1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
|
/** @file
* @brief Piecewise function class
*//*
* Copyright 2007 Michael Sloan <mgsloan@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, output to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_PIECEWISE_H
#define LIB2GEOM_SEEN_PIECEWISE_H
#include <vector>
#include <map>
#include <utility>
#include <boost/concept_check.hpp>
#include <2geom/concepts.h>
#include <2geom/math-utils.h>
#include <2geom/sbasis.h>
namespace Geom {
/**
* @brief Function defined as discrete pieces.
*
* The Piecewise class manages a sequence of elements of a type as segments and
* the ’cuts’ between them. These cuts are time values which separate the pieces.
* This function representation allows for more interesting functions, as it provides
* a viable output for operations such as inversion, which may require multiple
* SBasis to properly invert the original.
*
* As for technical details, while the actual SBasis segments begin on the first
* cut and end on the last, the function is defined throughout all inputs by ex-
* tending the first and last segments. The exact switching between segments is
* arbitrarily such that beginnings (t=0) have preference over endings (t=1). This
* only matters if it is discontinuous at the location.
* \f[
* f(t) \rightarrow \left\{
* \begin{array}{cc}
* s_1,& t <= c_2 \\
* s_2,& c_2 <= t <= c_3\\
* \ldots \\
* s_n,& c_n <= t
* \end{array}\right.
* \f]
*
* @ingroup Fragments
*/
template <typename T>
class Piecewise {
BOOST_CLASS_REQUIRE(T, Geom, FragmentConcept);
public:
std::vector<double> cuts;
std::vector<T> segs;
//segs[i] stretches from cuts[i] to cuts[i+1].
Piecewise() {}
explicit Piecewise(const T &s) {
push_cut(0.);
push_seg(s);
push_cut(1.);
}
unsigned input_dim(){return 1;}
typedef typename T::output_type output_type;
explicit Piecewise(const output_type & v) {
push_cut(0.);
push_seg(T(v));
push_cut(1.);
}
inline void reserve(unsigned i) { segs.reserve(i); cuts.reserve(i + 1); }
inline T const& operator[](unsigned i) const { return segs[i]; }
inline T& operator[](unsigned i) { return segs[i]; }
inline output_type operator()(double t) const { return valueAt(t); }
inline output_type valueAt(double t) const {
unsigned n = segN(t);
return segs[n](segT(t, n));
}
inline output_type firstValue() const {
return valueAt(cuts.front());
}
inline output_type lastValue() const {
return valueAt(cuts.back());
}
/**
* The size of the returned vector equals n_derivs+1.
*/
std::vector<output_type> valueAndDerivatives(double t, unsigned n_derivs) const {
unsigned n = segN(t);
std::vector<output_type> ret, val = segs[n].valueAndDerivatives(segT(t, n), n_derivs);
double mult = 1;
for(unsigned i = 0; i < val.size(); i++) {
ret.push_back(val[i] * mult);
mult /= cuts[n+1] - cuts[n];
}
return ret;
}
//TODO: maybe it is not a good idea to have this?
Piecewise<T> operator()(SBasis f);
Piecewise<T> operator()(Piecewise<SBasis>f);
inline unsigned size() const { return segs.size(); }
inline bool empty() const { return segs.empty(); }
inline void clear() {
segs.clear();
cuts.clear();
}
/**Convenience/implementation hiding function to add segment/cut pairs.
* Asserts that basic size and order invariants are correct
*/
inline void push(const T &s, double to) {
assert(cuts.size() - segs.size() == 1);
push_seg(s);
push_cut(to);
}
inline void push(T &&s, double to) {
assert(cuts.size() - segs.size() == 1);
push_seg(s);
push_cut(to);
}
//Convenience/implementation hiding function to add cuts.
inline void push_cut(double c) {
ASSERT_INVARIANTS(cuts.empty() || c > cuts.back());
cuts.push_back(c);
}
//Convenience/implementation hiding function to add segments.
inline void push_seg(const T &s) { segs.push_back(s); }
inline void push_seg(T &&s) { segs.emplace_back(s); }
/**Returns the segment index which corresponds to a 'global' piecewise time.
* Also takes optional low/high parameters to expedite the search for the segment.
*/
inline unsigned segN(double t, int low = 0, int high = -1) const {
high = (high == -1) ? size() : high;
if(t < cuts[0]) return 0;
if(t >= cuts[size()]) return size() - 1;
while(low < high) {
int mid = (high + low) / 2; //Lets not plan on having huge (> INT_MAX / 2) cut sequences
double mv = cuts[mid];
if(mv < t) {
if(t < cuts[mid + 1]) return mid; else low = mid + 1;
} else if(t < mv) {
if(cuts[mid - 1] < t) return mid - 1; else high = mid - 1;
} else {
return mid;
}
}
return low;
}
/**Returns the time within a segment, given the 'global' piecewise time.
* Also takes an optional index parameter which may be used for efficiency or to find the time on a
* segment outside its range. If it is left to its default, -1, it will call segN to find the index.
*/
inline double segT(double t, int i = -1) const {
if(i == -1) i = segN(t);
assert(i >= 0);
return (t - cuts[i]) / (cuts[i+1] - cuts[i]);
}
inline double mapToDomain(double t, unsigned i) const {
return (1-t)*cuts[i] + t*cuts[i+1]; //same as: t * (cuts[i+1] - cuts[i]) + cuts[i]
}
//Offsets the piecewise domain
inline void offsetDomain(double o) {
assert(std::isfinite(o));
if(o != 0)
for(unsigned i = 0; i <= size(); i++)
cuts[i] += o;
}
//Scales the domain of the function by a value. 0 will result in an empty Piecewise.
inline void scaleDomain(double s) {
assert(s > 0);
if(s == 0) {
cuts.clear(); segs.clear();
return;
}
for(unsigned i = 0; i <= size(); i++)
cuts[i] *= s;
}
//Retrieves the domain in interval form
inline Interval domain() const { return Interval(cuts.front(), cuts.back()); }
//Transforms the domain into another interval
inline void setDomain(Interval dom) {
if(empty()) return;
/* dom can not be empty
if(dom.empty()) {
cuts.clear(); segs.clear();
return;
}*/
double cf = cuts.front();
double o = dom.min() - cf, s = dom.extent() / (cuts.back() - cf);
for(unsigned i = 0; i <= size(); i++)
cuts[i] = (cuts[i] - cf) * s + o;
//fix floating point precision errors.
cuts[0] = dom.min();
cuts[size()] = dom.max();
}
//Concatenates this Piecewise function with another, offsetting time of the other to match the end.
inline void concat(const Piecewise<T> &other) {
if(other.empty()) return;
if(empty()) {
cuts = other.cuts; segs = other.segs;
return;
}
segs.insert(segs.end(), other.segs.begin(), other.segs.end());
double t = cuts.back() - other.cuts.front();
cuts.reserve(cuts.size() + other.size());
for(unsigned i = 0; i < other.size(); i++)
push_cut(other.cuts[i + 1] + t);
}
//Like concat, but ensures continuity.
inline void continuousConcat(const Piecewise<T> &other) {
boost::function_requires<AddableConcept<typename T::output_type> >();
if(other.empty()) return;
if(empty()) { segs = other.segs; cuts = other.cuts; return; }
typename T::output_type y = segs.back().at1() - other.segs.front().at0();
double t = cuts.back() - other.cuts.front();
reserve(size() + other.size());
for(unsigned i = 0; i < other.size(); i++)
push(other[i] + y, other.cuts[i + 1] + t);
}
//returns true if the Piecewise<T> meets some basic invariants.
inline bool invariants() const {
// segs between cuts
if(!(segs.size() + 1 == cuts.size() || (segs.empty() && cuts.empty())))
return false;
// cuts in order
for(unsigned i = 0; i < segs.size(); i++)
if(cuts[i] >= cuts[i+1])
return false;
return true;
}
};
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
inline typename FragmentConcept<T>::BoundsType bounds_fast(const Piecewise<T> &f) {
boost::function_requires<FragmentConcept<T> >();
if(f.empty()) return typename FragmentConcept<T>::BoundsType();
typename FragmentConcept<T>::BoundsType ret(bounds_fast(f[0]));
for(unsigned i = 1; i < f.size(); i++)
ret.unionWith(bounds_fast(f[i]));
return ret;
}
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
inline typename FragmentConcept<T>::BoundsType bounds_exact(const Piecewise<T> &f) {
boost::function_requires<FragmentConcept<T> >();
if(f.empty()) return typename FragmentConcept<T>::BoundsType();
typename FragmentConcept<T>::BoundsType ret(bounds_exact(f[0]));
for(unsigned i = 1; i < f.size(); i++)
ret.unionWith(bounds_exact(f[i]));
return ret;
}
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
inline typename FragmentConcept<T>::BoundsType bounds_local(const Piecewise<T> &f, const OptInterval &_m) {
boost::function_requires<FragmentConcept<T> >();
if(f.empty() || !_m) return typename FragmentConcept<T>::BoundsType();
Interval const &m = *_m;
if(m.isSingular()) return typename FragmentConcept<T>::BoundsType(f(m.min()));
unsigned fi = f.segN(m.min()), ti = f.segN(m.max());
double ft = f.segT(m.min(), fi), tt = f.segT(m.max(), ti);
if(fi == ti) return bounds_local(f[fi], Interval(ft, tt));
typename FragmentConcept<T>::BoundsType ret(bounds_local(f[fi], Interval(ft, 1.)));
for(unsigned i = fi + 1; i < ti; i++)
ret.unionWith(bounds_exact(f[i]));
if(tt != 0.) ret.unionWith(bounds_local(f[ti], Interval(0., tt)));
return ret;
}
/**
* Returns a portion of a piece of a Piecewise<T>, given the piece's index and a to/from time.
* \relates Piecewise
*/
template<typename T>
T elem_portion(const Piecewise<T> &a, unsigned i, double from, double to) {
assert(i < a.size());
double rwidth = 1 / (a.cuts[i+1] - a.cuts[i]);
return portion( a[i], (from - a.cuts[i]) * rwidth, (to - a.cuts[i]) * rwidth );
}
/**Piecewise<T> partition(const Piecewise<T> &pw, std::vector<double> const &c);
* Further subdivides the Piecewise<T> such that there is a cut at every value in c.
* Precondition: c sorted lower to higher.
*
* //Given Piecewise<T> a and b:
* Piecewise<T> ac = a.partition(b.cuts);
* Piecewise<T> bc = b.partition(a.cuts);
* //ac.cuts should be equivalent to bc.cuts
*
* \relates Piecewise
*/
template<typename T>
Piecewise<T> partition(const Piecewise<T> &pw, std::vector<double> const &c) {
assert(pw.invariants());
if(c.empty()) return Piecewise<T>(pw);
Piecewise<T> ret = Piecewise<T>();
ret.reserve(c.size() + pw.cuts.size() - 1);
if(pw.empty()) {
ret.cuts = c;
for(unsigned i = 0; i < c.size() - 1; i++)
ret.push_seg(T());
return ret;
}
unsigned si = 0, ci = 0; //Segment index, Cut index
//if the cuts have something earlier than the Piecewise<T>, add portions of the first segment
while(ci < c.size() && c[ci] < pw.cuts.front()) {
bool isLast = (ci == c.size()-1 || c[ci + 1] >= pw.cuts.front());
ret.push_cut(c[ci]);
ret.push_seg( elem_portion(pw, 0, c[ci], isLast ? pw.cuts.front() : c[ci + 1]) );
ci++;
}
ret.push_cut(pw.cuts[0]);
double prev = pw.cuts[0]; //previous cut
//Loop which handles cuts within the Piecewise<T> domain
//Should have the cuts = segs + 1 invariant
while(si < pw.size() && ci <= c.size()) {
if(ci == c.size() && prev <= pw.cuts[si]) { //cuts exhausted, straight copy the rest
ret.segs.insert(ret.segs.end(), pw.segs.begin() + si, pw.segs.end());
ret.cuts.insert(ret.cuts.end(), pw.cuts.begin() + si + 1, pw.cuts.end());
return ret;
}else if(ci == c.size() || c[ci] >= pw.cuts[si + 1]) { //no more cuts within this segment, finalize
if(prev > pw.cuts[si]) { //segment already has cuts, so portion is required
ret.push_seg(portion(pw[si], pw.segT(prev, si), 1.0));
} else { //plain copy is fine
ret.push_seg(pw[si]);
}
ret.push_cut(pw.cuts[si + 1]);
prev = pw.cuts[si + 1];
si++;
} else if(c[ci] == pw.cuts[si]){ //coincident
//Already finalized the seg with the code immediately above
ci++;
} else { //plain old subdivision
ret.push(elem_portion(pw, si, prev, c[ci]), c[ci]);
prev = c[ci];
ci++;
}
}
//input cuts extend further than this Piecewise<T>, extend the last segment.
while(ci < c.size()) {
if(c[ci] > prev) {
ret.push(elem_portion(pw, pw.size() - 1, prev, c[ci]), c[ci]);
prev = c[ci];
}
ci++;
}
return ret;
}
/**
* Returns a Piecewise<T> with a defined domain of [min(from, to), max(from, to)].
* \relates Piecewise
*/
template<typename T>
Piecewise<T> portion(const Piecewise<T> &pw, double from, double to) {
if(pw.empty() || from == to) return Piecewise<T>();
Piecewise<T> ret;
double temp = from;
from = std::min(from, to);
to = std::max(temp, to);
unsigned i = pw.segN(from);
ret.push_cut(from);
if(i == pw.size() - 1 || to <= pw.cuts[i + 1]) { //to/from inhabit the same segment
ret.push(elem_portion(pw, i, from, to), to);
return ret;
}
ret.push_seg(portion( pw[i], pw.segT(from, i), 1.0 ));
i++;
unsigned fi = pw.segN(to, i);
ret.reserve(fi - i + 1);
if (to == pw.cuts[fi]) fi-=1;
ret.segs.insert(ret.segs.end(), pw.segs.begin() + i, pw.segs.begin() + fi); //copy segs
ret.cuts.insert(ret.cuts.end(), pw.cuts.begin() + i, pw.cuts.begin() + fi + 1); //and their cuts
ret.push_seg( portion(pw[fi], 0.0, pw.segT(to, fi)));
if(to != ret.cuts.back()) ret.push_cut(to);
ret.invariants();
return ret;
}
//TODO: seems like these should be mutating
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> remove_short_cuts(Piecewise<T> const &f, double tol) {
if(f.empty()) return f;
Piecewise<T> ret;
ret.reserve(f.size());
ret.push_cut(f.cuts[0]);
for(unsigned i=0; i<f.size(); i++){
if (f.cuts[i+1]-f.cuts[i] >= tol || i==f.size()-1) {
ret.push(f[i], f.cuts[i+1]);
}
}
return ret;
}
//TODO: seems like these should be mutating
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> remove_short_cuts_extending(Piecewise<T> const &f, double tol) {
if(f.empty()) return f;
Piecewise<T> ret;
ret.reserve(f.size());
ret.push_cut(f.cuts[0]);
double last = f.cuts[0]; // last cut included
for(unsigned i=0; i<f.size(); i++){
if (f.cuts[i+1]-f.cuts[i] >= tol) {
ret.push(elem_portion(f, i, last, f.cuts[i+1]), f.cuts[i+1]);
last = f.cuts[i+1];
}
}
return ret;
}
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
std::vector<double> roots(const Piecewise<T> &pw) {
std::vector<double> ret;
for(unsigned i = 0; i < pw.size(); i++) {
std::vector<double> sr = roots(pw[i]);
for (unsigned j = 0; j < sr.size(); j++) ret.push_back(sr[j] * (pw.cuts[i + 1] - pw.cuts[i]) + pw.cuts[i]);
}
return ret;
}
//IMPL: OffsetableConcept
/**
* ...
* \return \f$ a + b = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator+(Piecewise<T> const &a, typename T::output_type b) {
boost::function_requires<OffsetableConcept<T> >();
//TODO:empty
Piecewise<T> ret;
ret.segs.reserve(a.size());
ret.cuts = a.cuts;
for(unsigned i = 0; i < a.size();i++)
ret.push_seg(a[i] + b);
return ret;
}
template<typename T>
Piecewise<T> operator-(Piecewise<T> const &a, typename T::output_type b) {
boost::function_requires<OffsetableConcept<T> >();
//TODO: empty
Piecewise<T> ret;
ret.segs.reserve(a.size());
ret.cuts = a.cuts;
for(unsigned i = 0; i < a.size();i++)
ret.push_seg(a[i] - b);
return ret;
}
template<typename T>
Piecewise<T>& operator+=(Piecewise<T>& a, typename T::output_type b) {
boost::function_requires<OffsetableConcept<T> >();
if(a.empty()) { a.push_cut(0.); a.push(T(b), 1.); return a; }
for(unsigned i = 0; i < a.size();i++)
a[i] += b;
return a;
}
template<typename T>
Piecewise<T>& operator-=(Piecewise<T>& a, typename T::output_type b) {
boost::function_requires<OffsetableConcept<T> >();
if(a.empty()) { a.push_cut(0.); a.push(T(-b), 1.); return a; }
for(unsigned i = 0;i < a.size();i++)
a[i] -= b;
return a;
}
//IMPL: ScalableConcept
/**
* ...
* \return \f$ -a = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator-(Piecewise<T> const &a) {
boost::function_requires<ScalableConcept<T> >();
Piecewise<T> ret;
ret.segs.reserve(a.size());
ret.cuts = a.cuts;
for(unsigned i = 0; i < a.size();i++)
ret.push_seg(- a[i]);
return ret;
}
/**
* ...
* \return \f$ a * b = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator*(Piecewise<T> const &a, double b) {
boost::function_requires<ScalableConcept<T> >();
if(a.empty()) return Piecewise<T>();
Piecewise<T> ret;
ret.segs.reserve(a.size());
ret.cuts = a.cuts;
for(unsigned i = 0; i < a.size();i++)
ret.push_seg(a[i] * b);
return ret;
}
/**
* ...
* \return \f$ a * b = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator*(Piecewise<T> const &a, T b) {
boost::function_requires<ScalableConcept<T> >();
if(a.empty()) return Piecewise<T>();
Piecewise<T> ret;
ret.segs.reserve(a.size());
ret.cuts = a.cuts;
for(unsigned i = 0; i < a.size();i++)
ret.push_seg(a[i] * b);
return ret;
}
/**
* ...
* \return \f$ a / b = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator/(Piecewise<T> const &a, double b) {
boost::function_requires<ScalableConcept<T> >();
//FIXME: b == 0?
if(a.empty()) return Piecewise<T>();
Piecewise<T> ret;
ret.segs.reserve(a.size());
ret.cuts = a.cuts;
for(unsigned i = 0; i < a.size();i++)
ret.push_seg(a[i] / b);
return ret;
}
template<typename T>
Piecewise<T>& operator*=(Piecewise<T>& a, double b) {
boost::function_requires<ScalableConcept<T> >();
for(unsigned i = 0; i < a.size();i++)
a[i] *= b;
return a;
}
template<typename T>
Piecewise<T>& operator/=(Piecewise<T>& a, double b) {
boost::function_requires<ScalableConcept<T> >();
//FIXME: b == 0?
for(unsigned i = 0; i < a.size();i++)
a[i] /= b;
return a;
}
//IMPL: AddableConcept
/**
* ...
* \return \f$ a + b = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator+(Piecewise<T> const &a, Piecewise<T> const &b) {
boost::function_requires<AddableConcept<T> >();
Piecewise<T> pa = partition(a, b.cuts), pb = partition(b, a.cuts);
Piecewise<T> ret;
assert(pa.size() == pb.size());
ret.segs.reserve(pa.size());
ret.cuts = pa.cuts;
for (unsigned i = 0; i < pa.size(); i++)
ret.push_seg(pa[i] + pb[i]);
return ret;
}
/**
* ...
* \return \f$ a - b = \f$
* \relates Piecewise
*/
template<typename T>
Piecewise<T> operator-(Piecewise<T> const &a, Piecewise<T> const &b) {
boost::function_requires<AddableConcept<T> >();
Piecewise<T> pa = partition(a, b.cuts), pb = partition(b, a.cuts);
Piecewise<T> ret = Piecewise<T>();
assert(pa.size() == pb.size());
ret.segs.reserve(pa.size());
ret.cuts = pa.cuts;
for (unsigned i = 0; i < pa.size(); i++)
ret.push_seg(pa[i] - pb[i]);
return ret;
}
template<typename T>
inline Piecewise<T>& operator+=(Piecewise<T> &a, Piecewise<T> const &b) {
a = a+b;
return a;
}
template<typename T>
inline Piecewise<T>& operator-=(Piecewise<T> &a, Piecewise<T> const &b) {
a = a-b;
return a;
}
/**
* ...
* \return \f$ a \cdot b = \f$
* \relates Piecewise
*/
template<typename T1,typename T2>
Piecewise<T2> operator*(Piecewise<T1> const &a, Piecewise<T2> const &b) {
//function_requires<MultiplicableConcept<T1> >();
//function_requires<MultiplicableConcept<T2> >();
Piecewise<T1> pa = partition(a, b.cuts);
Piecewise<T2> pb = partition(b, a.cuts);
Piecewise<T2> ret = Piecewise<T2>();
assert(pa.size() == pb.size());
ret.segs.reserve(pa.size());
ret.cuts = pa.cuts;
for (unsigned i = 0; i < pa.size(); i++)
ret.push_seg(pa[i] * pb[i]);
return ret;
}
/**
* ...
* \return \f$ a \cdot b \f$
* \relates Piecewise
*/
template<typename T>
inline Piecewise<T>& operator*=(Piecewise<T> &a, Piecewise<T> const &b) {
a = a * b;
return a;
}
Piecewise<SBasis> divide(Piecewise<SBasis> const &a, Piecewise<SBasis> const &b, unsigned k);
//TODO: replace divide(a,b,k) by divide(a,b,tol,k)?
//TODO: atm, relative error is ~(tol/a)%. Find a way to make it independent of a.
//Nota: the result is 'truncated' where b is smaller than 'zero': ~ a/max(b,zero).
Piecewise<SBasis>
divide(Piecewise<SBasis> const &a, Piecewise<SBasis> const &b, double tol, unsigned k, double zero=1.e-3);
Piecewise<SBasis>
divide(SBasis const &a, Piecewise<SBasis> const &b, double tol, unsigned k, double zero=1.e-3);
Piecewise<SBasis>
divide(Piecewise<SBasis> const &a, SBasis const &b, double tol, unsigned k, double zero=1.e-3);
Piecewise<SBasis>
divide(SBasis const &a, SBasis const &b, double tol, unsigned k, double zero=1.e-3);
//Composition: functions called compose_* are pieces of compose that are factored out in pw.cpp.
std::map<double,unsigned> compose_pullback(std::vector<double> const &cuts, SBasis const &g);
int compose_findSegIdx(std::map<double,unsigned>::iterator const &cut,
std::map<double,unsigned>::iterator const &next,
std::vector<double> const &levels,
SBasis const &g);
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> compose(Piecewise<T> const &f, SBasis const &g){
/// \todo add concept check
Piecewise<T> result;
if (f.empty()) return result;
if (g.isZero()) return Piecewise<T>(f(0));
if (f.size()==1){
double t0 = f.cuts[0], width = f.cuts[1] - t0;
return (Piecewise<T>) compose(f.segs[0],compose(Linear(-t0 / width, (1-t0) / width), g));
}
//first check bounds...
Interval bs = *bounds_fast(g);
if (f.cuts.front() > bs.max() || bs.min() > f.cuts.back()){
int idx = (bs.max() < f.cuts[1]) ? 0 : f.cuts.size()-2;
double t0 = f.cuts[idx], width = f.cuts[idx+1] - t0;
return (Piecewise<T>) compose(f.segs[idx],compose(Linear(-t0 / width, (1-t0) / width), g));
}
std::vector<double> levels;//we can forget first and last cuts...
levels.insert(levels.begin(),f.cuts.begin()+1,f.cuts.end()-1);
//TODO: use a std::vector<pairs<double,unsigned> > instead of a map<double,unsigned>.
std::map<double,unsigned> cuts_pb = compose_pullback(levels,g);
//-- Compose each piece of g with the relevant seg of f.
result.cuts.push_back(0.);
std::map<double,unsigned>::iterator cut=cuts_pb.begin();
std::map<double,unsigned>::iterator next=cut; next++;
while(next!=cuts_pb.end()){
//assert(std::abs(int((*cut).second-(*next).second))<1);
//TODO: find a way to recover from this error? the root finder missed some root;
// the levels/variations of f might be too close/fast...
int idx = compose_findSegIdx(cut,next,levels,g);
double t0=(*cut).first;
double t1=(*next).first;
if (!are_near(t0,t1,EPSILON*EPSILON)) { // prevent adding cuts that are extremely close together and that may cause trouble with rounding e.g. when reversing the path
SBasis sub_g=compose(g, Linear(t0,t1));
sub_g=compose(Linear(-f.cuts[idx]/(f.cuts[idx+1]-f.cuts[idx]),
(1-f.cuts[idx])/(f.cuts[idx+1]-f.cuts[idx])),sub_g);
result.push(compose(f[idx],sub_g),t1);
}
cut++;
next++;
}
return(result);
}
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> compose(Piecewise<T> const &f, Piecewise<SBasis> const &g){
/// \todo add concept check
Piecewise<T> result;
for(unsigned i = 0; i < g.segs.size(); i++){
Piecewise<T> fgi=compose(f, g.segs[i]);
fgi.setDomain(Interval(g.cuts[i], g.cuts[i+1]));
result.concat(fgi);
}
return result;
}
/*
Piecewise<D2<SBasis> > compose(D2<SBasis2d> const &sb2d, Piecewise<D2<SBasis> > const &pwd2sb){
/// \todo add concept check
Piecewise<D2<SBasis> > result;
result.push_cut(0.);
for(unsigned i = 0; i < pwd2sb.size(); i++){
result.push(compose_each(sb2d,pwd2sb[i]),i+1);
}
return result;
}*/
/** Compose an SBasis with the inverse of another.
* WARNING: It's up to the user to check that the second SBasis is indeed
* invertible (i.e. strictly increasing or decreasing).
* \return \f$ f \cdot g^{-1} \f$
* \relates Piecewise
*/
Piecewise<SBasis> pw_compose_inverse(SBasis const &f, SBasis const &g, unsigned order, double zero);
template <typename T>
Piecewise<T> Piecewise<T>::operator()(SBasis f){return compose((*this),f);}
template <typename T>
Piecewise<T> Piecewise<T>::operator()(Piecewise<SBasis>f){return compose((*this),f);}
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> integral(Piecewise<T> const &a) {
Piecewise<T> result;
result.segs.resize(a.segs.size());
result.cuts = a.cuts;
typename T::output_type c = a.segs[0].at0();
for(unsigned i = 0; i < a.segs.size(); i++){
result.segs[i] = integral(a.segs[i])*(a.cuts[i+1]-a.cuts[i]);
result.segs[i]+= c-result.segs[i].at0();
c = result.segs[i].at1();
}
return result;
}
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> derivative(Piecewise<T> const &a) {
Piecewise<T> result;
result.segs.resize(a.segs.size());
result.cuts = a.cuts;
for(unsigned i = 0; i < a.segs.size(); i++){
result.segs[i] = derivative(a.segs[i])/(a.cuts[i+1]-a.cuts[i]);
}
return result;
}
std::vector<double> roots(Piecewise<SBasis> const &f);
std::vector<std::vector<double> >multi_roots(Piecewise<SBasis> const &f, std::vector<double> const &values);
//TODO: implement level_sets directly for pwsb instead of sb (and derive it fo sb).
//It should be faster than the reverse as the algorithm may jump over full cut intervals.
std::vector<Interval> level_set(Piecewise<SBasis> const &f, Interval const &level, double tol=1e-5);
std::vector<Interval> level_set(Piecewise<SBasis> const &f, double v, double vtol, double tol=1e-5);
//std::vector<Interval> level_sets(Piecewise<SBasis> const &f, std::vector<Interval> const &levels, double tol=1e-5);
//std::vector<Interval> level_sets(Piecewise<SBasis> const &f, std::vector<double> &v, double vtol, double tol=1e-5);
/**
* ...
* \return ...
* \relates Piecewise
*/
template<typename T>
Piecewise<T> reverse(Piecewise<T> const &f) {
Piecewise<T> ret = Piecewise<T>();
ret.reserve(f.size());
double start = f.cuts[0];
double end = f.cuts.back();
for (unsigned i = 0; i < f.cuts.size(); i++) {
double x = f.cuts[f.cuts.size() - 1 - i];
ret.push_cut(end - (x - start));
}
for (unsigned i = 0; i < f.segs.size(); i++)
ret.push_seg(reverse(f[f.segs.size() - i - 1]));
return ret;
}
/**
* Interpolates between a and b.
* \return a if t = 0, b if t = 1, or an interpolation between a and b for t in [0,1]
* \relates Piecewise
*/
template<typename T>
Piecewise<T> lerp(double t, Piecewise<T> const &a, Piecewise<T> b) {
// Make sure both paths have the same number of segments and cuts at the same locations
b.setDomain(a.domain());
Piecewise<T> pA = partition(a, b.cuts);
Piecewise<T> pB = partition(b, a.cuts);
return (pA*(1-t) + pB*t);
}
}
#endif //LIB2GEOM_SEEN_PIECEWISE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|