summaryrefslogtreecommitdiffstats
path: root/src/2geom/affine.cpp
blob: 48179e8640dd990e65a39f0e7d4a094a3158f712 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/*
 * Authors:
 *   Lauris Kaplinski <lauris@kaplinski.com>
 *   Michael G. Sloan <mgsloan@gmail.com>
 *
 * This code is in public domain
 */

#include <2geom/affine.h>
#include <2geom/point.h>
#include <2geom/polynomial.h>
#include <2geom/utils.h>

namespace Geom {

/** Creates a Affine given an axis and origin point.
 *  The axis is represented as two vectors, which represent skew, rotation, and scaling in two dimensions.
 *  from_basis(Point(1, 0), Point(0, 1), Point(0, 0)) would return the identity matrix.

 \param x_basis the vector for the x-axis.
 \param y_basis the vector for the y-axis.
 \param offset the translation applied by the matrix.
 \return The new Affine.
 */
//NOTE: Inkscape's version is broken, so when including this version, you'll have to search for code with this func
Affine from_basis(Point const &x_basis, Point const &y_basis, Point const &offset) {
    return Affine(x_basis[X], x_basis[Y],
                  y_basis[X], y_basis[Y],
                  offset [X], offset [Y]);
}

Point Affine::xAxis() const {
    return Point(_c[0], _c[1]);
}

Point Affine::yAxis() const {
    return Point(_c[2], _c[3]);
}

/// Gets the translation imparted by the Affine.
Point Affine::translation() const {
    return Point(_c[4], _c[5]);
}

void Affine::setXAxis(Point const &vec) {
    for(int i = 0; i < 2; i++)
        _c[i] = vec[i];
}

void Affine::setYAxis(Point const &vec) {
    for(int i = 0; i < 2; i++)
        _c[i + 2] = vec[i];
}

/// Sets the translation imparted by the Affine.
void Affine::setTranslation(Point const &loc) {
    for(int i = 0; i < 2; i++)
        _c[i + 4] = loc[i];
}

/** Calculates the amount of x-scaling imparted by the Affine.  This is the scaling applied to
 *  the original x-axis region.  It is \emph{not} the overall x-scaling of the transformation.
 *  Equivalent to L2(m.xAxis()). */
double Affine::expansionX() const {
    return sqrt(_c[0] * _c[0] + _c[1] * _c[1]);
}

/** Calculates the amount of y-scaling imparted by the Affine.  This is the scaling applied before
 *  the other transformations.  It is \emph{not} the overall y-scaling of the transformation. 
 *  Equivalent to L2(m.yAxis()). */
double Affine::expansionY() const {
    return sqrt(_c[2] * _c[2] + _c[3] * _c[3]);
}

void Affine::setExpansionX(double val) {
    double exp_x = expansionX();
    if (exp_x != 0.0) {  //TODO: best way to deal with it is to skip op?
        double coef = val / expansionX();
        for (unsigned i = 0; i < 2; ++i) {
            _c[i] *= coef;
        }
    }
}

void Affine::setExpansionY(double val) {
    double exp_y = expansionY();
    if (exp_y != 0.0) {  //TODO: best way to deal with it is to skip op?
        double coef = val / expansionY();
        for (unsigned i = 2; i < 4; ++i) {
            _c[i] *= coef;
        }
    }
}

/** Sets this matrix to be the Identity Affine. */
void Affine::setIdentity() {
    _c[0] = 1.0; _c[1] = 0.0;
    _c[2] = 0.0; _c[3] = 1.0;
    _c[4] = 0.0; _c[5] = 0.0;
}

/** @brief Check whether this matrix is an identity matrix.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & 0 & 0 \\
           0 & 1 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ */
bool Affine::isIdentity(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
           are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents a pure translation.
 * Will return true for the identity matrix, which represents a zero translation.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & 0 & 0 \\
           0 & 1 & 0 \\
           a & b & 1 \end{array}\right]\f$ */
bool Affine::isTranslation(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
           are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps);
}
/** @brief Check whether this matrix represents a pure nonzero translation.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & 0 & 0 \\
           0 & 1 & 0 \\
           a & b & 1 \end{array}\right]\f$ and \f$a, b \neq 0\f$ */
bool Affine::isNonzeroTranslation(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
           are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
           (!are_near(_c[4], 0.0, eps) || !are_near(_c[5], 0.0, eps));
}

/** @brief Check whether this matrix represents pure scaling.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a & 0 & 0 \\
           0 & b & 0 \\
           0 & 0 & 1 \end{array}\right]\f$. */
bool Affine::isScale(Coord eps) const {
    if (isSingular(eps)) return false;
    return are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && 
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents pure, nonzero scaling.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a & 0 & 0 \\
           0 & b & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ and \f$a, b \neq 1\f$. */
bool Affine::isNonzeroScale(Coord eps) const {
    if (isSingular(eps)) return false;
    return (!are_near(_c[0], 1.0, eps) || !are_near(_c[3], 1.0, eps)) &&  //NOTE: these are the diags, and the next line opposite diags
           are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) && 
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents pure uniform scaling.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a_1 & 0 & 0 \\
           0 & a_2 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$. */
bool Affine::isUniformScale(Coord eps) const {
    if (isSingular(eps)) return false;
    return are_near(fabs(_c[0]), fabs(_c[3]), eps) &&
           are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) &&  
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents pure, nonzero uniform scaling.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a_1 & 0 & 0 \\
           0 & a_2 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ where \f$|a_1| = |a_2|\f$
 * and \f$a_1, a_2 \neq 1\f$. */
bool Affine::isNonzeroUniformScale(Coord eps) const {
    if (isSingular(eps)) return false;
    // we need to test both c0 and c3 to handle the case of flips,
    // which should be treated as nonzero uniform scales
    return !(are_near(_c[0], 1.0, eps) && are_near(_c[3], 1.0, eps)) &&
           are_near(fabs(_c[0]), fabs(_c[3]), eps) &&
           are_near(_c[1], 0.0, eps) && are_near(_c[2], 0.0, eps) &&  
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents a pure rotation.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a & b & 0 \\
           -b & a & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */
bool Affine::isRotation(Coord eps) const {
    return are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) &&
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) &&
           are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps);
}

/** @brief Check whether this matrix represents a pure, nonzero rotation.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a & b & 0 \\
           -b & a & 0 \\
           0 & 0 & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */
bool Affine::isNonzeroRotation(Coord eps) const {
    return !are_near(_c[0], 1.0, eps) &&
           are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) &&
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps) &&
           are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps);
}

/** @brief Check whether this matrix represents a non-zero rotation about any point.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a & b & 0 \\
           -b & a & 0 \\
           c & d & 1 \end{array}\right]\f$, \f$a^2 + b^2 = 1\f$ and \f$a \neq 1\f$. */
bool Affine::isNonzeroNonpureRotation(Coord eps) const {
    return !are_near(_c[0], 1.0, eps) &&
           are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps) &&
           are_near(_c[0]*_c[0] + _c[1]*_c[1], 1.0, eps);
}

/** @brief For a (possibly non-pure) non-zero-rotation matrix, calculate the rotation center.
 * @pre The matrix must be a non-zero-rotation matrix to prevent division by zero, see isNonzeroNonpureRotation().
 * @return The rotation center x, the solution to the equation
 *         \f$A x = x\f$. */
Point Affine::rotationCenter() const {
    Coord x = (_c[2]*_c[5]+_c[4]-_c[4]*_c[3]) / (1-_c[3]-_c[0]+_c[0]*_c[3]-_c[2]*_c[1]);
    Coord y = (_c[1]*x + _c[5]) / (1 - _c[3]);
    return Point(x,y);
};

/** @brief Check whether this matrix represents pure horizontal shearing.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & 0 & 0 \\
           k & 1 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$. */
bool Affine::isHShear(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
           are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) &&
           are_near(_c[5], 0.0, eps);
}
/** @brief Check whether this matrix represents pure, nonzero horizontal shearing.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & 0 & 0 \\
           k & 1 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */
bool Affine::isNonzeroHShear(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && are_near(_c[1], 0.0, eps) &&
          !are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents pure vertical shearing.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & k & 0 \\
           0 & 1 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$. */
bool Affine::isVShear(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && are_near(_c[2], 0.0, eps) &&
           are_near(_c[3], 1.0, eps) && are_near(_c[4], 0.0, eps) &&
           are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents pure, nonzero vertical shearing.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           1 & k & 0 \\
           0 & 1 & 0 \\
           0 & 0 & 1 \end{array}\right]\f$ and \f$k \neq 0\f$. */
bool Affine::isNonzeroVShear(Coord eps) const {
    return are_near(_c[0], 1.0, eps) && !are_near(_c[1], 0.0, eps) &&
           are_near(_c[2], 0.0, eps) && are_near(_c[3], 1.0, eps) &&
           are_near(_c[4], 0.0, eps) && are_near(_c[5], 0.0, eps);
}

/** @brief Check whether this matrix represents zooming.
 * Zooming is any combination of translation and uniform non-flipping scaling.
 * It preserves angles, ratios of distances between arbitrary points
 * and unit vectors of line segments.
 * @param eps Numerical tolerance
 * @return True iff the matrix is invertible and of the form
 *         \f$\left[\begin{array}{ccc}
           a & 0 & 0 \\
           0 & a & 0 \\
           b & c & 1 \end{array}\right]\f$. */
bool Affine::isZoom(Coord eps) const {
    if (isSingular(eps)) return false;
    return are_near(_c[0], _c[3], eps) && are_near(_c[1], 0, eps) && are_near(_c[2], 0, eps);
}

/** @brief Check whether the transformation preserves areas of polygons.
 * This means that the transformation can be any combination of translation, rotation,
 * shearing and squeezing (non-uniform scaling such that the absolute value of the product
 * of Y-scale and X-scale is 1).
 * @param eps Numerical tolerance
 * @return True iff \f$|\det A| = 1\f$. */
bool Affine::preservesArea(Coord eps) const
{
    return are_near(descrim2(), 1.0, eps);
}

/** @brief Check whether the transformation preserves angles between lines.
 * This means that the transformation can be any combination of translation, uniform scaling,
 * rotation and flipping.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
             a & b & 0 \\
             -b & a & 0 \\
             c & d & 1 \end{array}\right]\f$ or
           \f$\left[\begin{array}{ccc}
             -a & b & 0 \\
             b & a & 0 \\
             c & d & 1 \end{array}\right]\f$. */
bool Affine::preservesAngles(Coord eps) const
{
    if (isSingular(eps)) return false;
    return (are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) ||
           (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps));
}

/** @brief Check whether the transformation preserves distances between points.
 * This means that the transformation can be any combination of translation,
 * rotation and flipping.
 * @param eps Numerical tolerance
 * @return True iff the matrix is of the form
 *         \f$\left[\begin{array}{ccc}
           a & b & 0 \\
           -b & a & 0 \\
           c & d & 1 \end{array}\right]\f$ or
           \f$\left[\begin{array}{ccc}
           -a & b & 0 \\
           b & a & 0 \\
           c & d & 1 \end{array}\right]\f$ and \f$a^2 + b^2 = 1\f$. */
bool Affine::preservesDistances(Coord eps) const
{
    return ((are_near(_c[0], _c[3], eps) && are_near(_c[1], -_c[2], eps)) ||
            (are_near(_c[0], -_c[3], eps) && are_near(_c[1], _c[2], eps))) &&
           are_near(_c[0] * _c[0] + _c[1] * _c[1], 1.0, eps);
}

/** @brief Check whether this transformation flips objects.
 * A transformation flips objects if it has a negative scaling component. */
bool Affine::flips() const {
    return det() < 0;
}

/** @brief Check whether this matrix is singular.
 * Singular matrices have no inverse, which means that applying them to a set of points
 * results in a loss of information.
 * @param eps Numerical tolerance
 * @return True iff the determinant is near zero. */
bool Affine::isSingular(Coord eps) const {
    return are_near(det(), 0.0, eps);
}

/** @brief Compute the inverse matrix.
 * Inverse is a matrix (denoted \f$A^{-1}\f$) such that \f$AA^{-1} = A^{-1}A = I\f$.
 * Singular matrices have no inverse (for example a matrix that has two of its columns equal).
 * For such matrices, the identity matrix will be returned instead.
 * @param eps Numerical tolerance
 * @return Inverse of the matrix, or the identity matrix if the inverse is undefined.
 * @post (m * m.inverse()).isIdentity() == true */
Affine Affine::inverse() const {
    Affine d;
    
    double mx = std::max(fabs(_c[0]) + fabs(_c[1]), 
                         fabs(_c[2]) + fabs(_c[3])); // a random matrix norm (either l1 or linfty
    if(mx > 0) {
        Geom::Coord const determ = det();
        if (!rel_error_bound(std::sqrt(fabs(determ)), mx)) {
            Geom::Coord const ideterm = 1.0 / (determ);
            
            d._c[0] =  _c[3] * ideterm;
            d._c[1] = -_c[1] * ideterm;
            d._c[2] = -_c[2] * ideterm;
            d._c[3] =  _c[0] * ideterm;
            d._c[4] = (-_c[4] * d._c[0] - _c[5] * d._c[2]);
            d._c[5] = (-_c[4] * d._c[1] - _c[5] * d._c[3]);
        } else {
            d.setIdentity();
        }
    } else {
        d.setIdentity();
    }

    return d;
}

/** @brief Calculate the determinant.
 * @return \f$\det A\f$. */
Coord Affine::det() const {
    // TODO this can overflow
    return _c[0] * _c[3] - _c[1] * _c[2];
}

/** @brief Calculate the square of the descriminant.
 * This is simply the absolute value of the determinant.
 * @return \f$|\det A|\f$. */
Coord Affine::descrim2() const {
    return fabs(det());
}

/** @brief Calculate the descriminant.
 * If the matrix doesn't contain a shearing or non-uniform scaling component, this value says
 * how will the length of any line segment change after applying this transformation
 * to arbitrary objects on a plane. The new length will be
 * @code line_seg.length() * m.descrim()) @endcode
 * @return \f$\sqrt{|\det A|}\f$. */
Coord Affine::descrim() const {
    return sqrt(descrim2());
}

/** @brief Combine this transformation with another one.
 * After this operation, the matrix will correspond to the transformation
 * obtained by first applying the original version of this matrix, and then
 * applying @a m. */
Affine &Affine::operator*=(Affine const &o) {
    Coord nc[6];
    for(int a = 0; a < 5; a += 2) {
        for(int b = 0; b < 2; b++) {
            nc[a + b] = _c[a] * o._c[b] + _c[a + 1] * o._c[b + 2];
        }
    }
    for(int a = 0; a < 6; ++a) {
        _c[a] = nc[a];
    }
    _c[4] += o._c[4];
    _c[5] += o._c[5];
    return *this;
}

//TODO: What's this!?!
/** Given a matrix m such that unit_circle = m*x, this returns the
 * quadratic form x*A*x = 1.
 * @relates Affine */
Affine elliptic_quadratic_form(Affine const &m) {
    double od = m[0] * m[1]  +  m[2] * m[3];
    Affine ret (m[0]*m[0] + m[1]*m[1], od,
                od, m[2]*m[2] + m[3]*m[3],
                0, 0);
    return ret; // allow NRVO
}

Eigen::Eigen(Affine const &m) {
    double const B = -m[0] - m[3];
    double const C = m[0]*m[3] - m[1]*m[2];

    std::vector<double> v = solve_quadratic(1, B, C);

    for (unsigned i = 0; i < v.size(); ++i) {
        values[i] = v[i];
        vectors[i] = unit_vector(rot90(Point(m[0] - values[i], m[1])));
    }
    for (unsigned i = v.size(); i < 2; ++i) {
        values[i] = 0;
        vectors[i] = Point(0,0);
    }
}

Eigen::Eigen(double m[2][2]) {
    double const B = -m[0][0] - m[1][1];
    double const C = m[0][0]*m[1][1] - m[1][0]*m[0][1];

    std::vector<double> v = solve_quadratic(1, B, C);

    for (unsigned i = 0; i < v.size(); ++i) {
        values[i] = v[i];
        vectors[i] = unit_vector(rot90(Point(m[0][0] - values[i], m[0][1])));
    }
    for (unsigned i = v.size(); i < 2; ++i) {
        values[i] = 0;
        vectors[i] = Point(0,0);
    }
}

/** @brief Nearness predicate for affine transforms.
 * @returns True if all entries of matrices are within eps of each other.
 * @relates Affine */
bool are_near(Affine const &a, Affine const &b, Coord eps)
{
    return are_near(a[0], b[0], eps) && are_near(a[1], b[1], eps) &&
           are_near(a[2], b[2], eps) && are_near(a[3], b[3], eps) &&
           are_near(a[4], b[4], eps) && are_near(a[5], b[5], eps);
}

}  //namespace Geom

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
  indent-tabs-mode:nil
  fill-column:99
  End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :