diff options
Diffstat (limited to '')
-rw-r--r-- | basegfx/source/curve/b2dcubicbezier.cxx | 1057 |
1 files changed, 1057 insertions, 0 deletions
diff --git a/basegfx/source/curve/b2dcubicbezier.cxx b/basegfx/source/curve/b2dcubicbezier.cxx new file mode 100644 index 000000000..4fd2e33fe --- /dev/null +++ b/basegfx/source/curve/b2dcubicbezier.cxx @@ -0,0 +1,1057 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <basegfx/curve/b2dcubicbezier.hxx> +#include <basegfx/vector/b2dvector.hxx> +#include <basegfx/polygon/b2dpolygon.hxx> +#include <basegfx/matrix/b2dhommatrix.hxx> +#include <basegfx/numeric/ftools.hxx> + +#include <osl/diagnose.h> + +#include <limits> + +// #i37443# +#define FACTOR_FOR_UNSHARPEN (1.6) +#ifdef DBG_UTIL +static const double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN; +#endif + +namespace basegfx +{ + namespace + { + void ImpSubDivAngle( + const B2DPoint& rfPA, // start point + const B2DPoint& rfEA, // edge on A + const B2DPoint& rfEB, // edge on B + const B2DPoint& rfPB, // end point + B2DPolygon& rTarget, // target polygon + double fAngleBound, // angle bound in [0.0 .. 2PI] + bool bAllowUnsharpen, // #i37443# allow the criteria to get unsharp in recursions + sal_uInt16 nMaxRecursionDepth) // endless loop protection + { + if(nMaxRecursionDepth) + { + // do angle test + B2DVector aLeft(rfEA - rfPA); + B2DVector aRight(rfEB - rfPB); + + // #i72104# + if(aLeft.equalZero()) + { + aLeft = rfEB - rfPA; + } + + if(aRight.equalZero()) + { + aRight = rfEA - rfPB; + } + + const double fCurrentAngle(aLeft.angle(aRight)); + + if(fabs(fCurrentAngle) > (F_PI - fAngleBound)) + { + // end recursion + nMaxRecursionDepth = 0; + } + else + { + if(bAllowUnsharpen) + { + // #i37443# unsharpen criteria +#ifdef DBG_UTIL + fAngleBound *= fMultFactUnsharpen; +#else + fAngleBound *= FACTOR_FOR_UNSHARPEN; +#endif + } + } + } + + if(nMaxRecursionDepth) + { + // divide at 0.5 + const B2DPoint aS1L(average(rfPA, rfEA)); + const B2DPoint aS1C(average(rfEA, rfEB)); + const B2DPoint aS1R(average(rfEB, rfPB)); + const B2DPoint aS2L(average(aS1L, aS1C)); + const B2DPoint aS2R(average(aS1C, aS1R)); + const B2DPoint aS3C(average(aS2L, aS2R)); + + // left recursion + ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1); + + // right recursion + ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1); + } + else + { + rTarget.append(rfPB); + } + } + + void ImpSubDivAngleStart( + const B2DPoint& rfPA, // start point + const B2DPoint& rfEA, // edge on A + const B2DPoint& rfEB, // edge on B + const B2DPoint& rfPB, // end point + B2DPolygon& rTarget, // target polygon + const double& rfAngleBound) // angle bound in [0.0 .. 2PI] + { + sal_uInt16 nMaxRecursionDepth(8); + const B2DVector aLeft(rfEA - rfPA); + const B2DVector aRight(rfEB - rfPB); + bool bLeftEqualZero(aLeft.equalZero()); + bool bRightEqualZero(aRight.equalZero()); + bool bAllParallel(false); + + if(bLeftEqualZero && bRightEqualZero) + { + nMaxRecursionDepth = 0; + } + else + { + const B2DVector aBase(rfPB - rfPA); + const bool bBaseEqualZero(aBase.equalZero()); // #i72104# + + if(!bBaseEqualZero) + { + const bool bLeftParallel(bLeftEqualZero || areParallel(aLeft, aBase)); + const bool bRightParallel(bRightEqualZero || areParallel(aRight, aBase)); + + if(bLeftParallel && bRightParallel) + { + bAllParallel = true; + + if(!bLeftEqualZero) + { + double fFactor; + + if(fabs(aBase.getX()) > fabs(aBase.getY())) + { + fFactor = aLeft.getX() / aBase.getX(); + } + else + { + fFactor = aLeft.getY() / aBase.getY(); + } + + if(fFactor >= 0.0 && fFactor <= 1.0) + { + bLeftEqualZero = true; + } + } + + if(!bRightEqualZero) + { + double fFactor; + + if(fabs(aBase.getX()) > fabs(aBase.getY())) + { + fFactor = aRight.getX() / -aBase.getX(); + } + else + { + fFactor = aRight.getY() / -aBase.getY(); + } + + if(fFactor >= 0.0 && fFactor <= 1.0) + { + bRightEqualZero = true; + } + } + + if(bLeftEqualZero && bRightEqualZero) + { + nMaxRecursionDepth = 0; + } + } + } + } + + if(nMaxRecursionDepth) + { + // divide at 0.5 ad test both edges for angle criteria + const B2DPoint aS1L(average(rfPA, rfEA)); + const B2DPoint aS1C(average(rfEA, rfEB)); + const B2DPoint aS1R(average(rfEB, rfPB)); + const B2DPoint aS2L(average(aS1L, aS1C)); + const B2DPoint aS2R(average(aS1C, aS1R)); + const B2DPoint aS3C(average(aS2L, aS2R)); + + // test left + bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero); + if(!bAngleIsSmallerLeft) + { + const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104# + const B2DVector aRightLeft(aS2L - aS3C); + const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft)); + bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound)); + } + + // test right + bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero); + if(!bAngleIsSmallerRight) + { + const B2DVector aLeftRight(aS2R - aS3C); + const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104# + const double fCurrentAngleRight(aLeftRight.angle(aRightRight)); + bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound)); + } + + if(bAngleIsSmallerLeft && bAngleIsSmallerRight) + { + // no recursion necessary at all + nMaxRecursionDepth = 0; + } + else + { + // left + if(bAngleIsSmallerLeft) + { + rTarget.append(aS3C); + } + else + { + ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, true/*bAllowUnsharpen*/, nMaxRecursionDepth); + } + + // right + if(bAngleIsSmallerRight) + { + rTarget.append(rfPB); + } + else + { + ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, true/*bAllowUnsharpen*/, nMaxRecursionDepth); + } + } + } + + if(!nMaxRecursionDepth) + { + rTarget.append(rfPB); + } + } + + void ImpSubDivDistance( + const B2DPoint& rfPA, // start point + const B2DPoint& rfEA, // edge on A + const B2DPoint& rfEB, // edge on B + const B2DPoint& rfPB, // end point + B2DPolygon& rTarget, // target polygon + double fDistanceBound2, // quadratic distance criteria + double fLastDistanceError2, // the last quadratic distance error + sal_uInt16 nMaxRecursionDepth) // endless loop protection + { + if(nMaxRecursionDepth) + { + // decide if another recursion is needed. If not, set + // nMaxRecursionDepth to zero + + // Perform bezier flatness test (lecture notes from R. Schaback, + // Mathematics of Computer-Aided Design, Uni Goettingen, 2000) + + // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)|| + // 0<=j<=n + + // What is calculated here is an upper bound to the distance from + // a line through b_0 and b_3 (rfPA and P4 in our notation) and the + // curve. We can drop 0 and n from the running indices, since the + // argument of max becomes zero for those cases. + const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX())); + const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY())); + const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX())); + const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY())); + const double fDistanceError2(std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y)); + + // stop if error measure does not improve anymore. This is a + // safety guard against floating point inaccuracies. + // stop if distance from line is guaranteed to be bounded by d + const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2); + + if(bFurtherDivision) + { + // remember last error value + fLastDistanceError2 = fDistanceError2; + } + else + { + // stop recursion + nMaxRecursionDepth = 0; + } + } + + if(nMaxRecursionDepth) + { + // divide at 0.5 + const B2DPoint aS1L(average(rfPA, rfEA)); + const B2DPoint aS1C(average(rfEA, rfEB)); + const B2DPoint aS1R(average(rfEB, rfPB)); + const