summaryrefslogtreecommitdiffstats
path: root/include/basegfx/utils/tools.hxx
diff options
context:
space:
mode:
Diffstat (limited to 'include/basegfx/utils/tools.hxx')
-rw-r--r--include/basegfx/utils/tools.hxx124
1 files changed, 124 insertions, 0 deletions
diff --git a/include/basegfx/utils/tools.hxx b/include/basegfx/utils/tools.hxx
new file mode 100644
index 000000000..f8fc61999
--- /dev/null
+++ b/include/basegfx/utils/tools.hxx
@@ -0,0 +1,124 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#pragma once
+
+#include <sal/types.h>
+#include <basegfx/basegfxdllapi.h>
+
+namespace basegfx
+{
+ class B2DPoint;
+ class B2DRange;
+ class B2DPolyPolygon;
+}
+
+namespace basegfx::utils
+{
+ /** Expand given parallelogram, such that it extends beyond
+ bound rect in a given direction.
+
+ This method is useful when e.g. generating one-dimensional
+ gradients, such as linear or axial gradients: those
+ gradients vary only in one direction, the other has
+ constant color. Most of the time, those gradients extends
+ infinitely in the direction with the constant color, but
+ practically, one always has a limiting bound rect into
+ which the gradient is painted. The method at hand now
+ extends a given parallelogram (e.g. the transformed
+ bounding box of a gradient) virtually into infinity to the
+ top and to the bottom (i.e. normal to the line io_rLeftTop
+ io_rRightTop), such that the given rectangle is guaranteed
+ to be covered in that direction.
+
+ @attention There might be some peculiarities with this
+ method, that might limit its usage to the described
+ gradients. One of them is the fact that when determining
+ how far the parallelogram has to be extended to the top or
+ the bottom, the upper and lower border are assumed to be
+ infinite lines.
+
+ @param io_rLeftTop
+ Left, top edge of the parallelogramm. Note that this need
+ not be the left, top edge geometrically, it's just used
+ when determining the extension direction. Thus, it's
+ perfectly legal to affine-transform a rectangle, and given
+ the transformed point here. On method return, this
+ parameter will contain the adapted output.
+
+ @param io_rLeftBottom
+ Left, bottom edge of the parallelogramm. Note that this need
+ not be the left, bottom edge geometrically, it's just used
+ when determining the extension direction. Thus, it's
+ perfectly legal to affine-transform a rectangle, and given
+ the transformed point here. On method return, this
+ parameter will contain the adapted output.
+
+ @param io_rRightTop
+ Right, top edge of the parallelogramm. Note that this need
+ not be the right, top edge geometrically, it's just used
+ when determining the extension direction. Thus, it's
+ perfectly legal to affine-transform a rectangle, and given
+ the transformed point here. On method return, this
+ parameter will contain the adapted output.
+
+ @param io_rRightBottom
+ Right, bottom edge of the parallelogramm. Note that this need
+ not be the right, bottom edge geometrically, it's just used
+ when determining the extension direction. Thus, it's
+ perfectly legal to affine-transform a rectangle, and given
+ the transformed point here. On method return, this
+ parameter will contain the adapted output.
+
+ @param rFitTarget
+ The rectangle to fit the parallelogram into.
+ */
+ BASEGFX_DLLPUBLIC void infiniteLineFromParallelogram( ::basegfx::B2DPoint& io_rLeftTop,
+ ::basegfx::B2DPoint& io_rLeftBottom,
+ ::basegfx::B2DPoint& io_rRightTop,
+ ::basegfx::B2DPoint& io_rRightBottom,
+ const ::basegfx::B2DRange& rFitTarget );
+
+ /** Creates polypolygon with the given number as seven-segment
+ digits
+
+ @param fVal
+ Value to convert
+
+ @param nTotalDigits
+ Total number of digits to display. If less is needed for
+ given number, fill space with blanks.
+
+ @param nDecPlaces
+ Decimal places to show. When 0, display as integer. When
+ negative, fill given number of before-the-decimal point
+ with zero.
+
+ @param bLitSegments
+ When true, return a polygon containing the segments that
+ are 'lit' for the given number. Return un-lit segments
+ otherwise.
+ */
+ BASEGFX_DLLPUBLIC B2DPolyPolygon number2PolyPolygon(double fVal,
+ sal_Int32 nTotalDigits,
+ sal_Int32 nDecPlaces,
+ bool bLitSegments=true);
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */