diff options
Diffstat (limited to '')
-rw-r--r-- | basegfx/source/workbench/gauss.hxx | 170 |
1 files changed, 170 insertions, 0 deletions
diff --git a/basegfx/source/workbench/gauss.hxx b/basegfx/source/workbench/gauss.hxx new file mode 100644 index 000000000..fc352fe7e --- /dev/null +++ b/basegfx/source/workbench/gauss.hxx @@ -0,0 +1,170 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +/** This method eliminates elements below main diagonal in the given + matrix by gaussian elimination. + + @param matrix + The matrix to operate on. Last column is the result vector (right + hand side of the linear equation). After successful termination, + the matrix is upper triangular. The matrix is expected to be in + row major order. + + @param rows + Number of rows in matrix + + @param cols + Number of columns in matrix + + @param minPivot + If the pivot element gets lesser than minPivot, this method fails, + otherwise, elimination succeeds and true is returned. + + @return true, if elimination succeeded. + */ + +#ifndef INCLUDED_BASEGFX_SOURCE_WORKBENCH_GAUSS_HXX +#define INCLUDED_BASEGFX_SOURCE_WORKBENCH_GAUSS_HXX + +template <class Matrix, typename BaseType> +bool eliminate( Matrix& matrix, + int rows, + int cols, + const BaseType& minPivot ) +{ + BaseType temp; + + /* i, j, k *must* be signed, when looping like: j>=0 ! */ + /* eliminate below main diagonal */ + for(int i=0; i<cols-1; ++i) + { + /* find best pivot */ + int max = i; + for(int j=i+1; j<rows; ++j) + if( fabs(matrix[ j*cols + i ]) > fabs(matrix[ max*cols + i ]) ) + max = j; + + /* check pivot value */ + if( fabs(matrix[ max*cols + i ]) < minPivot ) + return false; /* pivot too small! */ + + /* interchange rows 'max' and 'i' */ + for(int k=0; k<cols; ++k) + { + temp = matrix[ i*cols + k ]; + matrix[ i*cols + k ] = matrix[ max*cols + k ]; + matrix[ max*cols + k ] = temp; + } + + /* eliminate column */ + for(int j=i+1; j<rows; ++j) + for(int k=cols-1; k>=i; --k) + matrix[ j*cols + k ] -= matrix[ i*cols + k ] * + matrix[ j*cols + i ] / matrix[ i*cols + i ]; + } + + /* everything went well */ + return true; +} + +/** Retrieve solution vector of linear system by substituting backwards. + + This operation _relies_ on the previous successful + application of eliminate()! + + @param matrix + Matrix in upper diagonal form, as e.g. generated by eliminate() + + @param rows + Number of rows in matrix + + @param cols + Number of columns in matrix + + @param result + Result vector. Given matrix must have space for one column (rows entries). + + @return true, if back substitution was possible (i.e. no division + by zero occurred). + */ +template <class Matrix, class Vector, typename BaseType> +bool substitute( const Matrix& matrix, + int rows, + int cols, + Vector& result ) +{ + BaseType temp; + + /* j, k *must* be signed, when looping like: j>=0 ! */ + /* substitute backwards */ + for(int j=rows-1; j>=0; --j) + { + temp = 0.0; + for(int k=j+1; k<cols-1; ++k) + temp += matrix[ j*cols + k ] * result[k]; + + if( matrix[ j*cols + j ] == 0.0 ) + return false; /* imminent division by zero! */ + + result[j] = (matrix[ j*cols + cols-1 ] - temp) / matrix[ j*cols + j ]; + } + + /* everything went well */ + return true; +} + +/** This method determines solution of given linear system, if any + + This is a wrapper for eliminate and substitute, given matrix must + contain right side of equation as the last column. + + @param matrix + The matrix to operate on. Last column is the result vector (right + hand side of the linear equation). After successful termination, + the matrix is upper triangular. The matrix is expected to be in + row major order. + + @param rows + Number of rows in matrix + + @param cols + Number of columns in matrix + + @param minPivot + If the pivot element gets lesser than minPivot, this method fails, + otherwise, elimination succeeds and true is returned. + + @return true, if elimination succeeded. + */ +template <class Matrix, class Vector, typename BaseType> +bool solve( Matrix& matrix, + int rows, + int cols, + Vector& result, + BaseType minPivot ) +{ + if( eliminate<Matrix,BaseType>(matrix, rows, cols, minPivot) ) + return substitute<Matrix,Vector,BaseType>(matrix, rows, cols, result); + + return false; +} + +#endif // INCLUDED_BASEGFX_SOURCE_WORKBENCH_GAUSS_HXX + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |