summaryrefslogtreecommitdiffstats
path: root/lib/cache/peek.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--lib/cache/peek.c796
1 files changed, 796 insertions, 0 deletions
diff --git a/lib/cache/peek.c b/lib/cache/peek.c
new file mode 100644
index 0000000..dc7cd7f
--- /dev/null
+++ b/lib/cache/peek.c
@@ -0,0 +1,796 @@
+/* Copyright (C) 2018 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
+ * SPDX-License-Identifier: GPL-3.0-or-later
+ */
+
+#include "lib/cache/impl.h"
+
+#include "lib/dnssec/ta.h"
+#include "lib/layer/iterate.h"
+
+/* The whole file only exports peek_nosync().
+ * Forwards for larger chunks of code: */
+
+static int found_exact_hit(kr_layer_t *ctx, knot_pkt_t *pkt, knot_db_val_t val,
+ uint8_t lowest_rank);
+static int closest_NS(struct kr_cache *cache, struct key *k, entry_list_t el,
+ struct kr_query *qry, bool only_NS, bool is_DS);
+static int answer_simple_hit(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
+ const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl);
+static int answer_dname_hit(kr_layer_t *ctx, knot_pkt_t *pkt, const knot_dname_t *dname_owner,
+ const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl);
+static int try_wild(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
+ uint16_t type, uint8_t lowest_rank,
+ const struct kr_query *qry, struct kr_cache *cache);
+
+static int peek_encloser(
+ struct key *k, struct answer *ans, int sname_labels,
+ uint8_t lowest_rank, const struct kr_query *qry, struct kr_cache *cache);
+
+
+static int nsec_p_init(struct nsec_p *nsec_p, knot_db_val_t nsec_p_entry, bool with_knot)
+{
+ const size_t stamp_len = sizeof(uint32_t);
+ if (nsec_p_entry.len <= stamp_len) { /* plain NSEC if equal */
+ nsec_p->raw = NULL;
+ nsec_p->hash = 0;
+ return kr_ok();
+ }
+ nsec_p->raw = (uint8_t *)nsec_p_entry.data + stamp_len;
+ nsec_p->hash = nsec_p_mkHash(nsec_p->raw);
+ if (!with_knot) return kr_ok();
+ /* Convert NSEC3 params to another format. */
+ const dnssec_binary_t rdata = {
+ .size = nsec_p_rdlen(nsec_p->raw),
+ .data = (uint8_t *)/*const-cast*/nsec_p->raw,
+ };
+ int ret = dnssec_nsec3_params_from_rdata(&nsec_p->libknot, &rdata);
+ return ret == DNSSEC_EOK ? kr_ok() : kr_error(ret);
+}
+
+static void nsec_p_cleanup(struct nsec_p *nsec_p)
+{
+ dnssec_binary_free(&nsec_p->libknot.salt);
+ /* We don't really need to clear it, but it's not large. (`salt` zeroed above) */
+ memset(nsec_p, 0, sizeof(*nsec_p));
+}
+
+/** Compute new TTL for nsec_p entry, using SOA serial arith.
+ * \param new_ttl (optionally) write the new TTL (even if negative)
+ * \return error code, e.g. kr_error(ESTALE) */
+static int nsec_p_ttl(knot_db_val_t entry, const uint32_t timestamp, int32_t *new_ttl)
+{
+ if (!entry.data) {
+ assert(!EINVAL);
+ return kr_error(EINVAL);
+ }
+ uint32_t stamp;
+ if (!entry.len) {
+ return kr_error(ENOENT);
+ }
+ if (entry.len < sizeof(stamp)) {
+ assert(!EILSEQ);
+ return kr_error(EILSEQ);
+ }
+ memcpy(&stamp, entry.data, sizeof(stamp));
+ int32_t newttl = stamp - timestamp;
+ if (new_ttl) *new_ttl = newttl;
+ return newttl < 0 ? kr_error(ESTALE) : kr_ok();
+}
+
+static uint8_t get_lowest_rank(const struct kr_query *qry, const knot_dname_t *name, const uint16_t type)
+{
+ /* Shut up linters. */
+ if (unlikely(!qry || !qry->request)) abort();
+ /* TODO: move rank handling into the iterator (DNSSEC_* flags)? */
+ const bool allow_unverified =
+ knot_wire_get_cd(qry->request->qsource.packet->wire) || qry->flags.STUB;
+ /* in stub mode we don't trust RRs anyway ^^ */
+ if (qry->flags.NONAUTH) {
+ return KR_RANK_INITIAL;
+ /* Note: there's little sense in validation status for non-auth records.
+ * In case of using NONAUTH to get NS IPs, knowing that you ask correct
+ * IP doesn't matter much for security; it matters whether you can
+ * validate the answers from the NS.
+ */
+ } else if (!allow_unverified) {
+ /* Records not present under any TA don't have their security
+ * verified at all, so we also accept low ranks in that case. */
+ const bool ta_covers = kr_ta_covers_qry(qry->request->ctx, name, type);
+ /* ^ TODO: performance? TODO: stype - call sites */
+ if (ta_covers) {
+ return KR_RANK_INSECURE | KR_RANK_AUTH;
+ } /* else falltrhough */
+ }
+ return KR_RANK_INITIAL | KR_RANK_AUTH;
+}
+
+
+/** Almost whole .produce phase for the cache module.
+ * \note we don't transition to KR_STATE_FAIL even in case of "unexpected errors".
+ */
+int peek_nosync(kr_layer_t *ctx, knot_pkt_t *pkt)
+{
+ struct kr_request *req = ctx->req;
+ struct kr_query *qry = req->current_query;
+ struct kr_cache *cache = &req->ctx->cache;
+
+ struct key k_storage, *k = &k_storage;
+ int ret = kr_dname_lf(k->buf, qry->sname, false);
+ if (unlikely(ret)) {
+ assert(false);
+ return ctx->state;
+ }
+
+ const uint8_t lowest_rank = get_lowest_rank(qry, qry->sname, qry->stype);
+
+ /**** 1. find the name or the closest (available) zone, not considering wildcards
+ **** 1a. exact name+type match (can be negative, mainly in insecure zones) */
+ {
+ knot_db_val_t key = key_exact_type_maypkt(k, qry->stype);
+ knot_db_val_t val = { NULL, 0 };
+ ret = cache_op(cache, read, &key, &val, 1);
+ if (!ret) {
+ /* found an entry: test conditions, materialize into pkt, etc. */
+ ret = found_exact_hit(ctx, pkt, val, lowest_rank);
+ }
+ }
+ if (ret && ret != -abs(ENOENT)) {
+ VERBOSE_MSG(qry, "=> exact hit error: %d %s\n", ret, kr_strerror(ret));
+ assert(false);
+ return ctx->state;
+ } else if (!ret) {
+ return KR_STATE_DONE;
+ }
+
+ /**** 1b. otherwise, find the longest prefix zone/xNAME (with OK time+rank). [...] */
+ k->zname = qry->sname;
+ ret = kr_dname_lf(k->buf, k->zname, false); /* LATER(optim.): probably remove */
+ if (unlikely(ret)) {
+ assert(false);
+ return ctx->state;
+ }
+ entry_list_t el;
+ ret = closest_NS(cache, k, el, qry, false, qry->stype == KNOT_RRTYPE_DS);
+ if (ret) {
+ assert(ret == kr_error(ENOENT));
+ if (ret != kr_error(ENOENT) || !el[0].len) {
+ return ctx->state;
+ }
+ }
+ switch (k->type) {
+ case KNOT_RRTYPE_CNAME: {
+ const knot_db_val_t v = el[EL_CNAME];
+ assert(v.data && v.len);
+ const int32_t new_ttl = get_new_ttl(v.data, qry, qry->sname,
+ KNOT_RRTYPE_CNAME, qry->timestamp.tv_sec);
+ ret = answer_simple_hit(ctx, pkt, KNOT_RRTYPE_CNAME, v.data,
+ knot_db_val_bound(v), new_ttl);
+ return ret == kr_ok() ? KR_STATE_DONE : ctx->state;
+ }
+ case KNOT_RRTYPE_DNAME: {
+ const knot_db_val_t v = el[EL_DNAME];
+ assert(v.data && v.len);
+ /* TTL: for simplicity, we just ask for TTL of the generated CNAME. */
+ const int32_t new_ttl = get_new_ttl(v.data, qry, qry->sname,
+ KNOT_RRTYPE_CNAME, qry->timestamp.tv_sec);
+ ret = answer_dname_hit(ctx, pkt, k->zname, v.data,
+ knot_db_val_bound(v), new_ttl);
+ return ret == kr_ok() ? KR_STATE_DONE : ctx->state;
+ }
+ }
+
+ /* We have to try proving from NSEC*. */
+ auto_free char *log_zname = NULL;
+ WITH_VERBOSE(qry) {
+ log_zname = kr_dname_text(k->zname);
+ if (!el[0].len) {
+ VERBOSE_MSG(qry, "=> no NSEC* cached for zone: %s\n", log_zname);
+ }
+ }
+
+#if 0
+ if (!eh) { /* fall back to root hints? */
+ ret = kr_zonecut_set_sbelt(req->ctx, &qry->zone_cut);
+ if (ret) return ctx->state;
+ assert(!qry->zone_cut.parent);
+
+ //VERBOSE_MSG(qry, "=> using root hints\n");
+ //qry->flags.AWAIT_CUT = false;
+ return ctx->state;
+ }
+
+ /* Now `eh` points to the closest NS record that we've found,
+ * and that's the only place to start - we may either find
+ * a negative proof or we may query upstream from that point. */
+ kr_zonecut_set(&qry->zone_cut, k->zname);
+ ret = kr_make_query(qry, pkt); // TODO: probably not yet - qname minimization
+ if (ret) return ctx->state;
+#endif
+
+ /** Structure for collecting multiple NSEC* + RRSIG records,
+ * in preparation for the answer, and for tracking the progress. */
+ struct answer ans;
+ memset(&ans, 0, sizeof(ans));
+ ans.mm = &pkt->mm;
+ const int sname_labels = knot_dname_labels(qry->sname, NULL);
+
+ /* Try the NSEC* parameters in order, until success.
+ * Let's not mix different parameters for NSEC* RRs in a single proof. */
+ for (int i = 0; ;) {
+ int32_t log_new_ttl = -123456789; /* visually recognizable value */
+ ret = nsec_p_ttl(el[i], qry->timestamp.tv_sec, &log_new_ttl);
+ if (!ret || VERBOSE_STATUS) {
+ nsec_p_init(&ans.nsec_p, el[i], !ret);
+ }
+ if (ret) {
+ VERBOSE_MSG(qry, "=> skipping zone: %s, %s, hash %x;"
+ "new TTL %d, ret %d\n",
+ log_zname, (ans.nsec_p.raw ? "NSEC3" : "NSEC"),
+ (unsigned)ans.nsec_p.hash, (int)log_new_ttl, ret);
+ /* no need for nsec_p_cleanup() in this case */
+ goto cont;
+ }
+ VERBOSE_MSG(qry, "=> trying zone: %s, %s, hash %x\n",
+ log_zname, (ans.nsec_p.raw ? "NSEC3" : "NSEC"),
+ (unsigned)ans.nsec_p.hash);
+ /**** 2. and 3. inside */
+ ret = peek_encloser(k, &ans, sname_labels,
+ lowest_rank, qry, cache);
+ nsec_p_cleanup(&ans.nsec_p);
+ if (!ret) break;
+ if (ret < 0) return ctx->state;
+ cont:
+ /* Otherwise we try another nsec_p, if available. */
+ if (++i == ENTRY_APEX_NSECS_CNT) return ctx->state;
+ /* clear possible partial answers in `ans` (no need to deallocate) */
+ ans.rcode = 0;
+ memset(&ans.rrsets, 0, sizeof(ans.rrsets));
+ }
+
+ /**** 4. add SOA iff needed */
+ if (ans.rcode != PKT_NOERROR) {
+ /* Assuming k->buf still starts with zone's prefix,
+ * look up the SOA in cache. */
+ k->buf[0] = k->zlf_len;
+ knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_SOA);
+ knot_db_val_t val = { NULL, 0 };
+ ret = cache_op(cache, read, &key, &val, 1);
+ const struct entry_h *eh;
+ if (ret || !(eh = entry_h_consistent_E(val, KNOT_RRTYPE_SOA))) {
+ assert(ret); /* only want to catch `eh` failures */
+ VERBOSE_MSG(qry, "=> SOA missed\n");
+ return ctx->state;
+ }
+ /* Check if the record is OK. */
+ int32_t new_ttl = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_SOA,
+ qry->timestamp.tv_sec);
+ if (new_ttl < 0 || eh->rank < lowest_rank || eh->is_packet) {
+ VERBOSE_MSG(qry, "=> SOA unfit %s: rank 0%.2o, new TTL %d\n",
+ (eh->is_packet ? "packet" : "RR"),
+ eh->rank, new_ttl);
+ return ctx->state;
+ }
+ /* Add the SOA into the answer. */
+ ret = entry2answer(&ans, AR_SOA, eh, knot_db_val_bound(val),
+ k->zname, KNOT_RRTYPE_SOA, new_ttl);
+ if (ret) return ctx->state;
+ }
+
+ /* Find our target RCODE. */
+ int real_rcode;
+ switch (ans.rcode) {
+ case PKT_NODATA:
+ case PKT_NOERROR: /* positive wildcarded response */
+ real_rcode = KNOT_RCODE_NOERROR;
+ break;
+ case PKT_NXDOMAIN:
+ real_rcode = KNOT_RCODE_NXDOMAIN;
+ break;
+ default:
+ assert(false);
+ case 0: /* i.e. nothing was found */
+ /* LATER(optim.): zone cut? */
+ VERBOSE_MSG(qry, "=> cache miss\n");
+ return ctx->state;
+ }
+
+ if (pkt_renew(pkt, qry->sname, qry->stype)
+ || knot_pkt_begin(pkt, KNOT_ANSWER)
+ ) {
+ assert(false);
+ return ctx->state;
+ }
+ knot_wire_set_rcode(pkt->wire, real_rcode);
+
+ bool expiring = false; // TODO
+ for (int i = 0; i < sizeof(ans.rrsets) / sizeof(ans.rrsets[0]); ++i) {
+ if (i == 1) knot_pkt_begin(pkt, KNOT_AUTHORITY);
+ if (!ans.rrsets[i].set.rr) continue;
+ expiring = expiring || ans.rrsets[i].set.expiring;
+ ret = pkt_append(pkt, &ans.rrsets[i], ans.rrsets[i].set.rank);
+ if (ret) {
+ assert(false);
+ return ctx->state;
+ }
+ }
+
+ /* Finishing touches. */
+ struct kr_qflags * const qf = &qry->flags;
+ qf->EXPIRING = expiring;
+ qf->CACHED = true;
+ qf->NO_MINIMIZE = true;
+
+ return KR_STATE_DONE;
+}
+
+/**
+ * This is where the high-level "business logic" of aggressive cache is.
+ * \return 0: success (may need SOA); >0: try other nsec_p; <0: exit cache immediately.
+ */
+static int peek_encloser(
+ struct key *k, struct answer *ans, const int sname_labels,
+ uint8_t lowest_rank, const struct kr_query *qry, struct kr_cache *cache)
+{
+ /** Start of NSEC* covering the sname;
+ * it's part of key - the one within zone (read only) */
+ knot_db_val_t cover_low_kwz = { NULL, 0 };
+ knot_dname_t cover_hi_storage[KNOT_DNAME_MAXLEN];
+ /** End of NSEC* covering the sname. */
+ knot_db_val_t cover_hi_kwz = {
+ .data = cover_hi_storage,
+ .len = sizeof(cover_hi_storage),
+ };
+
+ /**** 2. Find a closest (provable) encloser (of sname). */
+ int clencl_labels = -1;
+ bool clencl_is_tentative = false;
+ if (!ans->nsec_p.raw) { /* NSEC */
+ int ret = nsec1_encloser(k, ans, sname_labels, &clencl_labels,
+ &cover_low_kwz, &cover_hi_kwz, qry, cache);
+ if (ret) return ret;
+ } else {
+ int ret = nsec3_encloser(k, ans, sname_labels, &clencl_labels,
+ qry, cache);
+ clencl_is_tentative = ret == ABS(ENOENT) && clencl_labels >= 0;
+ /* ^^ Last chance: *positive* wildcard record under this clencl. */
+ if (ret && !clencl_is_tentative) return ret;
+ }
+
+ /* We should have either a match or a cover at this point. */
+ if (ans->rcode != PKT_NODATA && ans->rcode != PKT_NXDOMAIN) {
+ assert(false);
+ return kr_error(EINVAL);
+ }
+ const bool ncloser_covered = ans->rcode == PKT_NXDOMAIN;
+
+ /** Name of the closest (provable) encloser. */
+ const knot_dname_t *clencl_name = qry->sname;
+ for (int l = sname_labels; l > clencl_labels; --l)
+ clencl_name = knot_wire_next_label(clencl_name, NULL);
+
+ /**** 3. source of synthesis checks, in case the next closer name was covered.
+ **** 3a. We want to query for NSEC* of source of synthesis (SS) or its
+ * predecessor, providing us with a proof of its existence or non-existence. */
+ if (ncloser_covered && !ans->nsec_p.raw) {
+ int ret = nsec1_src_synth(k, ans, clencl_name,
+ cover_low_kwz, cover_hi_kwz, qry, cache);
+ if (ret == AR_SOA) return 0;
+ assert(ret <= 0);
+ if (ret) return ret;
+
+ } else if (ncloser_covered && ans->nsec_p.raw && !clencl_is_tentative) {
+ int ret = nsec3_src_synth(k, ans, clencl_name, qry, cache);
+ if (ret == AR_SOA) return 0;
+ assert(ret <= 0);
+ if (ret) return ret;
+
+ } /* else (!ncloser_covered) so no wildcard checks needed,
+ * as we proved that sname exists. */
+
+ /**** 3b. find wildcarded answer, if next closer name was covered
+ * and we don't have a full proof yet. (common for NSEC*) */
+ if (!ncloser_covered)
+ return kr_ok(); /* decrease indentation */
+ /* Construct key for exact qry->stype + source of synthesis. */
+ int ret = kr_dname_lf(k->buf, clencl_name, true);
+ if (ret) {
+ assert(!ret);
+ return kr_error(ret);
+ }
+ const uint16_t types[] = { qry->stype, KNOT_RRTYPE_CNAME };
+ for (int i = 0; i < (2 - (qry->stype == KNOT_RRTYPE_CNAME)); ++i) {
+ ret = try_wild(k, ans, clencl_name, types[i],
+ lowest_rank, qry, cache);
+ if (ret == kr_ok()) {
+ return kr_ok();
+ } else if (ret != -ABS(ENOENT) && ret != -ABS(ESTALE)) {
+ assert(false);
+ return kr_error(ret);
+ }
+ /* else continue */
+ }
+ /* Neither attempt succeeded, but the NSEC* proofs were found,
+ * so skip trying other parameters, as it seems very unlikely
+ * to turn out differently than by the same wildcard search. */
+ return -ABS(ENOENT);
+}
+
+static void answer_simple_qflags(struct kr_qflags *qf, const struct entry_h *eh,
+ uint32_t new_ttl)
+{
+ /* Finishing touches. */
+ qf->EXPIRING = is_expiring(eh->ttl, new_ttl);
+ qf->CACHED = true;
+ qf->NO_MINIMIZE = true;
+ qf->DNSSEC_INSECURE = kr_rank_test(eh->rank, KR_RANK_INSECURE);
+ if (qf->DNSSEC_INSECURE) {
+ qf->DNSSEC_WANT = false;
+ }
+}
+
+#define CHECK_RET(ret) do { \
+ if ((ret) < 0) { assert(false); return kr_error((ret)); } \
+} while (false)
+
+static int answer_simple_hit(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
+ const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
+{
+ struct kr_request *req = ctx->req;
+ struct kr_query *qry = req->current_query;
+
+ /* All OK, so start constructing the (pseudo-)packet. */
+ int ret = pkt_renew(pkt, qry->sname, qry->stype);
+ CHECK_RET(ret);
+
+ /* Materialize the sets for the answer in (pseudo-)packet. */
+ struct answer ans;
+ memset(&ans, 0, sizeof(ans));
+ ans.mm = &pkt->mm;
+ ret = entry2answer(&ans, AR_ANSWER, eh, eh_bound,
+ qry->sname, type, new_ttl);
+ CHECK_RET(ret);
+ /* Put links to the materialized data into the pkt. */
+ ret = pkt_append(pkt, &ans.rrsets[AR_ANSWER], eh->rank);
+ CHECK_RET(ret);
+
+ answer_simple_qflags(&qry->flags, eh, new_ttl);
+
+ VERBOSE_MSG(qry, "=> satisfied by exact %s: rank 0%.2o, new TTL %d\n",
+ (type == KNOT_RRTYPE_CNAME ? "CNAME" : "RRset"),
+ eh->rank, new_ttl);
+ return kr_ok();
+}
+
+static int answer_dname_hit(kr_layer_t *ctx, knot_pkt_t *pkt, const knot_dname_t *dname_owner,
+ const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
+{
+ struct kr_request *req = ctx->req;
+ struct kr_query *qry = req->current_query;
+
+ /* All OK, so start constructing the (pseudo-)packet. */
+ int ret = pkt_renew(pkt, qry->sname, qry->stype);
+ CHECK_RET(ret);
+
+ /* Materialize the DNAME for the answer in (pseudo-)packet. */
+ struct answer ans;
+ memset(&ans, 0, sizeof(ans));
+ ans.mm = &pkt->mm;
+ ret = entry2answer(&ans, AR_ANSWER, eh, eh_bound,
+ dname_owner, KNOT_RRTYPE_DNAME, new_ttl);
+ CHECK_RET(ret);
+ /* Put link to the RRset into the pkt. */
+ ret = pkt_append(pkt, &ans.rrsets[AR_ANSWER], eh->rank);
+ CHECK_RET(ret);
+ const knot_dname_t *dname_target =
+ knot_dname_target(ans.rrsets[AR_ANSWER].set.rr->rrs.rdata);
+
+ /* Generate CNAME RRset for the answer in (pseudo-)packet. */
+ const int AR_CNAME = AR_SOA;
+ knot_rrset_t *rr = ans.rrsets[AR_CNAME].set.rr
+ = knot_rrset_new(qry->sname, KNOT_RRTYPE_CNAME, KNOT_CLASS_IN,
+ new_ttl, ans.mm);
+ CHECK_RET(rr ? kr_ok() : -ENOMEM);
+ const knot_dname_t *cname_target = knot_dname_replace_suffix(qry->sname,
+ knot_dname_labels(dname_owner, NULL), dname_target, ans.mm);
+ CHECK_RET(cname_target ? kr_ok() : -ENOMEM);
+ const int rdata_len = knot_dname_size(cname_target);
+
+ if (rdata_len <= KNOT_DNAME_MAXLEN
+ && knot_dname_labels(cname_target, NULL) <= KNOT_DNAME_MAXLABELS) {
+ /* Normal case: the target name fits. */
+ rr->rrs.count = 1;
+ rr->rrs.size = knot_rdata_size(rdata_len);
+ rr->rrs.rdata = mm_alloc(ans.mm, rr->rrs.size);
+ CHECK_RET(rr->rrs.rdata ? kr_ok() : -ENOMEM);
+ knot_rdata_init(rr->rrs.rdata, rdata_len, cname_target);
+ /* Put link to the RRset into the pkt. */
+ ret = pkt_append(pkt, &ans.rrsets[AR_CNAME], eh->rank);
+ CHECK_RET(ret);
+ } else {
+ /* Note that it's basically a successful answer; name just doesn't fit. */
+ knot_wire_set_rcode(pkt->wire, KNOT_RCODE_YXDOMAIN);
+ }
+
+ answer_simple_qflags(&qry->flags, eh, new_ttl);
+ VERBOSE_MSG(qry, "=> satisfied by DNAME+CNAME: rank 0%.2o, new TTL %d\n",
+ eh->rank, new_ttl);
+ return kr_ok();
+}
+
+#undef CHECK_RET
+
+/** TODO: description; see the single call site for now. */
+static int found_exact_hit(kr_layer_t *ctx, knot_pkt_t *pkt, knot_db_val_t val,
+ uint8_t lowest_rank)
+{
+ struct kr_request *req = ctx->req;
+ struct kr_query *qry = req->current_query;
+
+ int ret = entry_h_seek(&val, qry->stype);
+ if (ret) return ret;
+ const struct entry_h *eh = entry_h_consistent_E(val, qry->stype);
+ if (!eh) {
+ assert(false);
+ return kr_error(ENOENT);
+ // LATER: recovery in case of error, perhaps via removing the entry?
+ // LATER(optim): pehaps optimize the zone cut search
+ }
+
+ int32_t new_ttl = get_new_ttl(eh, qry, qry->sname, qry->stype,
+ qry->timestamp.tv_sec);
+ if (new_ttl < 0 || eh->rank < lowest_rank) {
+ /* Positive record with stale TTL or bad rank.
+ * LATER(optim.): It's unlikely that we find a negative one,
+ * so we might theoretically skip all the cache code. */
+
+ VERBOSE_MSG(qry, "=> skipping exact %s: rank 0%.2o (min. 0%.2o), new TTL %d\n",
+ eh->is_packet ? "packet" : "RR", eh->rank, lowest_rank, new_ttl);
+ return kr_error(ENOENT);
+ }
+
+ const uint8_t *eh_bound = knot_db_val_bound(val);
+ if (eh->is_packet) {
+ /* Note: we answer here immediately, even if it's (theoretically)
+ * possible that we could generate a higher-security negative proof.
+ * Rank is high-enough so we take it to save time searching;
+ * in practice this also helps in some incorrect zones (live-signed). */
+ return answer_from_pkt (ctx, pkt, qry->stype, eh, eh_bound, new_ttl);
+ } else {
+ return answer_simple_hit(ctx, pkt, qry->stype, eh, eh_bound, new_ttl);
+ }
+}
+
+
+/** Try to satisfy via wildcard (positively). See the single call site. */
+static int try_wild(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
+ const uint16_t type, const uint8_t lowest_rank,
+ const struct kr_query *qry, struct kr_cache *cache)
+{
+ knot_db_val_t key = key_exact_type(k, type);
+ /* Find the record. */
+ knot_db_val_t val = { NULL, 0 };
+ int ret = cache_op(cache, read, &key, &val, 1);
+ if (!ret) {
+ ret = entry_h_seek(&val, type);
+ }
+ if (ret) {
+ if (ret != -ABS(ENOENT)) {
+ VERBOSE_MSG(qry, "=> wildcard: hit error %d %s\n",
+ ret, strerror(abs(ret)));
+ assert(false);
+ }
+ WITH_VERBOSE(qry) {
+ auto_free char *clencl_str = kr_dname_text(clencl_name),
+ *type_str = kr_rrtype_text(type);
+ VERBOSE_MSG(qry, "=> wildcard: not found: *.%s %s\n",
+ clencl_str, type_str);
+ }
+ return ret;
+ }
+ /* Check if the record is OK. */
+ const struct entry_h *eh = entry_h_consistent_E(val, type);
+ if (!eh) {
+ assert(false);
+ return kr_error(ret);
+ // LATER: recovery in case of error, perhaps via removing the entry?
+ }
+ int32_t new_ttl = get_new_ttl(eh, qry, qry->sname, type, qry->timestamp.tv_sec);
+ /* ^^ here we use the *expanded* wildcard name */
+ if (new_ttl < 0 || eh->rank < lowest_rank || eh->is_packet) {
+ /* Wildcard record with stale TTL, bad rank or packet. */
+ VERBOSE_MSG(qry, "=> wildcard: skipping %s, rank 0%.2o, new TTL %d\n",
+ eh->is_packet ? "packet" : "RR", eh->rank, new_ttl);
+ return -ABS(ESTALE);
+ }
+ /* Add the RR into the answer. */
+ ret = entry2answer(ans, AR_ANSWER, eh, knot_db_val_bound(val),
+ qry->sname, type, new_ttl);
+ VERBOSE_MSG(qry, "=> wildcard: answer expanded, ret = %d, new TTL %d\n",
+ ret, (int)new_ttl);
+ if (ret) return kr_error(ret);
+ ans->rcode = PKT_NOERROR;
+ return kr_ok();
+}
+
+int kr_cache_closest_apex(struct kr_cache *cache, const knot_dname_t *name, bool is_DS,
+ knot_dname_t ** apex)
+{
+ if (!cache || !cache->db || !name || !apex || *apex) {
+ assert(!EINVAL);
+ return kr_error(EINVAL);
+ }
+ struct key k_storage, *k = &k_storage;
+ int ret = kr_dname_lf(k->buf, name, false);
+ if (ret)
+ return kr_error(ret);
+ entry_list_t el_;
+ k->zname = name;
+ ret = closest_NS(cache, k, el_, NULL, true, is_DS);
+ if (ret && ret != -abs(ENOENT))
+ return ret;
+ *apex = knot_dname_copy(k->zname, NULL);
+ if (!*apex)
+ return kr_error(ENOMEM);
+ return kr_ok();
+}
+
+/** \internal for closest_NS. Check suitability of a single entry, setting k->type if OK.
+ * \return error code, negative iff whole list should be skipped.
+ */
+static int check_NS_entry(struct key *k, knot_db_val_t entry, int i,
+ bool exact_match, bool is_DS,
+ const struct kr_query *qry, uint32_t timestamp);
+
+/**
+ * Find the longest prefix zone/xNAME (with OK time+rank), starting at k->*.
+ *
+ * The found type is returned via k->type; the values are returned in el.
+ * \note we use k->type = KNOT_RRTYPE_NS also for the nsec_p result.
+ * \param qry can be NULL (-> gettimeofday(), but you lose the stale-serve hook)
+ * \param only_NS don't consider xNAMEs
+ * \return error code
+ */
+static int closest_NS(struct kr_cache *cache, struct key *k, entry_list_t el,
+ struct kr_query *qry, const bool only_NS, const bool is_DS)
+{
+ /* get the current timestamp */
+ uint32_t timestamp;
+ if (qry) {
+ timestamp = qry->timestamp.tv_sec;
+ } else {
+ struct timeval tv;
+ if (gettimeofday(&tv, NULL)) return kr_error(errno);
+ timestamp = tv.tv_sec;
+ }
+
+ int zlf_len = k->buf[0];
+
+ // LATER(optim): if stype is NS, we check the same value again
+ bool exact_match = true;
+ bool need_zero = true;
+ /* Inspect the NS/xNAME entries, shortening by a label on each iteration. */
+ do {
+ k->buf[0] = zlf_len;
+ knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_NS);
+ knot_db_val_t val;
+ int ret = cache_op(cache, read, &key, &val, 1);
+ if (ret == -abs(ENOENT)) goto next_label;
+ if (ret) {
+ assert(!ret);
+ if (need_zero) memset(el, 0, sizeof(entry_list_t));
+ return kr_error(ret);
+ }
+
+ /* Check consistency, find any type;
+ * using `goto` for shortening by another label. */
+ ret = entry_list_parse(val, el);
+ if (ret) {
+ assert(!ret); // do something about it?
+ goto next_label;
+ }
+ need_zero = false;
+ /* More types are possible; try in order.
+ * For non-fatal failures just "continue;" to try the next type. */
+ /* Now a complication - we need to try EL_DNAME before NSEC*
+ * (Unfortunately that's not easy to write very nicely.) */
+ if (!only_NS) {
+ const int i = EL_DNAME;
+ ret = check_NS_entry(k, el[i], i, exact_match, is_DS,
+ qry, timestamp);
+ if (ret < 0) goto next_label; else
+ if (!ret) {
+ /* We found our match. */
+ k->zlf_len = zlf_len;
+ return kr_ok();
+ }
+ }
+ const int el_count = only_NS ? EL_NS + 1 : EL_LENGTH;
+ for (int i = 0; i < el_count; ++i) {
+ if (i == EL_DNAME) continue;
+ ret = check_NS_entry(k, el[i], i, exact_match, is_DS,
+ qry, timestamp);
+ if (ret < 0) goto next_label; else
+ if (!ret) {
+ /* We found our match. */
+ k->zlf_len = zlf_len;
+ return kr_ok();
+ }
+ }
+
+ next_label:
+ /* remove one more label */
+ exact_match = false;
+ if (k->zname[0] == 0) {
+ /* We miss root NS in cache, but let's at least assume it exists. */
+ k->type = KNOT_RRTYPE_NS;
+ k->zlf_len = zlf_len;
+ assert(zlf_len == 0);
+ if (need_zero) memset(el, 0, sizeof(entry_list_t));
+ return kr_error(ENOENT);
+ }
+ zlf_len -= (k->zname[0] + 1);
+ k->zname += (k->zname[0] + 1);
+ k->buf[zlf_len + 1] = 0;
+ } while (true);
+}
+
+static int check_NS_entry(struct key *k, const knot_db_val_t entry, const int i,
+ const bool exact_match, const bool is_DS,
+ const struct kr_query *qry, uint32_t timestamp)
+{
+ const int ESKIP = ABS(ENOENT);
+ if (!entry.len
+ /* On a zone cut we want DS from the parent zone. */
+ || (exact_match && is_DS)
+ /* CNAME is interesting only if we
+ * directly hit the name that was asked.
+ * Note that we want it even in the DS case. */
+ || (i == EL_CNAME && !exact_match)
+ /* DNAME is interesting only if we did NOT
+ * directly hit the name that was asked. */
+ || (i == EL_DNAME && exact_match)
+ ) {
+ return ESKIP;
+ }
+
+ uint16_t type;
+ if (i < ENTRY_APEX_NSECS_CNT) {
+ type = KNOT_RRTYPE_NS;
+ int32_t log_new_ttl = -123456789; /* visually recognizable value */
+ const int err = nsec_p_ttl(entry, timestamp, &log_new_ttl);
+ if (err) {
+ VERBOSE_MSG(qry,
+ "=> skipping unfit nsec_p: new TTL %d, error %d\n",
+ (int)log_new_ttl, err);
+ return ESKIP;
+ }
+ } else {
+ type = EL2RRTYPE(i);
+ /* Find the entry for the type, check positivity, TTL */
+ const struct entry_h *eh = entry_h_consistent_E(entry, type);
+ if (!eh) {
+ VERBOSE_MSG(qry, "=> EH not consistent\n");
+ assert(false);
+ return kr_error(EILSEQ);
+ }
+ const int32_t log_new_ttl = get_new_ttl(eh, qry, k->zname, type, timestamp);
+
+ const bool ok = /* Not interested in negative bogus or outdated RRs. */
+ !eh->is_packet && log_new_ttl >= 0
+ /* For NS any kr_rank is accepted, as insecure or even nonauth is OK */
+ && (type == KNOT_RRTYPE_NS
+ || eh->rank >= get_lowest_rank(qry, k->zname, type));
+
+ WITH_VERBOSE(qry) { if (!ok) {
+ auto_free char *type_str = kr_rrtype_text(type);
+ const char *packet_str = eh->is_packet ? "packet" : "RR";
+ VERBOSE_MSG(qry,
+ "=> skipping unfit %s %s: rank 0%.2o, new TTL %d\n",
+ type_str, packet_str, eh->rank, (int)log_new_ttl);
+ } }
+ if (!ok) return ESKIP;
+ }
+ k->type = type;
+ return kr_ok();
+}
+