1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
|
# coding=utf-8
#
# Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru
# Copyright (C) 2005 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# pylint: disable=invalid-name,too-many-locals
#
"""
Bezier calculations
"""
import cmath
import math
import numpy
from .transforms import DirectedLineSegment
from .localization import inkex_gettext as _
# bez = ((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3))
def pointdistance(point_a, point_b):
"""The straight line distance between two points"""
return math.sqrt(((point_b[0] - point_a[0]) ** 2) + ((point_b[1] - point_a[1]) ** 2))
def between_point(point_a, point_b, time=0.5):
"""Returns the point between point a and point b"""
return point_a[0] + time * (point_b[0] - point_a[0]),\
point_a[1] + time * (point_b[1] - point_a[1])
def percent_point(point_a, point_b, percent=50.0):
"""Returns between_point but takes percent instead of 0.0-1.0"""
return between_point(point_a, point_b, percent / 100.0)
def root_wrapper(root_a, root_b, root_c, root_d):
"""Get the Cubic function, moic formular of roots, simple root"""
if root_a:
# Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots
mono_a, mono_b, mono_c = (root_b / root_a, root_c / root_a, root_d / root_a)
m = 2.0 * mono_a ** 3 - 9.0 * mono_a * mono_b + 27.0 * mono_c
k = mono_a ** 2 - 3.0 * mono_b
n = m ** 2 - 4.0 * k ** 3
w1 = -.5 + .5 * cmath.sqrt(-3.0)
w2 = -.5 - .5 * cmath.sqrt(-3.0)
if n < 0:
m1 = pow(complex((m + cmath.sqrt(n)) / 2), 1. / 3)
n1 = pow(complex((m - cmath.sqrt(n)) / 2), 1. / 3)
else:
if m + math.sqrt(n) < 0:
m1 = -pow(-(m + math.sqrt(n)) / 2, 1. / 3)
else:
m1 = pow((m + math.sqrt(n)) / 2, 1. / 3)
if m - math.sqrt(n) < 0:
n1 = -pow(-(m - math.sqrt(n)) / 2, 1. / 3)
else:
n1 = pow((m - math.sqrt(n)) / 2, 1. / 3)
return (-1. / 3 * (mono_a + m1 + n1),
-1. / 3 * (mono_a + w1 * m1 + w2 * n1),
-1. / 3 * (mono_a + w2 * m1 + w1 * n1))
elif root_b:
det = root_c ** 2.0 - 4.0 * root_b * root_d
if det:
return (
(-root_c + cmath.sqrt(det)) / (2.0 * root_b),
(-root_c - cmath.sqrt(det)) / (2.0 * root_b))
return (-root_c / (2.0 * root_b),)
elif root_c:
return (1.0 * (-root_d / root_c),)
return ()
def bezlenapprx(sp1, sp2):
"""Return the aproximate length between two beziers"""
return pointdistance(sp1[1], sp1[2]) \
+ pointdistance(sp1[2], sp2[0]) \
+ pointdistance(sp2[0], sp2[1])
def cspbezsplit(sp1, sp2, time=0.5):
"""Split a cubic bezier at the time period"""
m1 = tpoint(sp1[1], sp1[2], time)
m2 = tpoint(sp1[2], sp2[0], time)
m3 = tpoint(sp2[0], sp2[1], time)
m4 = tpoint(m1, m2, time)
m5 = tpoint(m2, m3, time)
m = tpoint(m4, m5, time)
return [[sp1[0][:], sp1[1][:], m1], [m4, m, m5], [m3, sp2[1][:], sp2[2][:]]]
def cspbezsplitatlength(sp1, sp2, length=0.5, tolerance=0.001):
"""Split a cubic bezier at length"""
bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
time = beziertatlength(bez, length, tolerance)
return cspbezsplit(sp1, sp2, time)
def cspseglength(sp1, sp2, tolerance=0.001):
"""Get cubic bezier segment length"""
bez = (sp1[1][:], sp1[2][:], sp2[0][:], sp2[1][:])
return bezierlength(bez, tolerance)
def csplength(csp):
"""Get cubic bezier length"""
total = 0
lengths = []
for sp in csp:
lengths.append([])
for i in range(1, len(sp)):
l = cspseglength(sp[i - 1], sp[i])
lengths[-1].append(l)
total += l
return lengths, total
def bezierparameterize(bez):
"""Return the bezier parameter size"""
((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez
# parametric bezier
x0 = bx0
y0 = by0
cx = 3 * (bx1 - x0)
bx = 3 * (bx2 - bx1) - cx
ax = bx3 - x0 - cx - bx
cy = 3 * (by1 - y0)
by = 3 * (by2 - by1) - cy
ay = by3 - y0 - cy - by
return ax, ay, bx, by, cx, cy, x0, y0
def linebezierintersect(arg_a, bez):
"""Where a line and bezier intersect"""
((lx1, ly1), (lx2, ly2)) = arg_a
# parametric line
dd = lx1
cc = lx2 - lx1
bb = ly1
aa = ly2 - ly1
if aa:
coef1 = cc / aa
coef2 = 1
else:
coef1 = 1
coef2 = aa / cc
ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez)
# cubic intersection coefficients
a = coef1 * ay - coef2 * ax
b = coef1 * by - coef2 * bx
c = coef1 * cy - coef2 * cx
d = coef1 * (y0 - bb) - coef2 * (x0 - dd)
roots = root_wrapper(a, b, c, d)
retval = []
for i in roots:
if isinstance(i, complex) and i.imag == 0:
i = i.real
if not isinstance(i, complex) and 0 <= i <= 1:
retval.append(bezierpointatt(bez, i))
return retval
def bezierpointatt(bez, t):
"""Get coords at the given time point along a bezier curve"""
ax, ay, bx, by, cx, cy, x0, y0 = bezierparameterize(bez)
x = ax * (t ** 3) + bx * (t ** 2) + cx * t + x0
y = ay * (t ** 3) + by * (t ** 2) + cy * t + y0
return x, y
def bezierslopeatt(bez, t):
"""Get slope at the given time point along a bezier curve"""
ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez)
dx = 3 * ax * (t ** 2) + 2 * bx * t + cx
dy = 3 * ay * (t ** 2) + 2 * by * t + cy
return dx, dy
def beziertatslope(bez, d):
"""Reverse; get time from slope along a bezier curve"""
ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez)
(dy, dx) = d
# quadratic coefficients of slope formula
if dx:
slope = 1.0 * (dy / dx)
a = 3 * ay - 3 * ax * slope
b = 2 * by - 2 * bx * slope
c = cy - cx * slope
elif dy:
slope = 1.0 * (dx / dy)
a = 3 * ax - 3 * ay * slope
b = 2 * bx - 2 * by * slope
c = cx - cy * slope
else:
return []
roots = root_wrapper(0, a, b, c)
retval = []
for i in roots:
if isinstance(i, complex) and i.imag == 0:
i = i.real
if not isinstance(i, complex) and 0 <= i <= 1:
retval.append(i)
return retval
def tpoint(p1, p2, t):
"""Linearly interpolate between p1 and p2.
t = 0.0 returns p1, t = 1.0 returns p2.
:return: Interpolated point
:rtype: tuple
:param p1: First point as sequence of two floats
:param p2: Second point as sequence of two floats
:param t: Number between 0.0 and 1.0
:type t: float
"""
x1, y1 = p1
x2, y2 = p2
return x1 + t * (x2 - x1), y1 + t * (y2 - y1)
def beziersplitatt(bez, t):
"""Split bezier at given time"""
((bx0, by0), (bx1, by1), (bx2, by2), (bx3, by3)) = bez
m1 = tpoint((bx0, by0), (bx1, by1), t)
m2 = tpoint((bx1, by1), (bx2, by2), t)
m3 = tpoint((bx2, by2), (bx3, by3), t)
m4 = tpoint(m1, m2, t)
m5 = tpoint(m2, m3, t)
m = tpoint(m4, m5, t)
return ((bx0, by0), m1, m4, m), (m, m5, m3, (bx3, by3))
def addifclose(bez, l, error=0.001):
"""Gravesen, Add if the line is closed, in-place addition to array l"""
box = 0
for i in range(1, 4):
box += pointdistance(bez[i - 1], bez[i])
chord = pointdistance(bez[0], bez[3])
if (box - chord) > error:
first, second = beziersplitatt(bez, 0.5)
addifclose(first, l, error)
addifclose(second, l, error)
else:
l[0] += (box / 2.0) + (chord / 2.0)
# balfax, balfbx, balfcx, balfay, balfby, balfcy = 0, 0, 0, 0, 0, 0
def balf(t, args):
"""Bezier Arc Length Function"""
ax, bx, cx, ay, by, cy = args
retval = (ax * (t ** 2) + bx * t + cx) ** 2 + (ay * (t ** 2) + by * t + cy) ** 2
return math.sqrt(retval)
def simpson(a, b, n_limit, tolerance, balarg):
"""It's not known what this function does..."""