B2DPoint aS2L(average(aS1L, aS1C)); + const B2DPoint aS2R(average(aS1C, aS1R)); + const B2DPoint aS3C(average(aS2L, aS2R)); + + // left recursion + ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1); + + // right recursion + ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1); + } + else + { + rTarget.append(rfPB); + } + } + } // end of anonymous namespace +} // end of namespace basegfx + +namespace basegfx +{ + B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier&) = default; + + B2DCubicBezier::B2DCubicBezier() = default; + + B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd) + : maStartPoint(rStart), + maEndPoint(rEnd), + maControlPointA(rControlPointA), + maControlPointB(rControlPointB) + { + } + + B2DCubicBezier::~B2DCubicBezier() = default; + + // assignment operator + B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier&) = default; + + // compare operators + bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const + { + return ( + maStartPoint == rBezier.maStartPoint + && maEndPoint == rBezier.maEndPoint + && maControlPointA == rBezier.maControlPointA + && maControlPointB == rBezier.maControlPointB + ); + } + + bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const + { + return ( + maStartPoint != rBezier.maStartPoint + || maEndPoint != rBezier.maEndPoint + || maControlPointA != rBezier.maControlPointA + || maControlPointB != rBezier.maControlPointB + ); + } + + bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const + { + return ( + maStartPoint.equal(rBezier.maStartPoint) + && maEndPoint.equal(rBezier.maEndPoint) + && maControlPointA.equal(rBezier.maControlPointA) + && maControlPointB.equal(rBezier.maControlPointB) + ); + } + + // test if vectors are used + bool B2DCubicBezier::isBezier() const + { + return maControlPointA != maStartPoint || maControlPointB != maEndPoint; + } + + void B2DCubicBezier::testAndSolveTrivialBezier() + { + if(maControlPointA == maStartPoint && maControlPointB == maEndPoint) + return; + + const B2DVector aEdge(maEndPoint - maStartPoint); + + // controls parallel to edge can be trivial. No edge -> not parallel -> control can + // still not be trivial (e.g. ballon loop) + if(aEdge.equalZero()) + return; + + // get control vectors + const B2DVector aVecA(maControlPointA - maStartPoint); + const B2DVector aVecB(maControlPointB - maEndPoint); + + // check if trivial per se + bool bAIsTrivial(aVecA.equalZero()); + bool bBIsTrivial(aVecB.equalZero()); + + // #i102241# prepare inverse edge length to normalize cross values; + // else the small compare value used in fTools::equalZero + // will be length dependent and this detection will work as less + // precise as longer the edge is. In principle, the length of the control + // vector would need to be used too, but to be trivial it is assumed to + // be of roughly equal length to the edge, so edge length can be used + // for both. Only needed when one of both is not trivial per se. + const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial + ? 1.0 + : 1.0 / aEdge.getLength()); + + // if A is not zero, check if it could be + if(!bAIsTrivial) + { + // #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what + // we need here with the precision we need + const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength); + + if(fTools::equalZero(fCross)) + { + // get scale to edge. Use bigger distance for numeric quality + const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) + ? aVecA.getX() / aEdge.getX() + : aVecA.getY() / aEdge.getY()); + + // relative end point of vector in edge range? + if (fTools::betweenOrEqualEither(fScale, 0.0, 1.0)) + { + bAIsTrivial = true; + } + } + } + + // if B is not zero, check if it could be, but only if A is already trivial; + // else solve to trivial will not be possible for whole edge + if(bAIsTrivial && !bBIsTrivial) + { + // parallel to edge? Check aVecB, aEdge + const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength); + + if(fTools::equalZero(fCross)) + { + // get scale to edge. Use bigger distance for numeric quality + const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) + ? aVecB.getX() / aEdge.getX() + : aVecB.getY() / aEdge.getY()); + + // end point of vector in edge range? Caution: controlB is directed AGAINST edge + if (fTools::betweenOrEqualEither(fScale, -1.0, 0.0)) + { + bBIsTrivial = true; + } + } + } + + // if both are/can be reduced, do it. + // Not possible if only one is/can be reduced (!) + if(bAIsTrivial && bBIsTrivial) + { + maControlPointA = maStartPoint; + maControlPointB = maEndPoint; + } + } + + namespace { + double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch) + { + const double fEdgeLength(rEdge.getEdgeLength()); + const double fControlPolygonLength(rEdge.getControlPolygonLength()); + const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength)); + + if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation)) + { + return (fEdgeLength + fControlPolygonLength) * 0.5; + } + else + { + B2DCubicBezier aLeft, aRight; + const double fNewDeviation(fDeviation * 0.5); + const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1); + + rEdge.split(0.5, &aLeft, &aRight); + + return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch) + + impGetLength(aRight, fNewDeviation, nNewRecursionWatch); + } + } + } + + double B2DCubicBezier::getLength(double fDeviation) const + { + if(isBezier()) + { + if(fDeviation < 0.00000001) + { + fDeviation = 0.00000001; + } + + return impGetLength(*this, fDeviation, 6); + } + else + { + return B2DVector(getEndPoint() - getStartPoint()).getLength(); + } + } + + double B2DCubicBezier::getEdgeLength() const + { + const B2DVector aEdge(maEndPoint - maStartPoint); + return aEdge.getLength(); + } + + double B2DCubicBezier::getControlPolygonLength() const + { + const B2DVector aVectorA(maControlPointA - maStartPoint); + const B2DVector aVectorB(maEndPoint - maControlPointB); + + if(!aVectorA.equalZero() || !aVectorB.equalZero()) + { + const B2DVector aTop(maControlPointB - maControlPointA); + return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength()); + } + else + { + return getEdgeLength(); + } + } + + void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound) const + { + if(isBezier()) + { + // use support method #i37443# and allow unsharpen the criteria + ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, + deg2rad(fAngleBound)); + } + else + { + rTarget.append(getEndPoint()); + } + } + + B2DVector B2DCubicBezier::getTangent(double t) const + { + if(fTools::lessOrEqual(t, 0.0)) + { + // tangent in start point + B2DVector aTangent(getControlPointA() - getStartPoint()); + + if(!aTangent.equalZero()) + { + return aTangent; + } + + // start point and control vector are the same, fallback + // to implicit start vector to control point B + aTangent = (getControlPointB() - getStartPoint()) * 0.3; + + if(!aTangent.equalZero()) + { + return aTangent; + } + + // not a bezier at all, return edge vector + return (getEndPoint() - getStartPoint()) * 0.3; + } + else if(fTools::moreOrEqual(t, 1.0)) + { + // tangent in end point + B2DVector aTangent(getEndPoint() - getControlPointB()); + + if(!aTangent.equalZero()) + { + return aTangent; + } + + // end point and control vector are the same, fallback + // to implicit start vector from control point A + aTangent = (getEndPoint() - getControlPointA()) * 0.3; + + if(!aTangent.equalZero()) + { + return aTangent; + } + + // not a bezier at all, return edge vector + return (getEndPoint() - getStartPoint()) * 0.3; + } + else + { + // t is in ]0.0 .. 