1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2007 John Beard john.j.beard@gmail.com
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
"""
This extension allows you to draw a triangle given certain information
about side length or angles.
Measurements of the triangle
C(x_c,y_c)
/`__
/ a_c``--__
/ ``--__ s_a
s_b / ``--__
/a_a a_b`--__
/--------------------------------``B(x_b, y_b)
A(x_a,y_a) s_b
"""
import sys
from math import acos, asin, cos, pi, sin, sqrt
import inkex
X, Y = range(2)
def draw_SVG_tri(point1, point2, point3, offset, width, name, parent):
style = {'stroke': '#000000', 'stroke-width': str(width), 'fill': 'none'}
elem = parent.add(inkex.PathElement())
elem.update(**{
'style': style,
'inkscape:label': name,
'd': 'M ' + str(point1[X] + offset[X]) + ',' + str(point1[Y] + offset[Y]) +
' L ' + str(point2[X] + offset[X]) + ',' + str(point2[Y] + offset[Y]) +
' L ' + str(point3[X] + offset[X]) + ',' + str(point3[Y] + offset[Y]) +
' L ' + str(point1[X] + offset[X]) + ',' + str(point1[Y] + offset[Y]) + ' z'})
return elem
def angle_from_3_sides(a, b, c): # return the angle opposite side c
cosx = (a * a + b * b - c * c) / (2 * a * b) # use the cosine rule
return acos(cosx)
def third_side_from_enclosed_angle(s_a, s_b, a_c): # return the side opposite a_c
c_squared = s_a * s_a + s_b * s_b - 2 * s_a * s_b * cos(a_c)
if c_squared > 0:
return sqrt(c_squared)
else:
return 0 # means we have an invalid or degenerate triangle (zero is caught at the drawing stage)
def pt_on_circ(radius, angle): # return the x,y coordinate of the polar coordinate
x = radius * cos(angle)
y = radius * sin(angle)
return [x, y]
def v_add(point1, point2): # add an offset to coordinates
return [point1[X] + point2[X], point1[Y] + point2[Y]]
def is_valid_tri_from_sides(a, b, c): # check whether triangle with sides a,b,c is valid
return (a + b) > c and (a + c) > b and (b + c) > a and a > 0 and b > 0 and c > 0 # two sides must always be greater than the third
# no zero-length sides, no degenerate case
def draw_tri_from_3_sides(s_a, s_b, s_c, offset, width, parent): # draw a triangle from three sides (with a given offset
if is_valid_tri_from_sides(s_a, s_b, s_c):
a_b = angle_from_3_sides(s_a, s_c, s_b)
a = (0, 0) # a is the origin
b = v_add(a, (s_c, 0)) # point B is horizontal from the origin
c = v_add(b, pt_on_circ(s_a, pi - a_b)) # get point c
c[1] = -c[1]
offx = max(b[0], c[0]) / 2 # b or c could be the furthest right
offy = c[1] / 2 # c is the highest point
offset = (offset[0] - offx, offset[1] - offy) # add the centre of the triangle to the offset
draw_SVG_tri(a, b, c, offset, width, 'Triangle', parent)
else:
inkex.errormsg('Invalid Triangle Specifications.')
class Triangle(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--s_a", type=float, default=100.0, help="Side Length a")
pars.add_argument("--s_b", type=float, default=100.0, help="Side Length b")
pars.add_argument("--s_c", type=float, default=100.0, help="Side Length c")
pars.add_argument("--a_a", type=float, default=60.0, help="Angle a")
pars.add_argument("--a_b", type=float, default=30.0, help="Angle b")
pars.add_argument("--a_c", type=float, default=90.0, help="Angle c")
pars.add_argument("--mode", default='3_sides', help="Side Length c")
def effect(self):
tri = self.svg.get_current_layer()
offset = self.svg.namedview.center
self.options.s_a = self.svg.unittouu(str(self.options.s_a) + 'px')
self.options.s_b = self.svg.unittouu(str(self.options.s_b) + 'px')
self.options.s_c = self.svg.unittouu(str(self.options.s_c) + 'px')
stroke_width = self.svg.unittouu('2px')
if self.options.mode == '3_sides':
s_a = self.options.s_a
s_b = self.options.s_b
s_c = self.options.s_c
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_ab_a_c':
s_a = self.options.s_a
s_b = self.options.s_b
a_c = self.options.a_c * pi / 180 # in rad
s_c = third_side_from_enclosed_angle(s_a, s_b, a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_ab_a_a':
s_a = self.options.s_a
s_b = self.options.s_b
a_a = self.options.a_a * pi / 180 # in rad
if (a_a < pi / 2.0) and (s_a < s_b) and (s_a > s_b * sin(a_a)): # this is an ambiguous case
ambiguous = True # we will give both answers
else:
ambiguous = False
sin_a_b = s_b * sin(a_a) / s_a
if (sin_a_b <= 1) and (sin_a_b >= -1): # check the solution is possible
a_b = asin(sin_a_b) # acute solution
a_c = pi - a_a - a_b
error = False
else:
sys.stderr.write('Error:Invalid Triangle Specifications.\n') # signal an error
error = True
if not error and (a_b < pi) and (a_c < pi): # check that the solution is valid, if so draw acute solution
s_c = third_side_from_enclosed_angle(s_a, s_b, a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
if not error and ((a_b > pi) or (a_c > pi) or ambiguous): # we want the obtuse solution
a_b = pi - a_b
a_c = pi - a_a - a_b
s_c = third_side_from_enclosed_angle(s_a, s_b, a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_a_a_ab':
s_a = self.options.s_a
a_a = self.options.a_a * pi / 180 # in rad
a_b = self.options.a_b * pi / 180 # in rad
a_c = pi - a_a - a_b
s_b = s_a * sin(a_b) / sin(a_a)
s_c = s_a * sin(a_c) / sin(a_a)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
elif self.options.mode == 's_c_a_ab':
s_c = self.options.s_c
a_a = self.options.a_a * pi / 180 # in rad
a_b = self.options.a_b * pi / 180 # in rad
a_c = pi - a_a - a_b
s_a = s_c * sin(a_a) / sin(a_c)
s_b = s_c * sin(a_b) / sin(a_c)
draw_tri_from_3_sides(s_a, s_b, s_c, offset, stroke_width, tri)
if __name__ == '__main__':
Triangle().run()
|