1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
/* Copyright (C) 2017 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
/** @file
* Implementation of chaining in struct entry_h. Prototypes in ./impl.h
*/
#include "lib/cache/impl.h"
#include "lib/utils.h"
static int entry_h_len(knot_db_val_t val);
void entry_list_memcpy(struct entry_apex *ea, entry_list_t list)
{
assert(ea);
memset(ea, 0, offsetof(struct entry_apex, data));
ea->has_ns = list[EL_NS ].len;
ea->has_cname = list[EL_CNAME ].len;
ea->has_dname = list[EL_DNAME ].len;
for (int i = 0; i < ENTRY_APEX_NSECS_CNT; ++i) {
ea->nsecs[i] = list[i].len == 0 ? 0 :
(list[i].len == 4 ? 1 : 3);
}
uint8_t *it = ea->data;
for (int i = 0; i < EL_LENGTH; ++i) {
if (list[i].data) {
memcpy(it, list[i].data, list[i].len);
/* LATER(optim.): coalesce consecutive writes? */
} else {
list[i].data = it;
}
it += to_even(list[i].len);
}
}
int entry_list_parse(const knot_db_val_t val, entry_list_t list)
{
const bool ok = val.data && val.len && list;
if (!ok) {
assert(!EINVAL);
return kr_error(EINVAL);
}
/* Parse the apex itself (nsec parameters). */
const struct entry_apex *ea = entry_apex_consistent(val);
if (!ea) {
return kr_error(EILSEQ);
}
const uint8_t *it = ea->data,
*it_bound = knot_db_val_bound(val);
for (int i = 0; i < ENTRY_APEX_NSECS_CNT; ++i) {
if (it > it_bound) {
return kr_error(EILSEQ);
}
list[i].data = (void *)it;
switch (ea->nsecs[i]) {
case 0:
list[i].len = 0;
break;
case 1:
list[i].len = sizeof(uint32_t); /* just timestamp */
break;
case 3: { /* timestamp + NSEC3PARAM wire */
if (it + sizeof(uint32_t) + 4 > it_bound) {
return kr_error(EILSEQ);
}
list[i].len = sizeof(uint32_t)
+ nsec_p_rdlen(it + sizeof(uint32_t));
break;
}
default:
return kr_error(EILSEQ);
};
it += to_even(list[i].len);
}
/* Parse every entry_h. */
for (int i = ENTRY_APEX_NSECS_CNT; i < EL_LENGTH; ++i) {
list[i].data = (void *)it;
bool has_type;
switch (i) {
case EL_NS: has_type = ea->has_ns; break;
case EL_CNAME: has_type = ea->has_cname; break;
case EL_DNAME: has_type = ea->has_dname; break;
default: assert(false); return kr_error(EINVAL); /* something very bad */
}
if (!has_type) {
list[i].len = 0;
continue;
}
if (it >= it_bound) {
assert(!EILSEQ);
return kr_error(EILSEQ);
}
const int len = entry_h_len(
(knot_db_val_t){ .data = (void *)it, .len = it_bound - it });
if (len < 0) {
assert(false);
return kr_error(len);
}
list[i].len = len;
it += to_even(len);
}
assert(it == it_bound);
return kr_ok();
}
/** Given a valid entry header, find its length (i.e. offset of the next entry).
* \param val The beginning of the data and the bound (read only).
*/
static int entry_h_len(const knot_db_val_t val)
{
const bool ok = val.data && ((ssize_t)val.len) > 0;
if (!ok) return kr_error(EINVAL);
const struct entry_h *eh = val.data;
const uint8_t *d = eh->data; /* iterates over the data in entry */
const uint8_t *data_bound = knot_db_val_bound(val);
if (d >= data_bound) return kr_error(EILSEQ);
if (!eh->is_packet) { /* Positive RRset + its RRsig set (may be empty). */
int sets = 2;
while (sets-- > 0) {
d += KR_CACHE_RR_COUNT_SIZE + rdataset_dematerialized_size(d, NULL);
if (d > data_bound) {
assert(!EILSEQ);
return kr_error(EILSEQ);
}
}
} else { /* A "packet" (opaque ATM). */
uint16_t len;
if (d + sizeof(len) > data_bound) return kr_error(EILSEQ);
memcpy(&len, d, sizeof(len));
d += 2 + to_even(len);
}
if (d > data_bound) {
assert(!EILSEQ);
return kr_error(EILSEQ);
}
return d - (uint8_t *)val.data;
}
struct entry_apex * entry_apex_consistent(knot_db_val_t val)
{
//XXX: check lengths, etc.
return val.data;
}
/* See the header file. */
int entry_h_seek(knot_db_val_t *val, uint16_t type)
{
int i = -1;
switch (type) {
case KNOT_RRTYPE_NS: i = EL_NS; break;
case KNOT_RRTYPE_CNAME: i = EL_CNAME; break;
case KNOT_RRTYPE_DNAME: i = EL_DNAME; break;
default: return kr_ok();
}
entry_list_t el;
int ret = entry_list_parse(*val, el);
if (ret) return ret;
*val = el[i];
return val->len ? kr_ok() : kr_error(ENOENT);
}
static int cache_write_or_clear(struct kr_cache *cache, const knot_db_val_t *key,
knot_db_val_t *val, const struct kr_query *qry)
{
int ret = cache_op(cache, write, key, val, 1);
if (!ret) return kr_ok();
if (ret != kr_error(ENOSPC)) { /* failing a write isn't too bad */
VERBOSE_MSG(qry, "=> failed backend write, ret = %d\n", ret);
return kr_error(ret);
}
/* Cache is overfull. Using kres-cache-gc service should prevent this.
* As a fallback, try clearing it. */
ret = kr_cache_clear(cache);
switch (ret) {
default:
kr_log_error("CRITICAL: clearing cache failed: %s; fatal error, aborting\n",
kr_strerror(ret));
abort();
case 0:
kr_log_info("[cache] overfull cache cleared\n");
case -EAGAIN: // fall-through; krcachelock race -> retry later
return kr_error(ENOSPC);
}
}
/* See the header file. */
int entry_h_splice(
knot_db_val_t *val_new_entry, uint8_t rank,
const knot_db_val_t key, const uint16_t ktype, const uint16_t type,
const knot_dname_t *owner/*log only*/,
const struct kr_query *qry, struct kr_cache *cache, uint32_t timestamp)
{
//TODO: another review, perhaps incuding the API
const bool ok = val_new_entry && val_new_entry->len > 0;
if (!ok) {
assert(!EINVAL);
return kr_error(EINVAL);
}
int i_type;
switch (type) {
case KNOT_RRTYPE_NS: i_type = EL_NS; break;
case KNOT_RRTYPE_CNAME: i_type = EL_CNAME; break;
case KNOT_RRTYPE_DNAME: i_type = EL_DNAME; break;
default: i_type = 0;
}
/* Get eh_orig (original entry), and also el list if multi-entry case. */
const struct entry_h *eh_orig = NULL;
entry_list_t el;
int ret = -1;
if (!kr_rank_test(rank, KR_RANK_SECURE) || ktype == KNOT_RRTYPE_NS) {
knot_db_val_t val;
ret = cache_op(cache, read, &key, &val, 1);
if (i_type) {
if (!ret) ret = entry_list_parse(val, el);
if (ret) memset(el, 0, sizeof(el));
val = el[i_type];
}
/* val is on the entry, in either case (or error) */
if (!ret) {
eh_orig = entry_h_consistent_E(val, type);
}
} else {
/* We want to fully overwrite the entry, so don't even read it. */
memset(el, 0, sizeof(el));
}
if (!kr_rank_test(rank, KR_RANK_SECURE) && eh_orig) {
/* If equal rank was accepted, spoofing a *single* answer would be
* enough to e.g. override NS record in AUTHORITY section.
* This way they would have to hit the first answer
* (whenever TTL nears expiration).
* Stale-serving is NOT considered, but TTL 1 would be considered
* as expiring anyway, ... */
int32_t old_ttl = get_new_ttl(eh_orig, qry, NULL, 0, timestamp);
if (old_ttl > 0 && !is_expiring(eh_orig->ttl, old_ttl)
&& rank <= eh_orig->rank) {
WITH_VERBOSE(qry) {
auto_free char *type_str = kr_rrtype_text(type),
*owner_str = kr_dname_text(owner);
VERBOSE_MSG(qry, "=> not overwriting %s %s\n",
type_str, owner_str);
}
return kr_error(EEXIST);
}
}
if (!i_type) {
/* The non-list types are trivial now. */
return cache_write_or_clear(cache, &key, val_new_entry, qry);
}
/* Now we're in trouble. In some cases, parts of data to be written
* is an lmdb entry that may be invalidated by our write request.
* (lmdb does even in-place updates!) Therefore we copy all into a buffer.
* LATER(optim.): do this only when neccessary, or perhaps another approach.
* This is also complicated by the fact that the val_new_entry part
* is to be written *afterwards* by the caller.
*/
el[i_type] = (knot_db_val_t){
.len = val_new_entry->len,
.data = NULL, /* perhaps unclear in the entry_h_splice() API */
};
knot_db_val_t val = {
.len = entry_list_serial_size(el),
.data = NULL,
};
uint8_t buf[val.len];
entry_list_memcpy((struct entry_apex *)buf, el);
ret = cache_write_or_clear(cache, &key, &val, qry);
if (ret) return kr_error(ret);
memcpy(val.data, buf, val.len); /* we also copy the "empty" space, but well... */
val_new_entry->data = (uint8_t *)val.data
+ ((uint8_t *)el[i_type].data - buf);
return kr_ok();
}
|