1.0[. Split and extract + B2DCubicBezier aRight; + split(t, nullptr, &aRight); + + return aRight.getControlPointA() - aRight.getStartPoint(); + } + } + + // #i37443# adaptive subdivide by nCount subdivisions + void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const + { + const double fLenFact(1.0 / static_cast< double >(nCount + 1)); + + for(sal_uInt32 a(1); a <= nCount; a++) + { + const double fPos(static_cast< double >(a) * fLenFact); + rTarget.append(interpolatePoint(fPos)); + } + + rTarget.append(getEndPoint()); + } + + // adaptive subdivide by distance + void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const + { + if(isBezier()) + { + ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget, + fDistanceBound * fDistanceBound, std::numeric_limits<double>::max(), 30); + } + else + { + rTarget.append(getEndPoint()); + } + } + + B2DPoint B2DCubicBezier::interpolatePoint(double t) const + { + OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)"); + + if(isBezier()) + { + const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t)); + const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t)); + const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t)); + const B2DPoint aS2L(interpolate(aS1L, aS1C, t)); + const B2DPoint aS2R(interpolate(aS1C, aS1R, t)); + + return interpolate(aS2L, aS2R, t); + } + else + { + return interpolate(maStartPoint, maEndPoint, t); + } + } + + double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const + { + const sal_uInt32 nInitialDivisions(3); + B2DPolygon aInitialPolygon; + + // as start make a fix division, creates nInitialDivisions + 2 points + aInitialPolygon.append(getStartPoint()); + adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions); + + // now look for the closest point + const sal_uInt32 nPointCount(aInitialPolygon.count()); + B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0)); + double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY()); + double fNewQuadDist; + sal_uInt32 nSmallestIndex(0); + + for(sal_uInt32 a(1); a < nPointCount; a++) + { + aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a)); + fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY(); + + if(fNewQuadDist < fQuadDist) + { + fQuadDist = fNewQuadDist; + nSmallestIndex = a; + } + } + + // look right and left for even smaller distances + double fStepValue(1.0 / static_cast<double>((nPointCount - 1) * 2)); // half the edge step width + double fPosition(static_cast<double>(nSmallestIndex) / static_cast<double>(nPointCount - 1)); + + while(true) + { + // test left + double fPosLeft(fPosition - fStepValue); + + if(fPosLeft < 0.0) + { + fPosLeft = 0.0; + aVector = B2DVector(rTestPoint - maStartPoint); + } + else + { + aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft)); + } + + fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY(); + + if(fTools::less(fNewQuadDist, fQuadDist)) + { + fQuadDist = fNewQuadDist; + fPosition = fPosLeft; + } + else + { + // test right + double fPosRight(fPosition + fStepValue); + + if(fPosRight > 1.0) + { + fPosRight = 1.0; + aVector = B2DVector(rTestPoint - maEndPoint); + } + else + { + aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight)); + } + + fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY(); + + if(fTools::less(fNewQuadDist, fQuadDist)) + { + fQuadDist = fNewQuadDist; + fPosition = fPosRight; + } + else + { + // not less left or right, done + break; + } + } + + if(fPosition == 0.0 || fPosition == 1.0) + { + // if we are completely left or right, we are done + break; + } + + // prepare next step value + fStepValue /= 2.0; + } + + rCut = fPosition; + return sqrt(fQuadDist); + } + + void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const + { + OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)"); + + if(!pBezierA && !pBezierB) + { + return; + } + + if(isBezier()) + { + const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t)); + const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t)); + const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t)); + const B2DPoint aS2L(interpolate(aS1L, aS1C, t)); + const B2DPoint aS2R(interpolate(aS1C, aS1R, t)); + const B2DPoint aS3C(interpolate(aS2L, aS2R, t)); + + if(pBezierA) + { + pBezierA->setStartPoint(maStartPoint); + pBezierA->setEndPoint(aS3C); + pBezierA->setControlPointA(aS1L); + pBezierA->setControlPointB(aS2L); + } + + if(pBezierB) + { + pBezierB->setStartPoint(aS3C); + pBezierB->setEndPoint(maEndPoint); + pBezierB->setControlPointA(aS2R); + pBezierB->setControlPointB(aS1R); + } + } + else + { + const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t)); + + if(pBezierA) + { + pBezierA->setStartPoint(maStartPoint); + pBezierA->setEndPoint(aSplit); + pBezierA->setControlPointA(maStartPoint); + pBezierA->setControlPointB(aSplit); + } + + if(pBezierB) + { + pBezierB->setStartPoint(aSplit); + pBezierB->setEndPoint(maEndPoint); + pBezierB->setControlPointA(aSplit); + pBezierB->setControlPointB(maEndPoint); + } + } + } + + B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const + { + B2DCubicBezier aRetval; + + if(fTools::more(fStart, 1.0)) + { + fStart = 1.0; + } + else if(fTools::less(fStart, 0.0)) + { + fStart = 0.0; + } + + if(fTools::more(fEnd, 1.0)) + { + fEnd = 1.0; + } + else if(fTools::less(fEnd, 0.0)) + { + fEnd = 0.0; + } + + if(fEnd <= fStart) + { + // empty or NULL, create single point at center + const double fSplit((fEnd + fStart) * 0.5); + const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit)); + aRetval.setStartPoint(aPoint); + aRetval.setEndPoint(aPoint); + aRetval.setControlPointA(aPoint); + aRetval.setControlPointB(aPoint); + } + else + { + if(isBezier()) + { + // copy bezier; cut off right, then cut off left. Do not forget to + // adapt cut value when both cuts happen + const bool bEndIsOne(fTools::equal(fEnd, 1.0)); + const bool bStartIsZero(fTools::equalZero(fStart)); + aRetval = *this; + + if(!bEndIsOne) + { + aRetval.split(fEnd, &aRetval, nullptr); + + if(!bStartIsZero) + { + fStart /= fEnd; + } + } + + if(!bStartIsZero) + { + aRetval.split(fStart, nullptr, &aRetval); + } + } + else + { + // no bezier, create simple edge + const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart)); + const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd)); + aRetval.setStartPoint(aPointA); + aRetval.setEndPoint(aPointB); + aRetval.setControlPointA(aPointA); + aRetval.setControlPointB(aPointB); + } + } + + return aRetval; + } + + B2DRange B2DCubicBezier::getRange() const + { + B2DRange aRetval(maStartPoint, maEndPoint); + + aRetval.expand(maControlPointA); + aRetval.expand(maControlPointB); + + return aRetval; + } + + bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const + { + std::vector< double > aAllResults; + + aAllResults.reserve(4); + getAllExtremumPositions(aAllResults); + + const sal_uInt32 nCount(aAllResults.size()); + + if(!nCount) + { + return false; + } + else if(nCount == 1) + { + rfResult = aAllResults[0]; + return true; + } + else + { + rfResult = *(std::min_element(aAllResults.begin(), aAllResults.end())); + return true; + } + } + + namespace + { + void impCheckExtremumResult(double fCandidate, std::vector< double >& rResult) + { + // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly + // by using the equalZero test, NOT ::more or ::less which will use the + // ApproxEqual() which is too exact here + if(fCandidate > 0.0 && !fTools::equalZero(fCandidate)) + { + if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0)) + { + rResult.push_back(fCandidate); + } + } + } + } + + void B2DCubicBezier::getAllExtremumPositions(std::vector< double >& rResults) const + { + rResults.clear(); + + // calculate the x-extrema parameters by zeroing first x-derivative + // of the cubic bezier's parametric formula, which results in a + // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX + const B2DPoint aControlDiff( maControlPointA - maControlPointB ); + double fCX = maControlPointA.getX() - maStartPoint.getX(); + const double fBX = fCX + aControlDiff.getX(); + const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX()); + + if(fTools::equalZero(fCX)) + { + // detect fCX equal zero and truncate to real zero value in that case + fCX = 0.0; + } + + if( !fTools::equalZero(fAX) ) + { + // derivative is polynomial of order 2 => use binomial formula + const double fD = fBX*fBX - fAX*fCX; + if( fD >= 0.0 ) + { + const double fS = sqrt(fD); + // calculate both roots (avoiding a numerically unstable subtraction) + const double fQ = fBX + ((fBX >= 0) ? +fS : -fS); + impCheckExtremumResult(fQ / fAX, rResults); + if( !fTools::equalZero(fS) ) // ignore root multiplicity + impCheckExtremumResult(fCX / fQ, rResults); + } + } + else if( !fTools::equalZero(fBX) ) + { + // derivative is polynomial of order 1 => one extrema + impCheckExtremumResult(fCX / (2 * fBX), rResults); + } + + // calculate the y-extrema parameters by zeroing first y-derivative + double fCY = maControlPointA.getY() - maStartPoint.getY(); + const double fBY = fCY + aControlDiff.getY(); + const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY()); + + if(fTools::equalZero(fCY)) + { + // detect fCY equal zero and truncate to real zero value in that case + fCY = 0.0; + } + + if( !fTools::equalZero(fAY) ) + { + // derivative is polynomial of order 2 => use binomial formula + const double fD = fBY*fBY - fAY*fCY; + if( fD >= 0.0 ) + { + const double fS = sqrt(fD); + // calculate both roots (avoiding a numerically unstable subtraction) + const double fQ = fBY + ((fBY >= 0) ? +fS : -fS); + impCheckExtremumResult(fQ / fAY, rResults); + if( !fTools::equalZero(fS) ) // ignore root multiplicity + impCheckExtremumResult(fCY / fQ, rResults); + } + } + else if( !fTools::equalZero(fBY) ) + { + // derivative is polynomial of order 1 => one extrema + impCheckExtremumResult(fCY / (2 * fBY), rResults); + } + } + + void B2DCubicBezier::transform(const basegfx::B2DHomMatrix& rMatrix) + { + if(rMatrix.isIdentity()) + return; + + if(maControlPointA == maStartPoint) + { + maControlPointA = maStartPoint = rMatrix * maStartPoint; + } + else + { + maStartPoint *= rMatrix; + maControlPointA *= rMatrix; + } + + if(maControlPointB == maEndPoint) + { + maControlPointB = maEndPoint = rMatrix * maEndPoint; + } + else + { + maEndPoint *= rMatrix; + maControlPointB *= rMatrix; + } + } + + void B2DCubicBezier::fround() + { + if(maControlPointA == maStartPoint) + { + maControlPointA = maStartPoint = basegfx::B2DPoint( + basegfx::fround(maStartPoint.getX()), + basegfx::fround(maStartPoint.getY())); + } + else + { + maStartPoint = basegfx::B2DPoint( + basegfx::fround(maStartPoint.getX()), + basegfx::fround(maStartPoint.getY())); + maControlPointA = basegfx::B2DPoint( + basegfx::fround(maControlPointA.getX()), + basegfx::fround(maControlPointA.getY())); + } + + if(maControlPointB == maEndPoint) + { + maControlPointB = maEndPoint = basegfx::B2DPoint( + basegfx::fround(maEndPoint.getX()), + basegfx::fround(maEndPoint.getY())); + } + else + { + maEndPoint = basegfx::B2DPoint( + basegfx::fround(maEndPoint.getX()), + basegfx::fround(maEndPoint.getY())); + maControlPointB = basegfx::B2DPoint( + basegfx::fround(maControlPointB.getX()), + basegfx::fround(maControlPointB.getY())); + } + } +} // end of namespace basegfx + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |