/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #ifndef INCLUDED_OOX_HELPER_HELPER_HXX #define INCLUDED_OOX_HELPER_HELPER_HXX #include #include #include #include #include #include #include #include #include #include namespace oox { // Helper macros ============================================================== namespace detail { //TODO: Temporary helper for STATIC_ARRAY_SELECT; ultimately, the latter should be replaced by a // proper function (template): template constexpr std::make_unsigned_t make_unsigned(T value) { if constexpr (std::is_signed_v) { return o3tl::make_unsigned(value); } else { return value; } } } /** Expands to the 'index'-th element of a STATIC data array, or to 'def', if 'index' is out of the array limits. */ #define STATIC_ARRAY_SELECT( array, index, def ) \ ((detail::make_unsigned(index) < SAL_N_ELEMENTS(array)) ? ((array)[static_cast(index)]) : (def)) // Common constants =========================================================== const sal_uInt8 WINDOWS_CHARSET_ANSI = 0; const sal_uInt8 WINDOWS_CHARSET_DEFAULT = 1; const sal_uInt8 WINDOWS_CHARSET_SYMBOL = 2; const sal_uInt8 WINDOWS_CHARSET_APPLE_ROMAN = 77; const sal_uInt8 WINDOWS_CHARSET_SHIFTJIS = 128; const sal_uInt8 WINDOWS_CHARSET_HANGEUL = 129; const sal_uInt8 WINDOWS_CHARSET_JOHAB = 130; const sal_uInt8 WINDOWS_CHARSET_GB2312 = 134; const sal_uInt8 WINDOWS_CHARSET_BIG5 = 136; const sal_uInt8 WINDOWS_CHARSET_GREEK = 161; const sal_uInt8 WINDOWS_CHARSET_TURKISH = 162; const sal_uInt8 WINDOWS_CHARSET_VIETNAMESE = 163; const sal_uInt8 WINDOWS_CHARSET_HEBREW = 177; const sal_uInt8 WINDOWS_CHARSET_ARABIC = 178; const sal_uInt8 WINDOWS_CHARSET_BALTIC = 186; const sal_uInt8 WINDOWS_CHARSET_RUSSIAN = 204; const sal_uInt8 WINDOWS_CHARSET_THAI = 222; const sal_uInt8 WINDOWS_CHARSET_EASTERN = 238; const sal_uInt8 WINDOWS_CHARSET_OEM = 255; const ::Color API_RGB_TRANSPARENT (0xffffffff); ///< Transparent color for API calls. const sal_uInt32 UNSIGNED_RGB_TRANSPARENT = static_cast(-1); ///< Transparent color for unsigned int32 places. const ::Color API_RGB_BLACK (0x000000); ///< Black color for API calls. const ::Color API_RGB_GRAY (0x808080); ///< Gray color for API calls. const ::Color API_RGB_WHITE (0xFFFFFF); ///< White color for API calls. const sal_Int16 API_LINE_SOLID = 0; const sal_Int16 API_LINE_DOTTED = 1; const sal_Int16 API_LINE_DASHED = 2; const sal_Int16 API_FINE_LINE_DASHED = 14; const sal_Int16 API_LINE_NONE = 0; const sal_Int16 API_LINE_HAIR = 2; const sal_Int16 API_LINE_THIN = 35; const sal_Int16 API_LINE_MEDIUM = 88; const sal_Int16 API_LINE_THICK = 141; const sal_Int16 API_ESCAPE_NONE = 0; ///< No escapement. const sal_Int16 API_ESCAPE_SUPERSCRIPT = 101; ///< Superscript: raise characters automatically (magic value 101). const sal_Int16 API_ESCAPE_SUBSCRIPT = -101; ///< Subscript: lower characters automatically (magic value -101). const sal_Int8 API_ESCAPEHEIGHT_NONE = 100; ///< Relative character height if not escaped. const sal_Int8 API_ESCAPEHEIGHT_DEFAULT = 58; ///< Relative character height if escaped. // Limitate values ------------------------------------------------------------ template< typename ReturnType, typename Type > inline ReturnType getLimitedValue( Type nValue, Type nMin, Type nMax ) { return static_cast< ReturnType >( ::std::min( ::std::max( nValue, nMin ), nMax ) ); } template< typename ReturnType, typename Type > inline ReturnType getIntervalValue( Type nValue, Type nBegin, Type nEnd ) { static_assert(::std::numeric_limits< Type >::is_integer, "is integer"); Type nInterval = nEnd - nBegin; Type nCount = (nValue < nBegin) ? -((nBegin - nValue - 1) / nInterval + 1) : ((nValue - nBegin) / nInterval); return static_cast< ReturnType >( nValue - nCount * nInterval ); } template< typename ReturnType > inline ReturnType getDoubleIntervalValue( double fValue, double fBegin, double fEnd ) { double fInterval = fEnd - fBegin; double fCount = (fValue < fBegin) ? -(::rtl::math::approxFloor( (fBegin - fValue - 1.0) / fInterval ) + 1.0) : ::rtl::math::approxFloor( (fValue - fBegin) / fInterval ); return static_cast< ReturnType >( fValue - fCount * fInterval ); } // Read from bitfields -------------------------------------------------------- /** Returns true, if at least one of the bits set in nMask is set in nBitField. */ template< typename Type > inline bool getFlag( Type nBitField, Type nMask ) { return (nBitField & nMask) != 0; } /** Returns nSet, if at least one bit of nMask is set in nBitField, otherwise nUnset. */ template< typename ReturnType, typename Type > inline ReturnType getFlagValue( Type nBitField, Type nMask, ReturnType nSet, ReturnType nUnset ) { return getFlag( nBitField, nMask ) ? nSet : nUnset; } /** Extracts a value from a bit field. Returns the data fragment from nBitField, that starts at bit nStartBit (0-based, bit 0 is rightmost) with the width of nBitCount. The returned value will be right-aligned (normalized). For instance: extractValue(0x4321,8,4) returns 3 (value in bits 8-11). */ template< typename ReturnType, typename Type > inline ReturnType extractValue( Type nBitField, sal_uInt8 nStartBit, sal_uInt8 nBitCount ) { sal_uInt64 nMask = 1; nMask <<= nBitCount; --nMask; return static_cast< ReturnType >( nMask & (nBitField >> nStartBit) ); } // Write to bitfields --------------------------------------------------------- /** Sets or clears (according to bSet) all set bits of nMask in ornBitField. */ template< typename Type > inline void setFlag( Type& ornBitField, Type nMask, bool bSet = true ) { if( bSet ) ornBitField |= nMask; else ornBitField &= ~nMask; } /** Optional value, similar to ::std::optional<>, with convenience accessors. */ template< typename Type > class OptValue { public: OptValue() : maValue(), mbHasValue( false ) {} explicit OptValue( const Type& rValue ) : maValue( rValue ), mbHasValue( true ) {} explicit OptValue( bool bHasValue, const Type& rValue ) : maValue( rValue ), mbHasValue( bHasValue ) {} bool has() const { return mbHasValue; } bool operator!() const { return !mbHasValue; } bool differsFrom( const Type& rValue ) const { return mbHasValue && (maValue != rValue); } const Type& get() const { return maValue; } const Type& get( const Type& rDefValue ) const { return mbHasValue ? maValue : rDefValue; } void set( const Type& rValue ) { maValue = rValue; mbHasValue = true; } Type& use() { mbHasValue = true; return maValue; } OptValue& operator=( const Type& rValue ) { set( rValue ); return *this; } bool operator==( const OptValue& rValue ) const { return ( ( !mbHasValue && rValue.mbHasValue == false ) || ( mbHasValue == rValue.mbHasValue && maValue == rValue.maValue ) ); } void assignIfUsed( const OptValue& rValue ) { if( rValue.mbHasValue ) set( rValue.maValue ); } private: Type maValue; bool mbHasValue; }; /** Provides platform independent functions to convert from or to little-endian byte order, e.g. for reading data from or writing data to memory or a binary stream. On big-endian platforms, the byte order in the passed values is swapped, this can be used for converting big-endian to and from little-endian data. On little-endian platforms, the conversion functions are implemented empty, thus compilers should completely optimize away the function call. */ class ByteOrderConverter { public: #ifdef OSL_BIGENDIAN static void convertLittleEndian( sal_Int8& ) {} // present for usage in templates static void convertLittleEndian( sal_uInt8& ) {} // present for usage in templates static void convertLittleEndian( char16_t& rnValue ) { swap2( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( sal_Int16& rnValue ) { swap2( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( sal_uInt16& rnValue ) { swap2( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( sal_Int32& rnValue ) { swap4( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( sal_uInt32& rnValue ) { swap4( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( sal_Int64& rnValue ) { swap8( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( sal_uInt64& rnValue ) { swap8( reinterpret_cast< sal_uInt8* >( &rnValue ) ); } static void convertLittleEndian( float& rfValue ) { swap4( reinterpret_cast< sal_uInt8* >( &rfValue ) ); } static void convertLittleEndian( double& rfValue ) { swap8( reinterpret_cast< sal_uInt8* >( &rfValue ) ); } template< typename Type > inline static void convertLittleEndianArray( Type* pnArray, size_t nElemCount ); static void convertLittleEndianArray( sal_Int8*, size_t ) {} static void convertLittleEndianArray( sal_uInt8*, size_t ) {} #else template< typename Type > static void convertLittleEndian( Type& ) {} template< typename Type > static void convertLittleEndianArray( Type*, size_t ) {} #endif /** Writes a value to memory, while converting it to little-endian. @param pDstBuffer The memory buffer to write the value to. @param nValue The value to be written to memory in little-endian. */ template< typename Type > inline static void writeLittleEndian( void* pDstBuffer, Type nValue ); #ifdef OSL_BIGENDIAN private: inline static void swap2( sal_uInt8* pnData ); inline static void swap4( sal_uInt8* pnData ); inline static void swap8( sal_uInt8* pnData ); #endif }; template< typename Type > inline void ByteOrderConverter::writeLittleEndian( void* pDstBuffer, Type nValue ) { convertLittleEndian( nValue ); memcpy( pDstBuffer, &nValue, sizeof( Type ) ); } #ifdef OSL_BIGENDIAN template< typename Type > inline void ByteOrderConverter::convertLittleEndianArray( Type* pnArray, size_t nElemCount ) { for( Type* pnArrayEnd = pnArray + nElemCount; pnArray != pnArrayEnd; ++pnArray ) convertLittleEndian( *pnArray ); } inline void ByteOrderConverter::swap2( sal_uInt8* pnData ) { ::std::swap( pnData[ 0 ], pnData[ 1 ] ); } inline void ByteOrderConverter::swap4( sal_uInt8* pnData ) { ::std::swap( pnData[ 0 ], pnData[ 3 ] ); ::std::swap( pnData[ 1 ], pnData[ 2 ] ); } inline void ByteOrderConverter::swap8( sal_uInt8* pnData ) { ::std::swap( pnData[ 0 ], pnData[ 7 ] ); ::std::swap( pnData[ 1 ], pnData[ 6 ] ); ::std::swap( pnData[ 2 ], pnData[ 5 ] ); ::std::swap( pnData[ 3 ], pnData[ 4 ] ); } #endif } // namespace oox #endif /* vim:set shiftwidth=4 softtabstop=4 expandtab: */