1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
|
/* Copyright (C) 2019 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
Copyright (C) 2018 Tony Finch <dot@dotat.at>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
The code originated from https://github.com/fanf2/qp/blob/master/qp.c
at revision 5f6d93753.
*/
#include <assert.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "contrib/qp-trie/trie.h"
#include "contrib/macros.h"
#include "contrib/mempattern.h"
#include "libknot/errcode.h"
typedef unsigned int uint;
typedef uint64_t index_t; /*!< nibble index into a key */
typedef uint64_t word; /*!< A type-punned word */
typedef uint bitmap_t; /*!< Bit-maps, using the range of 1<<0 to 1<<16 (inclusive). */
typedef char static_assert_pointer_fits_in_word
[sizeof(word) >= sizeof(uintptr_t) ? 1 : -1];
#define KEYLENBITS 31
/*! \brief trie keys have lengths
*
* 32 bits are enough for key lengths; probably even 16 bits would be.
* However, a 32 bit length means the alignment will be a multiple of
* 4, allowing us to stash the COW and BRANCH flags in the bottom bits
* of a pointer to a key.
*
* We need to steal a couple of bits from the length to keep the COW
* state of key allocations.
*/
typedef struct {
uint32_t cow:1, len:KEYLENBITS;
trie_key_t chars[];
} tkey_t;
/*! \brief A trie node is a pair of words.
*
* Each word is type-punned, depending on whether this is a branch
* node or a leaf node. We'll define some accessor functions to wrap
* this up into something reasonably safe.
*
* We aren't using a union to avoid problems with strict aliasing, and
* we aren't using bitfields because we want to control exactly which
* bits in the word are used by each field (in particular the flags).
*
* Branch nodes are never allocated individually: they are always part
* of either the root node or the twigs array of their parent branch.
*
* In a branch:
*
* `i` contains flags, bitmap, and index, explained in more detail below.
*
* `p` is a pointer to the "twigs", an array of child nodes.
*
* In a leaf:
*
* `i` is cast from a pointer to a tkey_t, with flags in the bottom bits.
*
* `p` is a trie_val_t.
*/
typedef struct node {
word i;
void *p;
} node_t;
struct trie {
node_t root; // undefined when weight == 0, see empty_root()
size_t weight;
knot_mm_t mm;
};
/*! \brief size (in bits) of nibble (half-byte) indexes into keys
*
* The bottom bit is clear for the upper nibble, and set for the lower
* nibble, big-endian style, since the tree has to be in lexicographic
* order. The index increases from one branch node to the next as you
* go deeper into the trie. All the keys below a branch are identical
* up to the nibble identified by the branch.
*
* (see also tkey_t.len above)
*/
#define TWIDTH_INDEX 33
/*! \brief exclusive limit on indexes */
#define TMAX_INDEX (BIG1 << TWIDTH_INDEX)
/*! \brief size (in bits) of branch bitmap
*
* The bitmap indicates which subtries are present. The present child
* nodes are stored in the twigs array (with no holes between them).
*
* To simplify storing keys that are prefixes of each other, the
* end-of-string position is treated as an extra nibble value, ordered
* before all others. So there are 16 possible real nibble values,
* plus one value for nibbles past the end of the key.
*/
#define TWIDTH_BMP 17
/*
* We're constructing the layout of the branch `i` field in a careful
* way to avoid mistakes, getting the compiler to calculate values
* rather than typing them in by hand.
*/
enum {
TSHIFT_BRANCH = 0,
TSHIFT_COW,
TSHIFT_BMP,
TOP_BMP = TSHIFT_BMP + TWIDTH_BMP,
TSHIFT_INDEX = TOP_BMP,
TOP_INDEX = TSHIFT_INDEX + TWIDTH_INDEX,
};
typedef char static_assert_fields_fit_in_word
[TOP_INDEX <= sizeof(word) * CHAR_BIT ? 1 : -1];
typedef char static_assert_bmp_fits
[TOP_BMP <= sizeof(bitmap_t) * CHAR_BIT ? 1 : -1];
#define BIG1 ((word)1)
#define TMASK(width, shift) (((BIG1 << (width)) - BIG1) << (shift))
/*! \brief is this node a branch or a leaf? */
#define TFLAG_BRANCH (BIG1 << TSHIFT_BRANCH)
/*! \brief copy-on-write flag, used in both leaves and branches */
#define TFLAG_COW (BIG1 << TSHIFT_COW)
/*! \brief for extracting pointer to key */
#define TMASK_LEAF (~(word)(TFLAG_BRANCH | TFLAG_COW))
/*! \brief mask for extracting nibble index */
#define TMASK_INDEX TMASK(TWIDTH_INDEX, TSHIFT_INDEX)
/*! \brief mask for extracting bitmap */
#define TMASK_BMP TMASK(TWIDTH_BMP, TSHIFT_BMP)
/*! \brief bitmap entry for NOBYTE */
#define BMP_NOBYTE (BIG1 << TSHIFT_BMP)
/*! \brief Initialize a new leaf, copying the key, and returning failure code. */
static int mkleaf(node_t *leaf, const trie_key_t *key, uint32_t len, knot_mm_t *mm)
{
if (unlikely((word)len > (BIG1 << KEYLENBITS)))
return KNOT_ENOMEM;
tkey_t *lkey = mm_alloc(mm, sizeof(tkey_t) + len);
if (unlikely(!lkey))
return KNOT_ENOMEM;
lkey->cow = 0;
lkey->len = len;
memcpy(lkey->chars, key, len);
word i = (uintptr_t)lkey;
assert((i & TFLAG_BRANCH) == 0);
*leaf = (node_t){ .i = i, .p = NULL };
return KNOT_EOK;
}
/*! \brief construct a branch node */
static node_t mkbranch(index_t index, bitmap_t bmp, node_t *twigs)
{
word i = TFLAG_BRANCH | bmp
| (index << TSHIFT_INDEX);
assert(index < TMAX_INDEX);
assert((bmp & ~TMASK_BMP) == 0);
return (node_t){ .i = i, .p = twigs };
}
/*! \brief Make an empty root node. */
static node_t empty_root(void)
{
return mkbranch(TMAX_INDEX-1, 0, NULL);
}
/*! \brief Propagate error codes. */
#define ERR_RETURN(x) \
do { \
int err_code_ = x; \
if (unlikely(err_code_ != KNOT_EOK)) \
return err_code_; \
} while (false)
/*! \brief Test flags to determine type of this node. */
static bool isbranch(const node_t *t)
{
return t->i & TFLAG_BRANCH;
}
static tkey_t *tkey(const node_t *t)
{
assert(!isbranch(t));
return (tkey_t *)(uintptr_t)(t->i & TMASK_LEAF);
}
static trie_val_t *tvalp(node_t *t)
{
assert(!isbranch(t));
return &t->p;
}
/*! \brief Given a branch node, return the index of the corresponding nibble in the key. */
static index_t branch_index(const node_t *t)
{
assert(isbranch(t));
return (t->i & TMASK_INDEX) >> TSHIFT_INDEX;
}
static bitmap_t branch_bmp(const node_t *t)
{
assert(isbranch(t));
return (t->i & TMASK_BMP);
}
/*!
* \brief Count the number of set bits.
*
* \TODO This implementation may be relatively slow on some HW.
*/
static uint branch_weight(const node_t *t)
{
assert(isbranch(t));
uint n = __builtin_popcount(t->i & TMASK_BMP);
assert(n > 1 && n <= TWIDTH_BMP);
return n;
}
/*! \brief Compute offset of an existing child in a branch node. */
static uint twigoff(const node_t *t, bitmap_t bit)
{
assert(isbranch(t));
assert(__builtin_popcount(bit) == 1);
return __builtin_popcount(t->i & TMASK_BMP & (bit - 1));
}
/*! \brief Extract a nibble from a key and turn it into a bitmask. */
static bitmap_t keybit(index_t ni, const trie_key_t *key, uint32_t len)
{
index_t bytei = ni >> 1;
if (bytei >= len)
return BMP_NOBYTE;
uint8_t ki = (uint8_t)key[bytei];
uint nibble = (ni & 1) ? (ki & 0xf) : (ki >> 4);
// skip one for NOBYTE nibbles after the end of the key
return BIG1 << (nibble + 1 + TSHIFT_BMP);
}
/*! \brief Extract a nibble from a key and turn it into a bitmask. */
static bitmap_t twigbit(const node_t *t, const trie_key_t *key, uint32_t len)
{
assert(isbranch(t));
return keybit(branch_index(t), key, len);
}
/*! \brief Test if a branch node has a child indicated by a bitmask. */
static bool hastwig(const node_t *t, bitmap_t bit)
{
assert(isbranch(t));
assert((bit & ~TMASK_BMP) == 0);
assert(__builtin_popcount(bit) == 1);
return t->i & bit;
}
/*! \brief Get pointer to packed array of child nodes. */
static node_t* twigs(node_t *t)
{
assert(isbranch(t));
return t->p;
}
/*! \brief Get pointer to a particular child of a branch node. */
static node_t* twig(node_t *t, uint i)
{
assert(i < branch_weight(t));
return twigs(t) + i;
}
/*! \brief Get twig number of a child node TODO: better description. */
static uint twig_number(node_t *child, node_t *parent)
{
// twig array index using pointer arithmetic
ptrdiff_t num = child - twigs(parent);
assert(num >= 0 && num < branch_weight(parent));
return (uint)num;
}
/*! \brief Simple string comparator. */
static int key_cmp(const trie_key_t *k1, uint32_t k1_len,
const trie_key_t *k2, uint32_t k2_len)
{
int ret = memcmp(k1, k2, MIN(k1_len, k2_len));
if (ret != 0) {
return ret;
}
/* Key string is equal, compare lengths. */
if (k1_len == k2_len) {
return 0;
} else if (k1_len < k2_len) {
return -1;
} else {
return 1;
}
}
trie_t* trie_create(knot_mm_t *mm)
{
trie_t *trie = mm_alloc(mm, sizeof(trie_t));
if (trie != NULL) {
trie->root = empty_root();
trie->weight = 0;
if (mm != NULL)
trie->mm = *mm;
else
mm_ctx_init(&trie->mm);
}
return trie;
}
/*! \brief Free anything under the trie node, except for the passed pointer itself. */
static void clear_trie(node_t *trie, knot_mm_t *mm)
{
if (!isbranch(trie)) {
mm_free(mm, tkey(trie));
} else {
uint n = branch_weight(trie);
for (uint i = 0; i < n; ++i)
clear_trie(twig(trie, i), mm);
mm_free(mm, twigs(trie));
}
}
void trie_free(trie_t *tbl)
{
if (tbl == NULL)
return;
if (tbl->weight)
clear_trie(&tbl->root, &tbl->mm);
mm_free(&tbl->mm, tbl);
}
void trie_clear(trie_t *tbl)
{
assert(tbl);
if (!tbl->weight)
return;
clear_trie(&tbl->root, &tbl->mm);
tbl->root = empty_root();
tbl->weight = 0;
}
static bool dup_trie(node_t *copy, const node_t *orig, trie_dup_cb dup_cb, knot_mm_t *mm)
{
if (isbranch(orig)) {
uint n = branch_weight(orig);
node_t *cotw = mm_alloc(mm, n * sizeof(*cotw));
if (cotw == NULL) {
return NULL;
}
const node_t *ortw = twigs((node_t *)orig);
for (uint i = 0; i < n; ++i) {
if (!dup_trie(cotw + i, ortw + i, dup_cb, mm)) {
while (i-- > 0) {
clear_trie(cotw + i, mm);
}
mm_free(mm, cotw);
return false;
}
}
*copy = mkbranch(branch_index(orig), branch_bmp(orig), cotw);
} else {
tkey_t *key = tkey(orig);
if (mkleaf(copy, key->chars, key->len, mm) != KNOT_EOK) {
return false;
}
if ((copy->p = dup_cb(orig->p, mm)) == NULL) {
mm_free(mm, tkey(copy));
return false;
}
}
return true;
}
trie_t* trie_dup(const trie_t *orig, trie_dup_cb dup_cb, knot_mm_t *mm)
{
if (orig == NULL) {
return NULL;
}
trie_t *copy = mm_alloc(mm, sizeof(*copy));
if (copy == NULL) {
return NULL;
}
copy->weight = orig->weight;
if (mm != NULL) {
copy->mm = *mm;
} else {
mm_ctx_init(©->mm);
}
if (copy->weight) {
if (!dup_trie(©->root, &orig->root, dup_cb, mm)) {
mm_free(mm, copy);
return NULL;
}
}
return copy;
}
size_t trie_weight(const trie_t *tbl)
{
assert(tbl);
return tbl->weight;
}
trie_val_t* trie_get_try(trie_t *tbl, const trie_key_t *key, uint32_t len)
{
assert(tbl);
if (!tbl->weight)
return NULL;
node_t *t = &tbl->root;
while (isbranch(t)) {
__builtin_prefetch(twigs(t));
bitmap_t b = twigbit(t, key, len);
if (!hastwig(t, b))
return NULL;
t = twig(t, twigoff(t, b));
}
tkey_t *lkey = tkey(t);
if (key_cmp(key, len, lkey->chars, lkey->len) != 0)
return NULL;
return tvalp(t);
}
/* Optimization: the approach isn't ideal, as e.g. walking through the prefix
* is duplicated and we explicitly construct the wildcard key. Still, it's close
* to optimum which would be significantly more complicated and error-prone to write. */
trie_val_t* trie_get_try_wildcard(trie_t *tbl, const trie_key_t *key, uint32_t len)
{
assert(tbl);
if (!tbl->weight)
return NULL;
// Find leaf sharing the longest common prefix; see ns_find_branch() for explanation.
node_t *t = &tbl->root;
while (isbranch(t)) {
__builtin_prefetch(twigs(t));
bitmap_t b = twigbit(t, key, len);
uint i = hastwig(t, b) ? twigoff(t, b) : 0;
t = twig(t, i);
}
const tkey_t * const lcp_key = tkey(t);
// Find the last matching zero byte or -1 (source of synthesis)
int i_lmz = -1;
for (int i = 0; i < len && i < lcp_key->len && key[i] == lcp_key->chars[i]; ++i) {
if (key[i] == '\0' && i < len - 1) // do not count the terminating zero
i_lmz = i;
// Shortcut: we may have found an exact match.
if (i == len - 1 && len == lcp_key->len)
return tvalp(t);
}
if (len == 0) // The empty name needs separate handling.
return lcp_key->len == 0 ? tvalp(t) : NULL;
// Construct the key of the wildcard we need and look it up.
const int wild_len = i_lmz + 3;
uint8_t wild_key[wild_len];
memcpy(wild_key, key, wild_len - 2);
wild_key[wild_len - 2] = '*';
wild_key[wild_len - 1] = '\0'; // LF is always 0-terminated ATM
return trie_get_try(tbl, wild_key, wild_len);
}
/*! \brief Delete leaf t with parent p; b is the bit for t under p.
* Optionally return the deleted value via val. The function can't fail. */
static void del_found(trie_t *tbl, node_t *t, node_t *p, bitmap_t b, trie_val_t *val)
{
assert(!tkey(t)->cow);
mm_free(&tbl->mm, tkey(t));
if (val != NULL)
*val = *tvalp(t); // we return trie_val_t directly when deleting
--tbl->weight;
if (unlikely(!p)) { // whole trie was a single leaf
assert(tbl->weight == 0);
tbl->root = empty_root();
return;
}
// remove leaf t as child of p
node_t *tp = twigs(p);
uint ci = twig_number(t, p);
uint cc = branch_weight(p); // child count
if (cc == 2) {
// collapse binary node p: move the other child to the parent
*p = tp[1 - ci];
mm_free(&tbl->mm, tp);
return;
}
memmove(tp + ci, tp + ci + 1, sizeof(node_t) * (cc - ci - 1));
p->i &= ~b;
node_t *newt = mm_realloc(&tbl->mm, tp, sizeof(node_t) * (cc - 1),
sizeof(node_t) * cc);
if (likely(newt != NULL))
p->p = newt;
// We can ignore mm_realloc failure because an oversized twig
// array is OK - only beware that next time the prev_size
// passed to mm_realloc will not be correct; TODO?
}
int trie_del(trie_t *tbl, const trie_key_t *key, uint32_t len, trie_val_t *val)
{
assert(tbl);
if (!tbl->weight)
return KNOT_ENOENT;
node_t *t = &tbl->root; // current and parent node
node_t *p = NULL;
bitmap_t b = 0;
while (isbranch(t)) {
__builtin_prefetch(twigs(t));
b = twigbit(t, key, len);
if (!hastwig(t, b))
return KNOT_ENOENT;
p = t;
t = twig(t, twigoff(t, b));
}
tkey_t *lkey = tkey(t);
if (key_cmp(key, len, lkey->chars, lkey->len) != 0)
return KNOT_ENOENT;
del_found(tbl, t, p, b, val);
return KNOT_EOK;
}
/*!
* \brief Stack of nodes, storing a path down a trie.
*
* The structure also serves directly as the public trie_it_t type,
* in which case it always points to the current leaf, unless we've finished
* (i.e. it->len == 0).
* stack[0] is always a valid pointer to the root -> ns_gettrie()
*/
typedef struct trie_it {
node_t* *stack; /*!< The stack; malloc is used directly instead of mm. */
uint32_t len; /*!< Current length of the stack. */
uint32_t alen; /*!< Allocated/available length of the stack. */
/*! \brief Initial storage for \a stack; it should fit in most use cases. */
node_t* stack_init[250];
} nstack_t;
/*! \brief Create a node stack containing just the root (or empty). */
static void ns_init(nstack_t *ns, trie_t *tbl)
{
assert(tbl);
ns->stack = ns->stack_init;
ns->alen = sizeof(ns->stack_init) / sizeof(ns->stack_init[0]);
ns->stack[0] = &tbl->root;
ns->len = (tbl->weight > 0);
}
static inline trie_t * ns_gettrie(nstack_t *ns)
{
assert(ns && ns->stack && ns->stack[0]);
return (struct trie *)ns->stack[0];
}
/*! \brief Free inside of the stack, i.e. not the passed pointer itself. */
static void ns_cleanup(nstack_t *ns)
{
assert(ns && ns->stack);
if (likely(ns->stack == ns->stack_init))
return;
free(ns->stack);
#ifndef NDEBUG
ns->stack = NULL;
ns->alen = 0;
#endif
}
/*! \brief Allocate more space for the stack. */
static int ns_longer_alloc(nstack_t *ns)
{
ns->alen *= 2;
size_t new_size = ns->alen * sizeof(node_t *);
node_t **st;
if (ns->stack == ns->stack_init) {
st = malloc(new_size);
if (st != NULL)
memcpy(st, ns->stack, ns->len * sizeof(node_t *));
} else {
st = realloc(ns->stack, new_size);
}
if (st == NULL)
return KNOT_ENOMEM;
ns->stack = st;
return KNOT_EOK;
}
/*! \brief Ensure the node stack can be extended by one. */
static inline int ns_longer(nstack_t *ns)
{
// get a longer stack if needed
if (likely(ns->len < ns->alen))
return KNOT_EOK;
return ns_longer_alloc(ns); // hand-split the part suitable for inlining
}
/*!
* \brief Find the "branching point" as if searching for a key.
*
* The whole path to the point is kept on the passed stack;
* always at least the root will remain on the top of it.
* Beware: the precise semantics of this function is rather tricky.
* The top of the stack will contain: the corresponding leaf if exact
* match is found; or the immediate node below a
* branching-point-on-edge or the branching-point itself.
*
* \param idiff Set the index of first differing nibble, or TMAX_INDEX for an exact match
* \param tbit Set the bit of the closest leaf's nibble at index idiff
* \param kbit Set the bit of the key's nibble at index idiff
*
* \return KNOT_EOK or KNOT_ENOMEM.
*/
static int ns_find_branch(nstack_t *ns, const trie_key_t *key, uint32_t len,
index_t *idiff, bitmap_t *tbit, bitmap_t *kbit)
{
assert(ns && ns->len && idiff);
// First find some leaf with longest matching prefix.
while (isbranch(ns->stack[ns->len - 1])) {
ERR_RETURN(ns_longer(ns));
node_t *t = ns->stack[ns->len - 1];
__builtin_prefetch(twigs(t));
bitmap_t b = twigbit(t, key, len);
// Even if our key is missing from this branch we need to
// keep iterating down to a leaf. It doesn't matter which
// twig we choose since the keys are all the same up to this
// index. Note that blindly using twigoff(t, b) can cause
// an out-of-bounds index if it equals twigmax(t).
uint i = hastwig(t, b) ? twigoff(t, b) : 0;
ns->stack[ns->len++] = twig(t, i);
}
tkey_t *lkey = tkey(ns->stack[ns->len-1]);
// Find index of the first char that differs.
size_t bytei = 0;
uint32_t klen = lkey->len;
for (bytei = 0; bytei < MIN(len,klen); bytei++) {
if (key[bytei] != lkey->chars[bytei])
break;
}
// Find which half-byte has matched.
index_t index = bytei << 1;
if (bytei == len && len == lkey->len) { // found equivalent key
index = TMAX_INDEX;
goto success;
}
if (likely(bytei < MIN(len,klen))) {
uint8_t k2 = (uint8_t)lkey->chars[bytei];
uint8_t k1 = (uint8_t)key[bytei];
if (((k1 ^ k2) & 0xf0) == 0)
index += 1;
}
// now go up the trie from the current leaf
node_t *t;
do {
if (unlikely(ns->len == 1))
goto success; // only the root stays on the stack
t = ns->stack[ns->len - 2];
if (branch_index(t) < index)
goto success;
--ns->len;
} while (true);
success:
#ifndef NDEBUG // invariants on successful return
assert(ns->len);
if (isbranch(ns->stack[ns->len - 1])) {
t = ns->stack[ns->len - 1];
assert(branch_index(t) >= index);
}
if (ns->len > 1) {
t = ns->stack[ns->len - 2];
assert(branch_index(t) < index || index == TMAX_INDEX);
}
#endif
*idiff = index;
*tbit = keybit(index, lkey->chars, lkey->len);
*kbit = keybit(index, key, len);
return KNOT_EOK;
}
/*!
* \brief Advance the node stack to the last leaf in the subtree.
*
* \return KNOT_EOK or KNOT_ENOMEM.
*/
static int ns_last_leaf(nstack_t *ns)
{
assert(ns);
do {
ERR_RETURN(ns_longer(ns));
node_t *t = ns->stack[ns->len - 1];
if (!isbranch(t))
return KNOT_EOK;
uint lasti = branch_weight(t) - 1;
ns->stack[ns->len++] = twig(t, lasti);
} while (true);
}
/*!
* \brief Advance the node stack to the first leaf in the subtree.
*
* \return KNOT_EOK or KNOT_ENOMEM.
*/
static int ns_first_leaf(nstack_t *ns)
{
assert(ns && ns->len);
do {
ERR_RETURN(ns_longer(ns));
node_t *t = ns->stack[ns->len - 1];
if (!isbranch(t))
return KNOT_EOK;
ns->stack[ns->len++] = twig(t, 0);
} while (true);
}
/*!
* \brief Advance the node stack to the leaf that is previous to the current node.
*
* \note Prefix leaf under the current node DOES count (if present; perhaps questionable).
* \return KNOT_EOK on success, KNOT_ENOENT on not-found, or possibly KNOT_ENOMEM.
*/
static int ns_prev_leaf(nstack_t *ns)
{
assert(ns && ns->len > 0);
node_t *t = ns->stack[ns->len - 1];
// Beware: BMP_NOBYTE child is ordered *before* its parent.
if (isbranch(t) && hastwig(t, BMP_NOBYTE)) {
ERR_RETURN(ns_longer(ns));
ns->stack[ns->len++] = twig(t, 0);
return KNOT_EOK;
}
for (; ns->len >= 2; --ns->len) {
t = ns->stack[ns->len - 1];
node_t *p = ns->stack[ns->len - 2];
uint ci = twig_number(t, p);
if (ci == 0) // we've got to go up again
continue;
// t isn't the first child -> go down the previous one
ns->stack[ns->len - 1] = twig(p, ci - 1);
return ns_last_leaf(ns);
}
return KNOT_ENOENT; // root without empty key has no previous leaf
}
/*!
* \brief Advance the node stack to the leaf that is successor to the current node.
*
* \param skip_prefixed skip any nodes whose key is a prefix of the current one.
* If false, prefix leaf or anything else under the current node DOES count.
* \return KNOT_EOK on success, KNOT_ENOENT on not-found, or possibly KNOT_ENOMEM.
*/
static int ns_next_leaf(nstack_t *ns, const bool skip_pefixed)
{
assert(ns && ns->len > 0);
node_t *t = ns->stack[ns->len - 1];
if (!skip_pefixed && isbranch(t))
return ns_first_leaf(ns);
for (; ns->len >= 2; --ns->len) {
t = ns->stack[ns->len - 1];
node_t *p = ns->stack[ns->len - 2];
uint ci = twig_number(t, p);
if (skip_pefixed && ci == 0 && hastwig(t, BMP_NOBYTE)) {
// Keys in the subtree of p are suffixes of the key of t,
// so we've got to go one level higher
// (this can't happen more than once)
continue;
}
uint cc = branch_weight(p);
assert(ci + 1 <= cc);
if (ci + 1 == cc) {
// t is the last child of p, so we need to keep climbing
continue;
}
// go down the next child of p
ns->stack[ns->len - 1] = twig(p, ci + 1);
return ns_first_leaf(ns);
}
return KNOT_ENOENT; // not found, as no more parent is available
}
/*! \brief Advance the node stack to leaf with longest prefix of the current key. */
static int ns_prefix(nstack_t *ns)
{
assert(ns && ns->len > 0);
const node_t *start = ns->stack[ns->len - 1];
// Walk up the trie until we find a BMP_NOBYTE child.
while (--ns->len > 0) {
node_t *p = ns->stack[ns->len - 1];
if (!hastwig(p, BMP_NOBYTE))
continue;
node_t *end = twig(p, 0);
// In case we started in a BMP_NOBYTE leaf, the first step up
// did NOT shorten the key and we would get back into the same
// node again.
if (end == start)
continue;
ns->stack[ns->len++] = end;
return KNOT_EOK;
}
return KNOT_ENOENT; // not found, as no more parent is available
}
/*! \brief less-or-equal search.
*
* \return KNOT_EOK for exact match, 1 for previous, KNOT_ENOENT for not-found,
* or KNOT_E*.
*/
static int ns_get_leq(nstack_t *ns, const trie_key_t *key, uint32_t len)
{
// First find the key with longest-matching prefix
index_t idiff;
bitmap_t tbit, kbit;
ERR_RETURN(ns_find_branch(ns, key, len, &idiff, &tbit, &kbit));
node_t *t = ns->stack[ns->len - 1];
if (idiff == TMAX_INDEX) // found exact match
return KNOT_EOK;
// Get t: the last node on matching path
bitmap_t b;
if (isbranch(t) && branch_index(t) == idiff) {
// t is OK
b = kbit;
} else {
// the top of the stack was the first unmatched node -> step up
if (ns->len == 1) {
// root was unmatched already
if (kbit < tbit)
return KNOT_ENOENT;
ERR_RETURN(ns_last_leaf(ns));
return 1;
}
--ns->len;
t = ns->stack[ns->len - 1];
b = twigbit(t, key, len);
}
// Now we re-do the first "non-matching" step in the trie
// but try the previous child if key was less (it may not exist)
int i = hastwig(t, b)
? (int)twigoff(t, b) - (kbit < tbit)
: (int)twigoff(t, b) - 1 /* twigoff returns successor when !hastwig */;
if (i >= 0) {
ERR_RETURN(ns_longer(ns));
ns->stack[ns->len++] = twig(t, i);
ERR_RETURN(ns_last_leaf(ns));
} else {
ERR_RETURN(ns_prev_leaf(ns));
}
return 1;
}
int trie_get_leq(trie_t *tbl, const trie_key_t *key, uint32_t len, trie_val_t **val)
{
assert(tbl && val);
if (tbl->weight == 0) {
if (val) *val = NULL;
return KNOT_ENOENT;
}
// We try to do without malloc.
nstack_t ns_local;
ns_init(&ns_local, tbl);
nstack_t *ns = &ns_local;
int ret = ns_get_leq(ns, key, len);
if (ret == KNOT_EOK || ret == 1) {
assert(!isbranch(ns->stack[ns->len - 1]));
if (val) *val = tvalp(ns->stack[ns->len - 1]);
} else {
if (val) *val = NULL;
}
ns_cleanup(ns);
return ret;
}
int trie_it_get_leq(trie_it_t *it, const trie_key_t *key, uint32_t len)
{
assert(it && it->stack[0] && it->alen);
const trie_t *tbl = ns_gettrie(it);
if (tbl->weight == 0) {
it->len = 0;
return KNOT_ENOENT;
}
it->len = 1;
int ret = ns_get_leq(it, key, len);
if (ret == KNOT_EOK || ret == 1) {
assert(trie_it_key(it, NULL));
} else {
it->len = 0;
}
return ret;
}
/* see below */
static int cow_pushdown(trie_cow_t *cow, nstack_t *ns);
/*! \brief implementation of trie_get_ins() and trie_get_cow() */
static trie_val_t* cow_get_ins(trie_cow_t *cow, trie_t *tbl,
const trie_key_t *key, uint32_t len)
{
assert(tbl);
// First leaf in an empty tbl?
if (unlikely(!tbl->weight)) {
if (unlikely(mkleaf(&tbl->root, key, len, &tbl->mm)))
return NULL;
++tbl->weight;
return tvalp(&tbl->root);
}
{ // Intentionally un-indented; until end of function, to bound cleanup attr.
// Find the branching-point
__attribute__((cleanup(ns_cleanup)))
nstack_t ns_local;
ns_init(&ns_local, tbl);
nstack_t *ns = &ns_local;
index_t idiff;
bitmap_t tbit, kbit;
if (unlikely(ns_find_branch(ns, key, len, &idiff, &tbit, &kbit)))
return NULL;
if (unlikely(cow && cow_pushdown(cow, ns) != KNOT_EOK))
return NULL;
node_t *t = ns->stack[ns->len - 1];
if (idiff == TMAX_INDEX) // the same key was already present
return tvalp(t);
node_t leaf, *leafp;
if (unlikely(mkleaf(&leaf, key, len, &tbl->mm)))
return NULL;
if (isbranch(t) && branch_index(t) == idiff) {
// The node t needs a new leaf child.
assert(!hastwig(t, kbit));
// new child position and original child count
uint s = twigoff(t, kbit);
uint m = branch_weight(t);
node_t *nt = mm_realloc(&tbl->mm, twigs(t),
sizeof(node_t) * (m + 1), sizeof(node_t) * m);
if (unlikely(!nt))
goto err_leaf;
memmove(nt + s + 1, nt + s, sizeof(node_t) * (m - s));
leafp = nt + s;
*t = mkbranch(idiff, branch_bmp(t) | kbit, nt);
} else {
// We need to insert a new binary branch with leaf at *t.
// Note: it works the same for the case where we insert above root t.
#ifndef NDEBUG
if (ns->len > 1) {
node_t *pt = ns->stack[ns->len - 2];
assert(hastwig(pt, twigbit(pt, key, len)));
}
#endif
node_t *nt = mm_alloc(&tbl->mm, sizeof(node_t) * 2);
if (unlikely(!nt))
goto err_leaf;
node_t t2 = *t; // Save before overwriting t.
*t = mkbranch(idiff, tbit | kbit, nt);
*twig(t, twigoff(t, tbit)) = t2;
leafp = twig(t, twigoff(t, kbit));
};
*leafp = leaf;
++tbl->weight;
return tvalp(leafp);
err_leaf:
mm_free(&tbl->mm, tkey(&leaf));
return NULL;
}
}
trie_val_t* trie_get_ins(trie_t *tbl, const trie_key_t *key, uint32_t len)
{
return cow_get_ins(NULL, tbl, key, len);
}
/*! \brief Apply a function to every trie_val_t*, in order; a recursive solution. */
static int apply_nodes(node_t *t, int (*f)(trie_val_t *, void *), void *d)
{
assert(t);
if (!isbranch(t))
return f(tvalp(t), d);
uint n = branch_weight(t);
for (uint i = 0; i < n; ++i)
ERR_RETURN(apply_nodes(twig(t, i), f, d));
return KNOT_EOK;
}
int trie_apply(trie_t *tbl, int (*f)(trie_val_t *, void *), void *d)
{
assert(tbl && f);
if (!tbl->weight)
return KNOT_EOK;
return apply_nodes(&tbl->root, f, d);
}
/* These are all thin wrappers around static Tns* functions. */
trie_it_t* trie_it_begin(trie_t *tbl)
{
assert(tbl);
trie_it_t *it = malloc(sizeof(nstack_t));
if (!it)
return NULL;
ns_init(it, tbl);
if (it->len == 0) // empty tbl
return it;
if (ns_first_leaf(it)) {
ns_cleanup(it);
free(it);
return NULL;
}
return it;
}
bool trie_it_finished(trie_it_t *it)
{
assert(it);
return it->len == 0;
}
void trie_it_free(trie_it_t *it)
{
if (!it)
return;
ns_cleanup(it);
free(it);
}
trie_it_t *trie_it_clone(const trie_it_t *it)
{
if (!it) // TODO: or should that be an assertion?
return NULL;
trie_it_t *it2 = malloc(sizeof(nstack_t));
if (!it2)
return NULL;
it2->len = it->len;
it2->alen = it->alen; // we _might_ change it in the rare malloc case, but...
if (likely(it->stack == it->stack_init)) {
it2->stack = it2->stack_init;
assert(it->alen == sizeof(it->stack_init) / sizeof(it->stack_init[0]));
} else {
it2->stack = malloc(it2->alen * sizeof(it2->stack[0]));
if (!it2->stack) {
free(it2);
return NULL;
}
}
memcpy(it2->stack, it->stack, it->len * sizeof(it->stack[0]));
return it2;
}
const trie_key_t* trie_it_key(trie_it_t *it, size_t *len)
{
assert(it && it->len);
node_t *t = it->stack[it->len - 1];
assert(!isbranch(t));
tkey_t *key = tkey(t);
if (len)
*len = key->len;
return key->chars;
}
trie_val_t* trie_it_val(trie_it_t *it)
{
assert(it && it->len);
node_t *t = it->stack[it->len - 1];
assert(!isbranch(t));
return tvalp(t);
}
void trie_it_next(trie_it_t *it)
{
assert(it && it->len);
if (ns_next_leaf(it, false) != KNOT_EOK)
it->len = 0;
}
void trie_it_next_loop(trie_it_t *it)
{
assert(it && it->len);
int ret = ns_next_leaf(it, false);
if (ret == KNOT_ENOENT) {
it->len = 1;
ret = ns_first_leaf(it);
}
if (ret)
it->len = 0;
}
void trie_it_next_nosuffix(trie_it_t *it)
{
assert(it && it->len);
if (ns_next_leaf(it, true) != KNOT_EOK)
it->len = 0;
}
void trie_it_prev(trie_it_t *it)
{
assert(it && it->len);
if (ns_prev_leaf(it) != KNOT_EOK)
it->len = 0;
}
void trie_it_prev_loop(trie_it_t *it)
{
assert(it && it->len);
int ret = ns_prev_leaf(it);
if (ret == KNOT_ENOENT) {
it->len = 1;
ret = ns_last_leaf(it);
}
if (ret)
it->len = 0;
}
void trie_it_parent(trie_it_t *it)
{
assert(it && it->len);
if (ns_prefix(it))
it->len = 0;
}
void trie_it_del(trie_it_t *it)
{
assert(it && it->len);
if (it->len == 0)
return;
node_t *t = it->stack[it->len - 1];
assert(!isbranch(t));
bitmap_t b; // del_found() needs to know which bit to zero in the bitmap
node_t *p;
if (it->len == 1) { // deleting the root
p = NULL;
b = 0; // unused
} else {
p = it->stack[it->len - 2];
assert(isbranch(p));
size_t len;
const trie_key_t *key = trie_it_key(it, &len);
b = twigbit(p, key, len);
}
// We could trie_it_{next,prev,...}(it) now, in case we wanted that semantics.
it->len = 0;
del_found(ns_gettrie(it), t, p, b, NULL);
}
/*!\file
*
* \section About copy-on-write
*
* In these notes I'll use the term "object" to refer to either the
* twig array of a branch, or the application's data that is referred
* to by a leaf's trie_val_t pointer. Note that for COW we don't care
* about trie node_t structs themselves, but the objects that they
* point to.
*
* \subsection COW states
*
* During a COW transaction an object can be in one of three states:
* shared, only in the old trie, or only in the new trie. When a
* transaction is rolled back, the only-new objects are freed; when a
* transaction is committed the new trie takes the place of the old
* one and only-old objects are freed.
*
* \subsection branch marks and regions
*
* A branch object can be marked by setting the COW flag in the first
* element of its twig array. Marked branches partition the trie into
* regions; an object's state depends on its region.
*
* The unmarked branch objects between a trie's root and the marked
* branches (excluding the marked branches themselves) is exclusively
* owned: either old-only (if you started from the old root) or
* new-only (if you started from the new root).
*
* Marked branch objects, and all objects reachable from marked branch
* objects, are in the shared region accessible from both old and new
* roots. All branch objects below a marked branch must be unmarked.
* (That is, there is at most one marked branch object on any path
* from the root of a trie.)
*
* Branch nodes in the new-only region can be modified in place, in
* the same way as an original qp trie. Branch nodes in the old-only
* or shared regions must not be modified.
*
* \subsection app object states
*
* The app objects reachable from the new-only and old-only regions
* explicitly record their state in a way determined by the
* application. (These app objects are reachable from the old and new
* roots by traversing only unmarked branch objects.)
*
* The app objects reachable from marked branch objects are implicitly
* shared, but their state field has an indeterminate value. If an app
* object was previously touched by a rolled-back transaction it may
* be marked shared or old-only; if it was previously touched by a
* committed transaction it may be marked shared or new-only.
*
* \subsection key states
*
* The memory allocated for tkey_t objects also needs to track its
* sharing state. They have a "cow" flag to mark when they are shared.
* Keys are relatively lazily copied (to make them exclusive) when
* their leaf node is touched by a COW mutation.
*
* [An alternative technique might be to copy them more eagerly, in
* cow_pushdown(), which would avoid the need for a flag bit at the
* cost of more allocator churn in a transaction.]
*
* \subsection outside COW
*
* When a COW transaction is not in progress, there are no marked
* branch objects, so everything is exclusively owned. When a COW
* transaction is finished (committed or rolled back), the branch
* marks are removed. Since they are in the shared region, this branch
* cleanup is visible to both old and new tries.
*
* However the state of app objects is not clean between COW
* transactions. When a COW transaction is committed, we traverse the
* old-only region to find old-only app objects that should be freed
* (and vice versa for rollback). In general, there will be app
* objects that are only reachable from the new-only region, and that
* have a mixture of shared and new states.
*/
/*! \brief Trie copy-on-write state */
struct trie_cow {
trie_t *old;
trie_t *new;
trie_cb *mark_shared;
void *d;
};
/*! \brief is this a marked branch object */
static bool cow_marked(node_t *t)
{
return isbranch(t) && (twigs(t)->i & TFLAG_COW);
}
/*! \brief is this a leaf with a marked key */
static bool cow_key(node_t *t)
{
return !isbranch(t) && tkey(t)->cow;
}
/*! \brief remove mark from a branch object */
static void clear_cow(node_t *t)
{
assert(isbranch(t));
twigs(t)->i &= ~TFLAG_COW;
}
/*! \brief mark a node as shared
*
* For branches this marks the twig array (in COW terminology, the
* branch object); for leaves it uses the callback to mark the app
* object.
*/
static void mark_cow(trie_cow_t *cow, node_t *t)
{
if (isbranch(t)) {
node_t *object = twigs(t);
object->i |= TFLAG_COW;
} else {
tkey_t *lkey = tkey(t);
lkey->cow = 1;
if (cow->mark_shared != NULL) {
trie_val_t *valp = tvalp(t);
cow->mark_shared(*valp, lkey->chars, lkey->len, cow->d);
}
}
}
/*! \brief push exclusive COW region down one node */
static int cow_pushdown_one(trie_cow_t *cow, node_t *t)
{
uint cc = branch_weight(t);
node_t *nt = mm_alloc(&cow->new->mm, sizeof(node_t) * cc);
if (nt == NULL)
return KNOT_ENOMEM;
/* mark all the children */
for (uint ci = 0; ci < cc; ++ci)
mark_cow(cow, twig(t, ci));
/* this node must be unmarked in both old and new versions */
clear_cow(t);
t->p = memcpy(nt, twigs(t), sizeof(node_t) * cc);
return KNOT_EOK;
}
/*! \brief push exclusive COW region to cover a whole node stack */
static int cow_pushdown(trie_cow_t *cow, nstack_t *ns)
{
node_t *new_twigs = NULL;
node_t *old_twigs = NULL;
for (uint i = 0; i < ns->len; i++) {
/* if we did a pushdown on the previous iteration, we
need to update this stack entry so it points into
the parent's new twigs instead of the old ones */
if (new_twigs != old_twigs)
ns->stack[i] = new_twigs + (ns->stack[i] - old_twigs);
if (cow_marked(ns->stack[i])) {
old_twigs = twigs(ns->stack[i]);
if (cow_pushdown_one(cow, ns->stack[i]))
return KNOT_ENOMEM;
new_twigs = twigs(ns->stack[i]);
} else {
new_twigs = NULL;
old_twigs = NULL;
/* ensure key is exclusively owned */
if (cow_key(ns->stack[i])) {
node_t oleaf = *ns->stack[i];
tkey_t *okey = tkey(&oleaf);
if(mkleaf(ns->stack[i], okey->chars, okey->len,
&cow->new->mm))
return KNOT_ENOMEM;
ns->stack[i]->p = oleaf.p;
okey->cow = 0;
}
}
}
return KNOT_EOK;
}
trie_cow_t* trie_cow(trie_t *old, trie_cb *mark_shared, void *d)
{
knot_mm_t *mm = &old->mm;
trie_t *new = mm_alloc(mm, sizeof(trie_t));
trie_cow_t *cow = mm_alloc(mm, sizeof(trie_cow_t));
if (new == NULL || cow == NULL) {
mm_free(mm, new);
mm_free(mm, cow);
return NULL;
}
new->mm = old->mm;
new->root = old->root;
new->weight = old->weight;
cow->old = old;
cow->new = new;
cow->mark_shared = mark_shared;
cow->d = d;
if (old->weight)
mark_cow(cow, &old->root);
return cow;
}
trie_t* trie_cow_new(trie_cow_t *cow)
{
assert(cow != NULL);
return cow->new;
}
trie_val_t* trie_get_cow(trie_cow_t *cow, const trie_key_t *key, uint32_t len)
{
return cow_get_ins(cow, cow->new, key, len);
}
int trie_del_cow(trie_cow_t *cow, const trie_key_t *key, uint32_t len, trie_val_t *val)
{
trie_t *tbl = cow->new;
if (unlikely(!tbl->weight))
return KNOT_ENOENT;
{ // Intentionally un-indented; until end of function, to bound cleanup attr.
// Find the branching-point
__attribute__((cleanup(ns_cleanup)))
nstack_t ns_local;
ns_init(&ns_local, tbl);
nstack_t *ns = &ns_local;
index_t idiff;
bitmap_t tbit, kbit;
ERR_RETURN(ns_find_branch(ns, key, len, &idiff, &tbit, &kbit));
if (idiff != TMAX_INDEX)
return KNOT_ENOENT;
ERR_RETURN(cow_pushdown(cow, ns));
node_t *t = ns->stack[ns->len - 1];
node_t *p = ns->len >= 2 ? ns->stack[ns->len - 2] : NULL;
del_found(tbl, t, p, p ? twigbit(p, key, len) : 0, val);
}
return KNOT_EOK;
}
/*! \brief clean up after a COW transaction, recursively */
static void cow_cleanup(trie_cow_t *cow, node_t *t, trie_cb *cb, void *d)
{
if (cow_marked(t)) {
// we have hit the shared region, so just reset the mark
clear_cow(t);
return;
} else if (isbranch(t)) {
// traverse and free the exclusive region
uint cc = branch_weight(t);
for (uint ci = 0; ci < cc; ++ci)
cow_cleanup(cow, twig(t, ci), cb, d);
mm_free(&cow->new->mm, twigs(t));
return;
} else {
// application must decide how to clean up its values
tkey_t *lkey = tkey(t);
if (cb != NULL) {
trie_val_t *valp = tvalp(t);
cb(*valp, lkey->chars, lkey->len, d);
}
// clean up exclusively-owned keys
if (lkey->cow)
lkey->cow = 0;
else
mm_free(&cow->new->mm, lkey);
return;
}
}
trie_t* trie_cow_commit(trie_cow_t *cow, trie_cb *cb, void *d)
{
trie_t *ret = cow->new;
if (cow->old->weight)
cow_cleanup(cow, &cow->old->root, cb, d);
mm_free(&ret->mm, cow->old);
mm_free(&ret->mm, cow);
return ret;
}
trie_t* trie_cow_rollback(trie_cow_t *cow, trie_cb *cb, void *d)
{
trie_t *ret = cow->old;
if (cow->new->weight)
cow_cleanup(cow, &cow->new->root, cb, d);
mm_free(&ret->mm, cow->new);
mm_free(&ret->mm, cow);
return ret;
}
|