1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
/**
* \file
* \brief Various trigoniometric helper functions
*//*
* Authors:
* Johan Engelen <goejendaagh@zonnet.nl>
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof Kosiński <tweenk.pl@gmail.com>
*
* Copyright (C) 2007-2010 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_ANGLE_H
#define LIB2GEOM_SEEN_ANGLE_H
#include <cmath>
#include <boost/operators.hpp>
#include <2geom/exception.h>
#include <2geom/coord.h>
#include <2geom/point.h>
namespace Geom {
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
#ifndef M_1_2PI
# define M_1_2PI 0.159154943091895335768883763373
#endif
/** @brief Wrapper for angular values.
*
* This class is a convenience wrapper that implements the behavior generally expected of angles,
* like addition modulo \f$2\pi\f$. The value returned from the default conversion
* to <tt>double</tt> is in the range \f$[-\pi, \pi)\f$ - the convention used by C's
* math library.
*
* This class holds only a single floating point value, so passing it by value will generally
* be faster than passing it by const reference.
*
* @ingroup Primitives
*/
class Angle
: boost::additive< Angle
, boost::additive< Angle, Coord
, boost::equality_comparable< Angle
, boost::equality_comparable< Angle, Coord
> > > >
{
public:
Angle() : _angle(0) {}
Angle(Coord v) : _angle(v) { _normalize(); } // this can be called implicitly
explicit Angle(Point const &p) : _angle(atan2(p)) { _normalize(); }
Angle(Point const &a, Point const &b) : _angle(angle_between(a, b)) { _normalize(); }
operator Coord() const { return radians(); }
Angle &operator+=(Angle o) {
_angle += o._angle;
_normalize();
return *this;
}
Angle &operator-=(Angle o) {
_angle -= o._angle;
_normalize();
return *this;
}
Angle &operator+=(Coord a) {
*this += Angle(a);
return *this;
}
Angle &operator-=(Coord a) {
*this -= Angle(a);
return *this;
}
bool operator==(Angle o) const {
return _angle == o._angle;
}
bool operator==(Coord c) const {
return _angle == Angle(c)._angle;
}
/** @brief Get the angle as radians.
* @return Number in range \f$[-\pi, \pi)\f$. */
Coord radians() const {
return _angle >= M_PI ? _angle - 2*M_PI : _angle;
}
/** @brief Get the angle as positive radians.
* @return Number in range \f$[0, 2\pi)\f$. */
Coord radians0() const {
return _angle;
}
/** @brief Get the angle as degrees in math convention.
* @return Number in range [-180, 180) obtained by scaling the result of radians()
* by \f$180/\pi\f$. */
Coord degrees() const { return radians() * (180.0 / M_PI); }
/** @brief Get the angle as degrees in clock convention.
* This method converts the angle to the "clock convention": angles start from the +Y axis
* and grow clockwise. This means that 0 corresponds to \f$\pi/2\f$ radians,
* 90 to 0 radians, 180 to \f$-\pi/2\f$ radians, and 270 to \f$\pi\f$ radians.
* @return A number in the range [0, 360).
*/
Coord degreesClock() const {
Coord ret = 90.0 - _angle * (180.0 / M_PI);
if (ret < 0) ret += 360;
return ret;
}
/** @brief Create an angle from its measure in radians. */
static Angle from_radians(Coord d) {
Angle a(d);
return a;
}
/** @brief Create an angle from its measure in degrees. */
static Angle from_degrees(Coord d) {
Angle a(d * (M_PI / 180.0));
return a;
}
/** @brief Create an angle from its measure in degrees in clock convention.
* @see Angle::degreesClock() */
static Angle from_degrees_clock(Coord d) {
// first make sure d is in [0, 360)
d = std::fmod(d, 360.0);
if (d < 0) d += 360.0;
Coord rad = M_PI/2 - d * (M_PI / 180.0);
if (rad < 0) rad += 2*M_PI;
Angle a;
a._angle = rad;
return a;
}
private:
void _normalize() {
_angle = std::fmod(_angle, 2*M_PI);
if (_angle < 0) _angle += 2*M_PI;
//_angle -= floor(_angle * (1.0/(2*M_PI))) * 2*M_PI;
}
Coord _angle; // this is always in [0, 2pi)
friend class AngleInterval;
};
inline Angle distance(Angle const &a, Angle const &b) {
// the distance cannot be larger than M_PI.
Coord ac = a.radians0();
Coord bc = b.radians0();
Coord d = fabs(ac - bc);
return Angle(d > M_PI ? 2*M_PI - d : d);
}
/** @brief Directed angular interval.
*
* Wrapper for directed angles with defined start and end values. Useful e.g. for representing
* the portion of an ellipse in an elliptical arc. Both extreme angles are contained
* in the interval (it is a closed interval). Angular intervals can also be interptered
* as functions \f$f: [0, 1] \to [-\pi, \pi)\f$, which return the start angle for 0,
* the end angle for 1, and interpolate linearly for other values. Note that such functions
* are not continuous if the interval crosses the angle \f$\pi\f$.
*
* This class can represent all directed angular intervals, including empty ones.
* However, not all possible intervals can be created with the constructors.
* For full control, use the setInitial(), setFinal() and setAngles() methods.
*
* @ingroup Primitives
*/
class AngleInterval
: boost::equality_comparable< AngleInterval >
{
public:
AngleInterval() {}
/** @brief Create an angular interval from two angles and direction.
* If the initial and final angle are the same, a degenerate interval
* (containing only one angle) will be created.
* @param s Starting angle
* @param e Ending angle
* @param cw Which direction the interval goes. True means that it goes
* in the direction of increasing angles, while false means in the direction
* of decreasing angles. */
AngleInterval(Angle s, Angle e, bool cw = false)
: _start_angle(s), _end_angle(e), _sweep(cw), _full(false)
{}
AngleInterval(double s, double e, bool cw = false)
: _start_angle(s), _end_angle(e), _sweep(cw), _full(false)
{}
/** @brief Create an angular interval from three angles.
* If the inner angle is exactly equal to initial or final angle,
* the sweep flag will be set to true, i.e. the interval will go
* in the direction of increasing angles.
*
* If the initial and final angle are the same, but the inner angle
* is different, a full angle in the direction of increasing angles
* will be created.
*
* @param s Initial angle
* @param inner Angle contained in the interval
* @param e Final angle */
AngleInterval(Angle s, Angle inner, Angle e)
: _start_angle(s)
, _end_angle(e)
, _sweep((inner-s).radians0() <= (e-s).radians0())
, _full(s == e && s != inner)
{
if (_full) {
_sweep = true;
}
}
/// Get the start angle.
Angle initialAngle() const { return _start_angle; }
/// Get the end angle.
Angle finalAngle() const { return _end_angle; }
/// Check whether the interval goes in the direction of increasing angles.
bool sweep() const { return _sweep; }
/// Check whether the interval contains only a single angle.
bool isDegenerate() const {
return _start_angle == _end_angle && !_full;
}
/// Check whether the interval contains all angles.
bool isFull() const {
return _start_angle == _end_angle && _full;
}
/** @brief Set the initial angle.
* @param a Angle to set
* @param prefer_full Whether to set a full angular interval when
* the initial angle is set to the final angle */
void setInitial(Angle a, bool prefer_full = false) {
_start_angle = a;
_full = prefer_full && a == _end_angle;
}
/** @brief Set the final angle.
* @param a Angle to set
* @param prefer_full Whether to set a full angular interval when
* the initial angle is set to the final angle */
void setFinal(Angle a, bool prefer_full = false) {
_end_angle = a;
_full = prefer_full && a == _start_angle;
}
/** @brief Set both angles at once.
* The direction (sweep flag) is left unchanged.
* @param s Initial angle
* @param e Final angle
* @param prefer_full Whether to set a full interval when the passed
* initial and final angle are the same */
void setAngles(Angle s, Angle e, bool prefer_full = false) {
_start_angle = s;
_end_angle = e;
_full = prefer_full && s == e;
}
/// Set whether the interval goes in the direction of increasing angles.
void setSweep(bool s) { _sweep = s; }
/// Reverse the direction of the interval while keeping contained values the same.
void reverse() {
using std::swap;
swap(_start_angle, _end_angle);
_sweep = !_sweep;
}
/// Get a new interval with reversed direction.
AngleInterval reversed() const {
AngleInterval result(*this);
result.reverse();
return result;
}
/// Get an angle corresponding to the specified time value.
Angle angleAt(Coord t) const {
Coord span = extent();
Angle ret = _start_angle.radians0() + span * (_sweep ? t : -t);
return ret;
}
Angle operator()(Coord t) const { return angleAt(t); }
/** @brief Compute a time value that would evaluate to the given angle.
* If the start and end angle are exactly the same, NaN will be returned.
* Negative values will be returned for angles between the initial angle
* and the angle exactly opposite the midpoint of the interval. */
Coord timeAtAngle(Angle a) const {
if (_full) {
Angle ta = _sweep ? a - _start_angle : _start_angle - a;
return ta.radians0() / (2*M_PI);
}
Coord ex = extent();
Coord outex = 2*M_PI - ex;
if (_sweep) {
Angle midout = _start_angle - outex / 2;
Angle acmp = a - midout, scmp = _start_angle - midout;
if (acmp.radians0() >= scmp.radians0()) {
return (a - _start_angle).radians0() / ex;
} else {
return -(_start_angle - a).radians0() / ex;
}
} else {
Angle midout = _start_angle + outex / 2;
Angle acmp = a - midout, scmp = _start_angle - midout;
if (acmp.radians0() <= scmp.radians0()) {
return (_start_angle - a).radians0() / ex;
} else {
return -(a - _start_angle).radians0() / ex;
}
}
}
/// Check whether the interval includes the given angle.
bool contains(Angle a) const {
if (_full) return true;
Coord s = _start_angle.radians0();
Coord e = _end_angle.radians0();
Coord x = a.radians0();
if (_sweep) {
if (s < e) return x >= s && x <= e;
return x >= s || x <= e;
} else {
if (s > e) return x <= s && x >= e;
return x <= s || x >= e;
}
}
/** @brief Extent of the angle interval.
* Equivalent to the absolute value of the sweep angle.
* @return Extent in range \f$[0, 2\pi)\f$. */
Coord extent() const {
if (_full) return 2*M_PI;
return _sweep
? (_end_angle - _start_angle).radians0()
: (_start_angle - _end_angle).radians0();
}
/** @brief Get the sweep angle of the interval.
* This is the value you need to add to the initial angle to get the final angle.
* It is positive when sweep is true. Denoted as \f$\Delta\theta\f$ in the SVG
* elliptical arc implementation notes. */
Coord sweepAngle() const {
if (_full) return _sweep ? 2*M_PI : -2*M_PI;
Coord sa = _end_angle.radians0() - _start_angle.radians0();
if (_sweep && sa < 0) sa += 2*M_PI;
if (!_sweep && sa > 0) sa -= 2*M_PI;
return sa;
}
/// Check another interval for equality.
bool operator==(AngleInterval const &other) const {
if (_start_angle != other._start_angle) return false;
if (_end_angle != other._end_angle) return false;
if (_sweep != other._sweep) return false;
if (_full != other._full) return false;
return true;
}
static AngleInterval create_full(Angle start, bool sweep = true) {
AngleInterval result;
result._start_angle = result._end_angle = start;
result._sweep = sweep;
result._full = true;
return result;
}
private:
Angle _start_angle;
Angle _end_angle;
bool _sweep;
bool _full;
};
/** @brief Given an angle in degrees, return radians
* @relates Angle */
inline Coord rad_from_deg(Coord deg) { return deg*M_PI/180.0;}
/** @brief Given an angle in radians, return degrees
* @relates Angle */
inline Coord deg_from_rad(Coord rad) { return rad*180.0/M_PI;}
} // end namespace Geom
namespace std {
template <> class iterator_traits<Geom::Angle> {};
}
#endif // LIB2GEOM_SEEN_ANGLE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|