n = 2
multiplier = (b - a) / 6.0
endsum = balf(a, balarg) + balf(b, balarg)
interval = (b - a) / 2.0
asum = 0.0
bsum = balf(a + interval, balarg)
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
est0 = 2.0 * est1
# print(multiplier, endsum, interval, asum, bsum, est1, est0)
while n < n_limit and abs(est1 - est0) > tolerance:
n *= 2
multiplier /= 2.0
interval /= 2.0
asum += bsum
bsum = 0.0
est0 = est1
for i in range(1, n, 2):
bsum += balf(a + (i * interval), balarg)
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
# print(multiplier, endsum, interval, asum, bsum, est1, est0)
return est1
def bezierlength(bez, tolerance=0.001, time=1.0):
"""Get length of bezier curve"""
ax, ay, bx, by, cx, cy, _, _ = bezierparameterize(bez)
return simpson(0.0, time, 4096, tolerance, [3 * ax, 2 * bx, cx, 3 * ay, 2 * by, cy])
def beziertatlength(bez, l=0.5, tolerance=0.001):
"""Get bezier curve time at the length specified"""
curlen = bezierlength(bez, tolerance, 1.0)
time = 1.0
tdiv = time
targetlen = l * curlen
diff = curlen - targetlen
while abs(diff) > tolerance:
tdiv /= 2.0
if diff < 0:
time += tdiv
else:
time -= tdiv
curlen = bezierlength(bez, tolerance, time)
diff = curlen - targetlen
return time
def maxdist(bez):
"""Get maximum distance within bezier curve"""
seg = DirectedLineSegment(bez[0], bez[3])
return max(seg.distance_to_point(*bez[1]), seg.distance_to_point(*bez[2]))
def cspsubdiv(csp, flat):
"""Sub-divide cubic sub-paths"""
for sp in csp:
subdiv(sp, flat)
def subdiv(sp, flat, i=1):
"""sub divide bezier curve"""
while i < len(sp):
p0 = sp[i - 1][1]
p1 = sp[i - 1][2]
p2 = sp[i][0]
p3 = sp[i][1]
bez = (p0, p1, p2, p3)
mdist = maxdist(bez)
if mdist <= flat:
i += 1
else:
one, two = beziersplitatt(bez, 0.5)
sp[i - 1][2] = one[1]
sp[i][0] = two[2]
p = [one[2], one[3], two[1]]
sp[i:1] = [p]
def csparea(csp):
"""Get area in cubic sub-path"""
MAT_AREA = numpy.array([[0, 2, 1, -3],
[-2, 0, 1, 1],
[-1, -1, 0, 2],
[3, -1, -2, 0]])
area = 0.0
for sp in csp:
if len(sp) < 2:
continue
for x, coord in enumerate(sp): # calculate polygon area
area += 0.5 * sp[x - 1][1][0] * (coord[1][1] - sp[x - 2][1][1])
for i in range(1, len(sp)): # add contribution from cubic Bezier
vec_x = numpy.array([sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]])
vec_y = numpy.array([sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]])
vex = numpy.matmul(vec_x, MAT_AREA)
area += 0.15 * numpy.matmul(vex, vec_y.T)
return -area
def cspcofm(csp):
"""Get cubic sub-path coefficient"""
MAT_COFM_0 = numpy.array([[0, 35, 10, -45],
[-35, 0, 12, 23],
[-10, -12, 0, 22],
[45, -23, -22, 0]])
MAT_COFM_1 = numpy.array([[0, 15, 3, -18],
[-15, 0, 9, 6],
[-3, -9, 0, 12],
[18, -6, -12, 0]])
MAT_COFM_2 = numpy.array([[0, 12, 6, -18],
[-12, 0, 9, 3],
[-6, -9, 0, 15],
[18, -3, -15, 0]])
MAT_COFM_3 = numpy.array([[0, 22, 23, -45],
[-22, 0, 12, 10],
[-23, -12, 0, 35],
[45, -10, -35, 0]])
area = csparea(csp)
xc = 0.0
yc = 0.0
if abs(area) < 1.e-8:
raise ValueError(_("Area is zero, cannot calculate Center of Mass"))
for sp in csp:
for x, coord in enumerate(sp): # calculate polygon moment
xc += sp[x - 1][1][1] * (sp[x - 2][1][0] - coord[1][0]) \
* (sp[x - 2][1][0] + sp[x - 1][1][0] + coord[1][0]) / 6
yc += sp[x - 1][1][0] * (coord[1][1] - sp[x - 2][1][1]) \
* (sp[x - 2][1][1] + sp[x - 1][1][1] + coord[1][1]) / 6
for i in range(1, len(sp)): # add contribution from cubic Bezier
vec_x = numpy.array([sp[i - 1][1][0], sp[i - 1][2][0], sp[i][0][0], sp[i][1][0]])
vec_y = numpy.array([sp[i - 1][1][1], sp[i - 1][2][1], sp[i][0][1], sp[i][1][1]])
def _mul(MAT):
return numpy.matmul(numpy.matmul(vec_x, MAT), vec_y.T)
vec_t = numpy.array([
_mul(MAT_COFM_0),
_mul(MAT_COFM_1),
_mul(MAT_COFM_2),
_mul(MAT_COFM_3)
])
xc += numpy.matmul(vec_x, vec_t.T) / 280
yc += numpy.matmul(vec_y, vec_t.T) / 280
return -xc / area, -yc / area
|