1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2009 Michel Chatelain.
# 2007 Tavmjong Bah, tavmjong@free.fr
# 2006 Georg Wiora, xorx@quarkbox.de
# 2006 Johan Engelen, johan@shouraizou.nl
# 2005 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# Changes:
# * This program is derived by Michel Chatelain from funcplot.py.
# His changes are in the Public Domain.
# * Michel Chatelain, 17-18 janvier 2009, a partir de funcplot.py
# * 20 janvier 2009 : adaptation a la version 0.46 a partir de la nouvelle version de funcplot.py
#
"""
Parametric Curves has no real description, even in the inx file, which is really odd.
"""
from math import pi, cos, sin, tan
import inkex
def maths_eval(user_function):
"""Try and make the eval safer"""
func = 'lambda t: ' + (user_function.strip('"') or 't')
return eval( # pylint: disable=eval-used
func,
{
'pi': pi, 'sin': sin, 'cos': cos, 'tan': tan,
}, {})
def drawfunction(t_start, t_end, xleft, xright, ybottom, ytop, samples, width, height, left, bottom,
fx="cos(3*t)", fy="sin(5*t)", times2pi=False, isoscale=True, drawaxis=True):
if times2pi:
t_start *= 2 * pi
t_end *= 2 * pi
# coords and scales based on the source rect
scalex = width / (xright - xleft)
xoff = left
coordx = lambda x: (x - xleft) * scalex + xoff # convert x-value to coordinate
scaley = height / (ytop - ybottom)
yoff = bottom
coordy = lambda y: (ybottom - y) * scaley + yoff # convert y-value to coordinate
# Check for isotropic scaling and use smaller of the two scales, correct ranges
if isoscale:
if scaley < scalex:
# compute zero location
xzero = coordx(0)
# set scale
scalex = scaley
# correct x-offset
xleft = (left - xzero) / scalex
xright = (left + width - xzero) / scalex
else:
# compute zero location
yzero = coordy(0)
# set scale
scaley = scalex
# correct x-offset
ybottom = (yzero - bottom) / scaley
ytop = (bottom + height - yzero) / scaley
# functions specified by the user
f1 = maths_eval(fx)
f2 = maths_eval(fy)
# step is increment of t
step = (t_end - t_start) / (samples - 1)
third = step / 3.0
ds = step * 0.001 # Step used in calculating derivatives
a = [] # path array
# add axis
if drawaxis:
# check for visibility of x-axis
if ybottom <= 0 <= ytop:
# xaxis
a.append(['M', [left, coordy(0)]])
a.append(['l', [width, 0]])
# check for visibility of y-axis
if xleft <= 0 <= xright:
# xaxis
a.append(['M', [coordx(0), bottom]])
a.append(['l', [0, -height]])
# initialize functions and derivatives for 0;
# they are carried over from one iteration to the next, to avoid extra function calculations.
#print("RET: {}".format(f1(1)))
x0 = f1(t_start)
y0 = f2(t_start)
# numerical derivatives, using 0.001*step as the small differential
t1 = t_start + ds # Second point AFTER first point (Good for first point)
x1 = f1(t1)
y1 = f2(t1)
dx0 = (x1 - x0) / ds
dy0 = (y1 - y0) / ds
# Start curve
a.append(['M', [coordx(x0), coordy(y0)]]) # initial moveto
for i in range(int(samples - 1)):
t1 = (i + 1) * step + t_start
t2 = t1 - ds # Second point BEFORE first point (Good for last point)
x1 = f1(t1)
x2 = f1(t2)
y1 = f2(t1)
y2 = f2(t2)
# numerical derivatives
dx1 = (x1 - x2) / ds
dy1 = (y1 - y2) / ds
# create curve
a.append(['C',
[coordx(x0 + (dx0 * third)), coordy(y0 + (dy0 * third)),
coordx(x1 - (dx1 * third)), coordy(y1 - (dy1 * third)),
coordx(x1), coordy(y1)]
])
t0 = t1 # Next segment's start is this segments end
x0 = x1
y0 = y1
dx0 = dx1 # Assume the functions are smooth everywhere, so carry over the derivatives too
dy0 = dy1
return a
class ParamCurves(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--t_start", type=float, default=0.0, help="Start t-value")
pars.add_argument("--t_end", type=float, default=1.0, help="End t-value")
pars.add_argument("--times2pi", type=inkex.Boolean, default=True,
help="Multiply t-range by 2*pi")
pars.add_argument("--xleft", type=float, default=-1.0, help="x-value of left")
pars.add_argument("--xright", type=float, default=1.0, help="x-value of right")
pars.add_argument("--ybottom", type=float, default=-1.0, help="y-value of bottom")
pars.add_argument("--ytop", type=float, default=1.0, help="y-value of top")
pars.add_argument("-s", "--samples", type=int, default=8, help="Samples")
pars.add_argument("--fofx", default="cos(3*t)", help="fx(t) for plotting")
pars.add_argument("--fofy", default="sin(5*t)", help="fy(t) for plotting")
pars.add_argument("--remove", type=inkex.Boolean, default=True, help="Remove rectangle")
pars.add_argument("--isoscale", type=inkex.Boolean, default=True, help="Isotropic scaling")
pars.add_argument("--drawaxis", type=inkex.Boolean, default=True)
pars.add_argument("--tab", default="sampling")
def effect(self):
for node in self.svg.selected.values():
if isinstance(node, inkex.Rectangle):
# create new path with basic dimensions of selected rectangle
newpath = inkex.PathElement()
x = float(node.get('x'))
y = float(node.get('y'))
width = float(node.get('width'))
height = float(node.get('height'))
# copy attributes of rect
newpath.style = node.style
newpath.transform = node.transform
# top and bottom were exchanged
newpath.path = \
drawfunction(self.options.t_start,
self.options.t_end,
self.options.xleft,
self.options.xright,
self.options.ybottom,
self.options.ytop,
self.options.samples,
width, height, x, y + height,
self.options.fofx,
self.options.fofy,
self.options.times2pi,
self.options.isoscale,
self.options.drawaxis)
newpath.set('title', self.options.fofx + " " + self.options.fofy)
# newpath.set('desc', '!func;' + self.options.fofx + ';' + self.options.fofy + ';'
# + `self.options.t_start` + ';'
# + `self.options.t_end` + ';'
# + `self.options.samples`)
# add path into SVG structure
node.getparent().append(newpath)
# option whether to remove the rectangle or not.
if self.options.remove:
node.getparent().remove(node)
if __name__ == '__main__':
ParamCurves().run()
|