,y1)"""
return b[X] - a[X], b[Y], a[Y]
def get_cartesian_pt(t, p): # get the cartesian coordinates from a trilinear set
denom = p[0][0] * t[0] + p[0][1] * t[1] + p[0][2] * t[2]
c1 = p[0][1] * t[1] / denom
c2 = p[0][2] * t[2] / denom
return c1 * p[2][1][0] + c2 * p[2][0][0], c1 * p[2][1][1] + c2 * p[2][0][1]
def get_cartesian_tri(arg, params):
"""get the cartesian points from a trilinear vertex matrix"""
(t11, t12, t13), (t21, t22, t23), (t31, t32, t33) = arg
p1 = get_cartesian_pt((t11, t12, t13), params)
p2 = get_cartesian_pt((t21, t22, t23), params)
p3 = get_cartesian_pt((t31, t32, t33), params)
return p1, p2, p3
def angle_from_3_sides(a, b, c): # return the angle opposite side c
cosx = (a * a + b * b - c * c) / (2 * a * b) # use the cosine rule
return acos(cosx)
def translate_string(string, os): # translates s_a, a_a, etc to params[x][y], with cyclic offset
string = string.replace('s_a', 'params[0][' + str((os + 0) % 3) + ']') # replace with ref. to the relvant values,
string = string.replace('s_b', 'params[0][' + str((os + 1) % 3) + ']') # cycled by i
string = string.replace('s_c', 'params[0][' + str((os + 2) % 3) + ']')
string = string.replace('a_a', 'params[1][' + str((os + 0) % 3) + ']')
string = string.replace('a_b', 'params[1][' + str((os + 1) % 3) + ']')
string = string.replace('a_c', 'params[1][' + str((os + 2) % 3) + ']')
string = string.replace('area', 'params[4][0]')
string = string.replace('semiperim', 'params[4][1]')
return string
def pt_from_tcf(tcf, params): # returns a trilinear triplet from a triangle centre function
trilin_pts = [] # will hold the final points
for i in range(3):
temp = tcf # read in the tcf
temp = translate_string(temp, i)
func = eval('lambda params: ' + temp.strip('"')) # the function leading to the trilinar element
trilin_pts.append(func(params)) # evaluate the function for the first trilinear element
return trilin_pts
# SVG DATA PROCESSING
def get_n_points_from_path(node, n):
"""returns a list of first n points (x,y) in an SVG path-representing node"""
points = list(node.path.control_points)
if len(points) < 3:
return []
return points[:3]
# EXTRA MATHS FUNCTIONS
def sec(x): # secant(x)
if x == pi / 2 or x == -pi / 2 or x == 3 * pi / 2 or x == -3 * pi / 2: # sec(x) is undefined
return 100000000000
else:
return 1 / cos(x)
def csc(x): # cosecant(x)
if x == 0 or x == pi or x == 2 * pi or x == -2 * pi: # csc(x) is undefined
return 100000000000
else:
return 1 / sin(x)
def cot(x): # cotangent(x)
if x == 0 or x == pi or x == 2 * pi or x == -2 * pi: # cot(x) is undefined
return 100000000000
else:
return 1 / tan(x)
class Style(object): # container for style information
def __init__(self, svg):
# dot markers
self.d_rad = svg.unittouu('4px') # dot marker radius
self.d_th = svg.unittouu('2px') # stroke width
self.d_fill = '#aaaaaa' # fill colour
self.d_col = '#000000' # stroke colour
# lines
self.l_th = svg.unittouu('2px')
self.l_fill = 'none'
self.l_col = '#000000'
# circles
self.c_th = svg.unittouu('2px')
self.c_fill = 'none'
self.c_col = '#000000'
class DrawFromTriangle(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--tab")
# PRESET POINT OPTIONS
pars.add_argument("--circumcircle", type=inkex.Boolean, default=False)
pars.add_argument("--circumcentre", type=inkex.Boolean, default=False)
pars.add_argument("--incircle", type=inkex.Boolean, default=False)
pars.add_argument("--incentre", type=inkex.Boolean, default=False)
pars.add_argument("--contact_tri", type=inkex.Boolean, default=False)
pars.add_argument("--excircles", type=inkex.Boolean, default=False)
pars.add_argument("--excentres", type=inkex.Boolean, default=False)
pars.add_argument("--extouch_tri", type=inkex.Boolean, default=False)
pars.add_argument("--excentral_tri", type=inkex.Boolean, default=False)
pars.add_argument("--orthocentre", type=inkex.Boolean, default=False)
pars.add_argument("--orthic_tri", type=inkex.Boolean, default=False)
pars.add_argument("--altitudes", type=inkex.Boolean, default=False)
pars.add_argument("--anglebisectors", type=inkex.Boolean, default=False)
pars.add_argument("--centroid", type=inkex.Boolean, default=False)
pars.add_argument("--ninepointcentre", type=inkex.Boolean, default=False)
pars.add_argument("--ninepointcircle", type=inkex.Boolean, default=False)
pars.add_argument("--symmedians", type=inkex.Boolean, default=False)
pars.add_argument("--sym_point", type=inkex.Boolean, default=False)
pars.add_argument("--sym_tri", type=inkex.Boolean, default=False)
pars.add_argument("--gergonne_pt", type=inkex.Boolean, default=False)
pars.add_argument("--nagel_pt", type=inkex.Boolean, default=False)
# CUSTOM POINT OPTIONS
pars.add_argument("--mode", default='trilin')
pars.add_argument("--cust_str", default='s_a')
pars.add_argument("--cust_pt", type=inkex.Boolean, default=False)
pars.add_argument("--cust_radius", type=inkex.Boolean, default=False)
pars.add_argument("--radius", default='s_a')
pars.add_argument("--isogonal_conj", type=inkex.Boolean, default=False)
pars.add_argument("--isotomic_conj", type=inkex.Boolean, default=False)
def effect(self):
so = self.options # shorthand
pts = [] # initialise in case nothing is selected and following loop is not executed
for node in self.svg.selection.filter(inkex.PathElement).values():
# find the (x,y) coordinates of the first 3 points of the path
pts = get_n_points_from_path(node, 3)
if len(pts) == 3: # if we have right number of nodes, else skip and end program
st = Style(self.svg) # style for dots, lines and circles
# CREATE A GROUP TO HOLD ALL GENERATED ELEMENTS IN
# Hold relative to point A (pt[0])
layer = self.svg.get_current_layer().add(inkex.Group.new('TriangleElements'))
layer.transform = 'translate(' + str(pts[0][0]) + ',' + str(pts[0][1]) + ')'
# GET METRICS OF THE TRIANGLE
# vertices in the local coordinates (set pt[0] to be the origin)
vtx = [[0, 0],
[pts[1][0] - pts[0][0], pts[1][1] - pts[0][1]],
[pts[2][0] - pts[0][0], pts[2][1] - pts[0][1]]]
s_a = distance(vtx[1], vtx[2]) # get the scalar side lengths
s_b = distance(vtx[0], vtx[1])
s_c = distance(vtx[0], vtx[2])
sides = (s_a, s_b, s_c) # side list for passing to functions easily and for indexing
a_a = angle_from_3_sides(s_b, s_c, s_a) # angles in radians
a_b = angle_from_3_sides(s_a, s_c, s_b)
a_c = angle_from_3_sides(s_a, s_b, s_c)
angles = (a_a, a_b, a_c)
ab = vector_from_to(vtx[0], vtx[1]) # vector from a to b
ac = vector_from_to(vtx[0], vtx[2]) # vector from a to c
bc = vector_from_to(vtx[1], vtx[2]) # vector from b to c
vecs = (ab, ac) # vectors for finding cartesian point from trilinears
semiperim = (s_a + s_b + s_c) / 2.0 # semiperimeter
area = sqrt(semiperim * (semiperim - s_a) * (semiperim - s_b) * (semiperim - s_c)) # area of the triangle by heron's formula
uvals = (area, semiperim) # useful values
params = (sides, angles, vecs, vtx, uvals) # all useful triangle parameters in one object
# BEGIN DRAWING
if so.circumcentre or so.circumcircle:
r = s_a * s_b * s_c / (4 * area)
pt = (cos(a_a), cos(a_b), cos(a_c))
if so.circumcentre:
draw_SVG_circle(0, pt, params, st, 'Circumcentre', layer)
if so.circumcircle:
draw_SVG_circle(r, pt, params, st, 'Circumcircle', layer)
if so.incentre or so.incircle:
pt = [1, 1, 1]
if so.incentre:
draw_SVG_circle(0, pt, params, st, 'Incentre', layer)
if so.incircle:
r = area / semiperim
draw_SVG_circle(r, pt, params, st, 'Incircle', layer)
if so.contact_tri:
t1 = s_b * s_c / (-s_a + s_b + s_c)
t2 = s_a * s_c / (s_a - s_b + s_c)
t3 = s_a * s_b / (s_a + s_b - s_c)
v_mat = ((0, t2, t3), (t1, 0, t3), (t1, t2, 0))
draw_SVG_tri(v_mat, params, st, 'ContactTriangle', layer)
if so.extouch_tri:
t1 = (-s_a + s_b + s_c) / s_a
t2 = (s_a - s_b + s_c) / s_b
t3 = (s_a + s_b - s_c) / s_c
v_mat = ((0, t2, t3), (t1, 0, t3), (t1, t2, 0))
draw_SVG_tri(v_mat, params, st, 'ExtouchTriangle', layer)
if so.orthocentre:
pt = pt_from_tcf('cos(a_b)*cos(a_c)', params)
draw_SVG_circle(0, pt, params, st, 'Orthocentre', layer)
if so.orthic_tri:
v_mat = [[0, sec(a_b), sec(a_c)], [sec(a_a), 0, sec(a_c)], [sec(a_a), sec(a_b), 0]]
draw_SVG_tri(v_mat, params, st, 'OrthicTriangle', layer)
if so.centroid:
pt = [1 / s_a, 1 / s_b, 1 / s_c]
draw_SVG_circle(0, pt, params, st, 'Centroid', layer)
if so.ninepointcentre or so.ninepointcircle:
pt = [cos(a_b - a_c), cos(a_c - a_a), cos(a_a - a_b)]
if so.ninepointcentre:
draw_SVG_circle(0, pt, params, st, 'NinePointCentre', layer)
if so.ninepointcircle:
r = s_a * s_b * s_c / (8 * area)
draw_SVG_circle(r, pt, params, st, 'NinePointCircle', layer)
if so.altitudes:
v_mat = [[0, sec(a_b), sec(a_c)], [sec(a_a), 0, sec(a_c)], [sec(a_a), sec(a_b), 0]]
draw_vertex_lines(v_mat, params, st, 'Altitude', layer)
if so.anglebisectors:
v_mat = ((0, 1, 1), (1, 0, 1), (1, 1, 0))
draw_vertex_lines(v_mat, params, st, 'AngleBisectors', layer)
if so.excircles or so.excentres or so.excentral_tri:
v_mat = ((-1, 1, 1), (1, -1, 1), (1, 1, -1))
if so.excentral_tri:
draw_SVG_tri(v_mat, params, st, 'ExcentralTriangle', layer)
for i in range(3):
if so.excircles:
r = area / (semiperim - sides[i])
draw_SVG_circle(r, v_mat[i], params, st, 'Excircle:' + str(i), layer)
if so.excentres:
draw_SVG_circle(0, v_mat[i], params, st, 'Excentre:' + str(i), layer)
if so.sym_tri or so.symmedians:
v_mat = ((0, s_b, s_c), (s_a, 0, s_c), (s_a, s_b, 0))
if so.sym_tri:
draw_SVG_tri(v_mat, params, st, 'SymmedialTriangle', layer)
if so.symmedians:
draw_vertex_lines(v_mat, params, st, 'Symmedian', layer)
if so.sym_point:
pt = (s_a, s_b, s_c)
draw_SVG_circle(0, pt, params, st, 'SymmmedianPoint', layer)
if so.gergonne_pt:
pt = pt_from_tcf('1/(s_a*(s_b+s_c-s_a))', params)
draw_SVG_circle(0, pt, params, st, 'GergonnePoint', layer)
if so.nagel_pt:
pt = pt_from_tcf('(s_b+s_c-s_a)/s_a', params)
draw_SVG_circle(0, pt, params, st, 'NagelPoint', layer)
if so.cust_pt or so.cust_radius or so.isogonal_conj or so.isotomic_conj:
pt = [] # where we will store the point in trilinears
if so.mode == 'trilin': # if we are receiving from trilinears
for i in range(3):
strings = so.cust_str.split(':') # get split string
strings[i] = translate_string(strings[i], 0)
func = eval('lambda params: ' + strings[i].strip('"')) # the function leading to the trilinar element
pt.append(func(params)) # evaluate the function for the trilinear element
else: # we need a triangle function
string = so.cust_str # don't need to translate, as the pt_from_tcf function does that for us
pt = pt_from_tcf(string, params) # get the point from the tcf directly
if so.cust_pt: # draw the point
draw_SVG_circle(0, pt, params, st, 'CustomTrilinearPoint', layer)
if so.cust_radius: # draw the circle with given radius
strings = translate_string(so.radius, 0)
func = eval('lambda params: ' + strings.strip('"')) # the function leading to the radius
r = func(params)
draw_SVG_circle(r, pt, params, st, 'CustomTrilinearCircle', layer)
if so.isogonal_conj:
isogonal = [0, 0, 0]
for i in range(3):
isogonal[i] = 1 / pt[i]
draw_SVG_circle(0, isogonal, params, st, 'CustomIsogonalConjugate', layer)
if so.isotomic_conj:
isotomic = [0, 0, 0]
for i in range(3):
isotomic[i] = 1 / (params[0][i] * params[0][i] * pt[i])
draw_SVG_circle(0, isotomic, params, st, 'CustomIsotomicConjugate', layer)
if __name__ == '__main__':
DrawFromTriangle().run()
|