1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
/**
* \file
* \brief Obsolete 2D SBasis function class
*//*
* Authors:
* Nathan Hurst <?@?.?>
* JFBarraud <?@?.?>
*
* Copyright 2006-2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#ifndef LIB2GEOM_SEEN_SBASIS_2D_H
#define LIB2GEOM_SEEN_SBASIS_2D_H
#include <vector>
#include <cassert>
#include <algorithm>
#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <iostream>
namespace Geom{
class Linear2d{
public:
/*
u 0,1
v 0,2
*/
double a[4];
Linear2d() {
a[0] = 0;
a[1] = 0;
a[2] = 0;
a[3] = 0;
}
Linear2d(double aa) {
for(unsigned i = 0 ; i < 4; i ++)
a[i] = aa;
}
Linear2d(double a00, double a01, double a10, double a11)
{
a[0] = a00;
a[1] = a01;
a[2] = a10;
a[3] = a11;
}
double operator[](const int i) const {
assert(i >= 0);
assert(i < 4);
return a[i];
}
double& operator[](const int i) {
assert(i >= 0);
assert(i < 4);
return a[i];
}
double apply(double u, double v) {
return (a[0]*(1-u)*(1-v) +
a[1]*u*(1-v) +
a[2]*(1-u)*v +
a[3]*u*v);
}
};
inline Linear extract_u(Linear2d const &a, double u) {
return Linear(a[0]*(1-u) +
a[1]*u,
a[2]*(1-u) +
a[3]*u);
}
inline Linear extract_v(Linear2d const &a, double v) {
return Linear(a[0]*(1-v) +
a[2]*v,
a[1]*(1-v) +
a[3]*v);
}
inline Linear2d operator-(Linear2d const &a) {
return Linear2d(-a.a[0], -a.a[1],
-a.a[2], -a.a[3]);
}
inline Linear2d operator+(Linear2d const & a, Linear2d const & b) {
return Linear2d(a[0] + b[0],
a[1] + b[1],
a[2] + b[2],
a[3] + b[3]);
}
inline Linear2d operator-(Linear2d const & a, Linear2d const & b) {
return Linear2d(a[0] - b[0],
a[1] - b[1],
a[2] - b[2],
a[3] - b[3]);
}
inline Linear2d& operator+=(Linear2d & a, Linear2d const & b) {
for(unsigned i = 0; i < 4; i++)
a[i] += b[i];
return a;
}
inline Linear2d& operator-=(Linear2d & a, Linear2d const & b) {
for(unsigned i = 0; i < 4; i++)
a[i] -= b[i];
return a;
}
inline Linear2d& operator*=(Linear2d & a, double b) {
for(unsigned i = 0; i < 4; i++)
a[i] *= b;
return a;
}
inline bool operator==(Linear2d const & a, Linear2d const & b) {
for(unsigned i = 0; i < 4; i++)
if(a[i] != b[i])
return false;
return true;
}
inline bool operator!=(Linear2d const & a, Linear2d const & b) {
for(unsigned i = 0; i < 4; i++)
if(a[i] == b[i])
return false;
return true;
}
inline Linear2d operator*(double const a, Linear2d const & b) {
return Linear2d(a*b[0], a*b[1],
a*b[2], a*b[3]);
}
class SBasis2d : public std::vector<Linear2d>{
public:
// vector in u,v
unsigned us, vs; // number of u terms, v terms
SBasis2d() {}
SBasis2d(Linear2d const & bo)
: us(1), vs(1) {
push_back(bo);
}
SBasis2d(SBasis2d const & a)
: std::vector<Linear2d>(a), us(a.us), vs(a.vs) {}
Linear2d& index(unsigned ui, unsigned vi) {
assert(ui < us);
assert(vi < vs);
return (*this)[ui + vi*us];
}
Linear2d index(unsigned ui, unsigned vi) const {
if(ui >= us)
return Linear2d(0);
if(vi >= vs)
return Linear2d(0);
return (*this)[ui + vi*us];
}
double apply(double u, double v) const {
double s = u*(1-u);
double t = v*(1-v);
Linear2d p;
double tk = 1;
// XXX rewrite as horner
for(unsigned vi = 0; vi < vs; vi++) {
double sk = 1;
for(unsigned ui = 0; ui < us; ui++) {
p += (sk*tk)*index(ui, vi);
sk *= s;
}
tk *= t;
}
return p.apply(u,v);
}
void clear() {
fill(begin(), end(), Linear2d(0));
}
void normalize(); // remove extra zeros
double tail_error(unsigned tail) const;
void truncate(unsigned k);
};
inline SBasis2d operator-(const SBasis2d& p) {
SBasis2d result;
result.reserve(p.size());
for(unsigned i = 0; i < p.size(); i++) {
result.push_back(-p[i]);
}
return result;
}
inline SBasis2d operator+(const SBasis2d& a, const SBasis2d& b) {
SBasis2d result;
result.us = std::max(a.us, b.us);
result.vs = std::max(a.vs, b.vs);
const unsigned out_size = result.us*result.vs;
result.resize(out_size);
for(unsigned vi = 0; vi < result.vs; vi++) {
for(unsigned ui = 0; ui < result.us; ui++) {
Linear2d bo;
if(ui < a.us && vi < a.vs)
bo += a.index(ui, vi);
if(ui < b.us && vi < b.vs)
bo += b.index(ui, vi);
result.index(ui, vi) = bo;
}
}
return result;
}
inline SBasis2d operator-(const SBasis2d& a, const SBasis2d& b) {
SBasis2d result;
result.us = std::max(a.us, b.us);
result.vs = std::max(a.vs, b.vs);
const unsigned out_size = result.us*result.vs;
result.resize(out_size);
for(unsigned vi = 0; vi < result.vs; vi++) {
for(unsigned ui = 0; ui < result.us; ui++) {
Linear2d bo;
if(ui < a.us && vi < a.vs)
bo += a.index(ui, vi);
if(ui < b.us && vi < b.vs)
bo -= b.index(ui, vi);
result.index(ui, vi) = bo;
}
}
return result;
}
inline SBasis2d& operator+=(SBasis2d& a, const Linear2d& b) {
if(a.size() < 1)
a.push_back(b);
else
a[0] += b;
return a;
}
inline SBasis2d& operator-=(SBasis2d& a, const Linear2d& b) {
if(a.size() < 1)
a.push_back(-b);
else
a[0] -= b;
return a;
}
inline SBasis2d& operator+=(SBasis2d& a, double b) {
if(a.size() < 1)
a.push_back(Linear2d(b));
else {
for(unsigned i = 0; i < 4; i++)
a[0] += double(b);
}
return a;
}
inline SBasis2d& operator-=(SBasis2d& a, double b) {
if(a.size() < 1)
a.push_back(Linear2d(-b));
else {
a[0] -= b;
}
return a;
}
inline SBasis2d& operator*=(SBasis2d& a, double b) {
for(unsigned i = 0; i < a.size(); i++)
a[i] *= b;
return a;
}
inline SBasis2d& operator/=(SBasis2d& a, double b) {
for(unsigned i = 0; i < a.size(); i++)
a[i] *= (1./b);
return a;
}
SBasis2d operator*(double k, SBasis2d const &a);
SBasis2d operator*(SBasis2d const &a, SBasis2d const &b);
SBasis2d shift(SBasis2d const &a, int sh);
SBasis2d shift(Linear2d const &a, int sh);
SBasis2d truncate(SBasis2d const &a, unsigned terms);
SBasis2d multiply(SBasis2d const &a, SBasis2d const &b);
SBasis2d integral(SBasis2d const &c);
SBasis2d partial_derivative(SBasis2d const &a, int dim);
SBasis2d sqrt(SBasis2d const &a, int k);
// return a kth order approx to 1/a)
SBasis2d reciprocal(Linear2d const &a, int k);
SBasis2d divide(SBasis2d const &a, SBasis2d const &b, int k);
// a(b(t))
SBasis2d compose(SBasis2d const &a, SBasis2d const &b);
SBasis2d compose(SBasis2d const &a, SBasis2d const &b, unsigned k);
SBasis2d inverse(SBasis2d const &a, int k);
// these two should probably be replaced with compose
SBasis extract_u(SBasis2d const &a, double u);
SBasis extract_v(SBasis2d const &a, double v);
SBasis compose(Linear2d const &a, D2<SBasis> const &p);
SBasis compose(SBasis2d const &fg, D2<SBasis> const &p);
D2<SBasis> compose_each(D2<SBasis2d> const &fg, D2<SBasis> const &p);
inline std::ostream &operator<< (std::ostream &out_file, const Linear2d &bo) {
out_file << "{" << bo[0] << ", " << bo[1] << "}, ";
out_file << "{" << bo[2] << ", " << bo[3] << "}";
return out_file;
}
inline std::ostream &operator<< (std::ostream &out_file, const SBasis2d & p) {
for(unsigned i = 0; i < p.size(); i++) {
out_file << p[i] << "s^" << i << " + ";
}
return out_file;
}
D2<SBasis>
sb2dsolve(SBasis2d const &f, Geom::Point const &A, Geom::Point const &B, unsigned degmax=2);
D2<SBasis>
sb2d_cubic_solve(SBasis2d const &f, Geom::Point const &A, Geom::Point const &B);
} // end namespace Geom
#endif
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :
|