/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Glyph Flags #define GF_FONTMASK 0xF0000000 #define GF_FONTSHIFT 28 std::ostream &operator <<(std::ostream& s, ImplLayoutArgs const &rArgs) { #ifndef SAL_LOG_INFO (void) rArgs; #else s << "ImplLayoutArgs{"; s << "Flags="; if (rArgs.mnFlags == SalLayoutFlags::NONE) s << 0; else { bool need_or = false; s << "{"; #define TEST(x) if (rArgs.mnFlags & SalLayoutFlags::x) { if (need_or) s << "|"; s << #x; need_or = true; } TEST(BiDiRtl); TEST(BiDiStrong); TEST(RightAlign); TEST(DisableKerning); TEST(KerningAsian); TEST(Vertical); TEST(KashidaJustification); TEST(ForFallback); #undef TEST s << "}"; } const int nLength = rArgs.mrStr.getLength(); s << ",Length=" << nLength; s << ",MinCharPos=" << rArgs.mnMinCharPos; s << ",EndCharPos=" << rArgs.mnEndCharPos; s << ",Str=\""; int lim = nLength; if (lim > 10) lim = 7; for (int i = 0; i < lim; i++) { if (rArgs.mrStr[i] == '\n') s << "\\n"; else if (rArgs.mrStr[i] < ' ' || (rArgs.mrStr[i] >= 0x7F && rArgs.mrStr[i] <= 0xFF)) s << "\\0x" << std::hex << std::setw(2) << std::setfill('0') << static_cast(rArgs.mrStr[i]) << std::setfill(' ') << std::setw(1) << std::dec; else if (rArgs.mrStr[i] < 0x7F) s << static_cast(rArgs.mrStr[i]); else s << "\\u" << std::hex << std::setw(4) << std::setfill('0') << static_cast(rArgs.mrStr[i]) << std::setfill(' ') << std::setw(1) << std::dec; } if (nLength > lim) s << "..."; s << "\""; s << ",DXArray="; if (rArgs.mpDXArray) { s << "["; int count = rArgs.mnEndCharPos - rArgs.mnMinCharPos; lim = count; if (lim > 10) lim = 7; for (int i = 0; i < lim; i++) { s << rArgs.mpDXArray[i]; if (i < lim-1) s << ","; } if (count > lim) { if (count > lim + 1) s << "..."; s << rArgs.mpDXArray[count-1]; } s << "]"; } else s << "NULL"; s << ",LayoutWidth=" << rArgs.mnLayoutWidth; s << "}"; #endif return s; } sal_UCS4 GetMirroredChar( sal_UCS4 nChar ) { nChar = u_charMirror( nChar ); return nChar; } sal_UCS4 GetLocalizedChar( sal_UCS4 nChar, LanguageType eLang ) { // currently only conversion from ASCII digits is interesting if( (nChar < '0') || ('9' < nChar) ) return nChar; int nOffset; // eLang & LANGUAGE_MASK_PRIMARY catches language independent of region. // CAVEAT! To some like Mongolian MS assigned the same primary language // although the script type is different! LanguageType pri = primary(eLang); if( pri == primary(LANGUAGE_ARABIC_SAUDI_ARABIA) ) nOffset = 0x0660 - '0'; // arabic-indic digits else if ( pri.anyOf( primary(LANGUAGE_FARSI), primary(LANGUAGE_URDU_PAKISTAN), primary(LANGUAGE_PUNJABI), //??? primary(LANGUAGE_SINDHI))) nOffset = 0x06F0 - '0'; // eastern arabic-indic digits else if ( pri == primary(LANGUAGE_BENGALI) ) nOffset = 0x09E6 - '0'; // bengali else if ( pri == primary(LANGUAGE_HINDI) ) nOffset = 0x0966 - '0'; // devanagari else if ( pri.anyOf( primary(LANGUAGE_AMHARIC_ETHIOPIA), primary(LANGUAGE_TIGRIGNA_ETHIOPIA))) // TODO case: nOffset = 0x1369 - '0'; // ethiopic else if ( pri == primary(LANGUAGE_GUJARATI) ) nOffset = 0x0AE6 - '0'; // gujarati #ifdef LANGUAGE_GURMUKHI // TODO case: else if ( pri == primary(LANGUAGE_GURMUKHI) ) nOffset = 0x0A66 - '0'; // gurmukhi #endif else if ( pri == primary(LANGUAGE_KANNADA) ) nOffset = 0x0CE6 - '0'; // kannada else if ( pri == primary(LANGUAGE_KHMER)) nOffset = 0x17E0 - '0'; // khmer else if ( pri == primary(LANGUAGE_LAO) ) nOffset = 0x0ED0 - '0'; // lao else if ( pri == primary(LANGUAGE_MALAYALAM) ) nOffset = 0x0D66 - '0'; // malayalam else if ( pri == primary(LANGUAGE_MONGOLIAN_MONGOLIAN_LSO)) { if (eLang.anyOf( LANGUAGE_MONGOLIAN_MONGOLIAN_MONGOLIA, LANGUAGE_MONGOLIAN_MONGOLIAN_CHINA, LANGUAGE_MONGOLIAN_MONGOLIAN_LSO)) nOffset = 0x1810 - '0'; // mongolian else nOffset = 0; // mongolian cyrillic } else if ( pri == primary(LANGUAGE_BURMESE) ) nOffset = 0x1040 - '0'; // myanmar else if ( pri == primary(LANGUAGE_ODIA) ) nOffset = 0x0B66 - '0'; // odia else if ( pri == primary(LANGUAGE_TAMIL) ) nOffset = 0x0BE7 - '0'; // tamil else if ( pri == primary(LANGUAGE_TELUGU) ) nOffset = 0x0C66 - '0'; // telugu else if ( pri == primary(LANGUAGE_THAI) ) nOffset = 0x0E50 - '0'; // thai else if ( pri == primary(LANGUAGE_TIBETAN) ) nOffset = 0x0F20 - '0'; // tibetan else { nOffset = 0; } nChar += nOffset; return nChar; } static bool IsControlChar( sal_UCS4 cChar ) { // C0 control characters if( (0x0001 <= cChar) && (cChar <= 0x001F) ) return true; // formatting characters if( (0x200E <= cChar) && (cChar <= 0x200F) ) return true; if( (0x2028 <= cChar) && (cChar <= 0x202E) ) return true; // deprecated formatting characters if( (0x206A <= cChar) && (cChar <= 0x206F) ) return true; if( 0x2060 == cChar ) return true; // byte order markers and invalid unicode if( (cChar == 0xFEFF) || (cChar == 0xFFFE) || (cChar == 0xFFFF) ) return true; return false; } void ImplLayoutRuns::AddPos( int nCharPos, bool bRTL ) { // check if charpos could extend current run int nIndex = maRuns.size(); if( nIndex >= 2 ) { int nRunPos0 = maRuns[ nIndex-2 ]; int nRunPos1 = maRuns[ nIndex-1 ]; if( ((nCharPos + int(bRTL)) == nRunPos1) && ((nRunPos0 > nRunPos1) == bRTL) ) { // extend current run by new charpos maRuns[ nIndex-1 ] = nCharPos + int(!bRTL); return; } // ignore new charpos when it is in current run if( (nRunPos0 <= nCharPos) && (nCharPos < nRunPos1) ) return; if( (nRunPos1 <= nCharPos) && (nCharPos < nRunPos0) ) return; } // else append a new run consisting of the new charpos maRuns.push_back( nCharPos + (bRTL ? 1 : 0) ); maRuns.push_back( nCharPos + (bRTL ? 0 : 1) ); } void ImplLayoutRuns::AddRun( int nCharPos0, int nCharPos1, bool bRTL ) { if( nCharPos0 == nCharPos1 ) return; // swap if needed if( bRTL == (nCharPos0 < nCharPos1) ) { int nTemp = nCharPos0; nCharPos0 = nCharPos1; nCharPos1 = nTemp; } if (maRuns.size() >= 2 && nCharPos0 == maRuns[maRuns.size() - 2] && nCharPos1 == maRuns[maRuns.size() - 1]) { //this run is the same as the last return; } // append new run maRuns.push_back( nCharPos0 ); maRuns.push_back( nCharPos1 ); } bool ImplLayoutRuns::PosIsInRun( int nCharPos ) const { if( mnRunIndex >= static_cast(maRuns.size()) ) return false; int nMinCharPos = maRuns[ mnRunIndex+0 ]; int nEndCharPos = maRuns[ mnRunIndex+1 ]; if( nMinCharPos > nEndCharPos ) // reversed in RTL case { int nTemp = nMinCharPos; nMinCharPos = nEndCharPos; nEndCharPos = nTemp; } if( nCharPos < nMinCharPos ) return false; if( nCharPos >= nEndCharPos ) return false; return true; } bool ImplLayoutRuns::PosIsInAnyRun( int nCharPos ) const { bool bRet = false; int nRunIndex = mnRunIndex; ImplLayoutRuns *pThis = const_cast(this); pThis->ResetPos(); for (size_t i = 0; i < maRuns.size(); i+=2) { bRet = PosIsInRun( nCharPos ); if( bRet ) break; pThis->NextRun(); } pThis->mnRunIndex = nRunIndex; return bRet; } bool ImplLayoutRuns::GetNextPos( int* nCharPos, bool* bRightToLeft ) { // negative nCharPos => reset to first run if( *nCharPos < 0 ) mnRunIndex = 0; // return false when all runs completed if( mnRunIndex >= static_cast(maRuns.size()) ) return false; int nRunPos0 = maRuns[ mnRunIndex+0 ]; int nRunPos1 = maRuns[ mnRunIndex+1 ]; *bRightToLeft = (nRunPos0 > nRunPos1); if( *nCharPos < 0 ) { // get first valid nCharPos in run *nCharPos = nRunPos0; } else { // advance to next nCharPos for LTR case if( !*bRightToLeft ) ++(*nCharPos); // advance to next run if current run is completed if( *nCharPos == nRunPos1 ) { if( (mnRunIndex += 2) >= static_cast(maRuns.size()) ) return false; nRunPos0 = maRuns[ mnRunIndex+0 ]; nRunPos1 = maRuns[ mnRunIndex+1 ]; *bRightToLeft = (nRunPos0 > nRunPos1); *nCharPos = nRunPos0; } } // advance to next nCharPos for RTL case if( *bRightToLeft ) --(*nCharPos); return true; } bool ImplLayoutRuns::GetRun( int* nMinRunPos, int* nEndRunPos, bool* bRightToLeft ) const { if( mnRunIndex >= static_cast(maRuns.size()) ) return false; int nRunPos0 = maRuns[ mnRunIndex+0 ]; int nRunPos1 = maRuns[ mnRunIndex+1 ]; *bRightToLeft = (nRunPos1 < nRunPos0) ; if( !*bRightToLeft ) { *nMinRunPos = nRunPos0; *nEndRunPos = nRunPos1; } else { *nMinRunPos = nRunPos1; *nEndRunPos = nRunPos0; } return true; } ImplLayoutArgs::ImplLayoutArgs(const OUString& rStr, int nMinCharPos, int nEndCharPos, SalLayoutFlags nFlags, const LanguageTag& rLanguageTag, vcl::TextLayoutCache const*const pLayoutCache) : maLanguageTag( rLanguageTag ), mnFlags( nFlags ), mrStr( rStr ), mnMinCharPos( nMinCharPos ), mnEndCharPos( nEndCharPos ), m_pTextLayoutCache(pLayoutCache), mpDXArray( nullptr ), mnLayoutWidth( 0 ), mnOrientation( 0 ) { if( mnFlags & SalLayoutFlags::BiDiStrong ) { // handle strong BiDi mode // do not bother to BiDi analyze strong LTR/RTL // TODO: can we assume these strings do not have unicode control chars? // if not remove the control characters from the runs bool bRTL(mnFlags & SalLayoutFlags::BiDiRtl); AddRun( mnMinCharPos, mnEndCharPos, bRTL ); } else { // handle weak BiDi mode UBiDiLevel nLevel = (mnFlags & SalLayoutFlags::BiDiRtl)? 1 : 0; // prepare substring for BiDi analysis // TODO: reuse allocated pParaBidi UErrorCode rcI18n = U_ZERO_ERROR; const int nLength = mrStr.getLength(); UBiDi* pParaBidi = ubidi_openSized(nLength, 0, &rcI18n); if( !pParaBidi ) return; ubidi_setPara(pParaBidi, reinterpret_cast(mrStr.getStr()), nLength, nLevel, nullptr, &rcI18n); UBiDi* pLineBidi = pParaBidi; int nSubLength = mnEndCharPos - mnMinCharPos; if (nSubLength != nLength) { pLineBidi = ubidi_openSized( nSubLength, 0, &rcI18n ); ubidi_setLine( pParaBidi, mnMinCharPos, mnEndCharPos, pLineBidi, &rcI18n ); } // run BiDi algorithm const int nRunCount = ubidi_countRuns( pLineBidi, &rcI18n ); //maRuns.resize( 2 * nRunCount ); for( int i = 0; i < nRunCount; ++i ) { int32_t nMinPos, nRunLength; const UBiDiDirection nDir = ubidi_getVisualRun( pLineBidi, i, &nMinPos, &nRunLength ); const int nPos0 = nMinPos + mnMinCharPos; const int nPos1 = nPos0 + nRunLength; const bool bRTL = (nDir == UBIDI_RTL); AddRun( nPos0, nPos1, bRTL ); } // cleanup BiDi engine if( pLineBidi != pParaBidi ) ubidi_close( pLineBidi ); ubidi_close( pParaBidi ); } // prepare calls to GetNextPos/GetNextRun maRuns.ResetPos(); } // add a run after splitting it up to get rid of control chars void ImplLayoutArgs::AddRun( int nCharPos0, int nCharPos1, bool bRTL ) { SAL_WARN_IF( nCharPos0 > nCharPos1, "vcl", "ImplLayoutArgs::AddRun() nCharPos0>=nCharPos1" ); // remove control characters from runs by splitting them up if( !bRTL ) { for( int i = nCharPos0; i < nCharPos1; ++i ) if( IsControlChar( mrStr[i] ) ) { // add run until control char maRuns.AddRun( nCharPos0, i, bRTL ); nCharPos0 = i + 1; } } else { for( int i = nCharPos1; --i >= nCharPos0; ) if( IsControlChar( mrStr[i] ) ) { // add run until control char maRuns.AddRun( i+1, nCharPos1, bRTL ); nCharPos1 = i; } } // add remainder of run maRuns.AddRun( nCharPos0, nCharPos1, bRTL ); } bool ImplLayoutArgs::PrepareFallback() { // short circuit if no fallback is needed if( maFallbackRuns.IsEmpty() ) { maRuns.Clear(); return false; } // convert the fallback requests to layout requests bool bRTL; int nMin, nEnd; // get the individual fallback requests std::vector aPosVector; aPosVector.reserve(mrStr.getLength()); maFallbackRuns.ResetPos(); for(; maFallbackRuns.GetRun( &nMin, &nEnd, &bRTL ); maFallbackRuns.NextRun() ) for( int i = nMin; i < nEnd; ++i ) aPosVector.push_back( i ); maFallbackRuns.Clear(); // sort the individual fallback requests std::sort( aPosVector.begin(), aPosVector.end() ); // adjust fallback runs to have the same order and limits of the original runs ImplLayoutRuns aNewRuns; maRuns.ResetPos(); for(; maRuns.GetRun( &nMin, &nEnd, &bRTL ); maRuns.NextRun() ) { if( !bRTL) { auto it = std::lower_bound( aPosVector.begin(), aPosVector.end(), nMin ); for(; (it != aPosVector.end()) && (*it < nEnd); ++it ) aNewRuns.AddPos( *it, bRTL ); } else { auto it = std::upper_bound( aPosVector.begin(), aPosVector.end(), nEnd ); while( (it != aPosVector.begin()) && (*--it >= nMin) ) aNewRuns.AddPos( *it, bRTL ); } } maRuns = aNewRuns; // TODO: use vector<>::swap() maRuns.ResetPos(); return true; } bool ImplLayoutArgs::GetNextRun( int* nMinRunPos, int* nEndRunPos, bool* bRTL ) { bool bValid = maRuns.GetRun( nMinRunPos, nEndRunPos, bRTL ); maRuns.NextRun(); return bValid; } SalLayout::SalLayout() : mnMinCharPos( -1 ), mnEndCharPos( -1 ), mnUnitsPerPixel( 1 ), mnOrientation( 0 ), maDrawOffset( 0, 0 ) {} SalLayout::~SalLayout() {} void SalLayout::AdjustLayout( ImplLayoutArgs& rArgs ) { mnMinCharPos = rArgs.mnMinCharPos; mnEndCharPos = rArgs.mnEndCharPos; mnOrientation = rArgs.mnOrientation; } Point SalLayout::GetDrawPosition( const Point& rRelative ) const { Point aPos = maDrawBase; Point aOfs = rRelative + maDrawOffset; if( mnOrientation == 0 ) aPos += aOfs; else { // cache trigonometric results static int nOldOrientation = 0; static double fCos = 1.0, fSin = 0.0; if( nOldOrientation != mnOrientation ) { nOldOrientation = mnOrientation; double fRad = mnOrientation * (M_PI / 1800.0); fCos = cos( fRad ); fSin = sin( fRad ); } double fX = aOfs.X(); double fY = aOfs.Y(); long nX = static_cast( +fCos * fX + fSin * fY ); long nY = static_cast( +fCos * fY - fSin * fX ); aPos += Point( nX, nY ); } return aPos; } bool SalLayout::GetOutline(basegfx::B2DPolyPolygonVector& rVector) const { bool bAllOk = true; bool bOneOk = false; basegfx::B2DPolyPolygon aGlyphOutline; Point aPos; const GlyphItem* pGlyph; int nStart = 0; while (GetNextGlyph(&pGlyph, aPos, nStart)) { // get outline of individual glyph, ignoring "empty" glyphs bool bSuccess = pGlyph->GetGlyphOutline(aGlyphOutline); bAllOk &= bSuccess; bOneOk |= bSuccess; // only add non-empty outlines if( bSuccess && (aGlyphOutline.count() > 0) ) { if( aPos.X() || aPos.Y() ) { aGlyphOutline.transform(basegfx::utils::createTranslateB2DHomMatrix(aPos.X(), aPos.Y())); } // insert outline at correct position rVector.push_back( aGlyphOutline ); } } return (bAllOk && bOneOk); } bool SalLayout::GetBoundRect(tools::Rectangle& rRect) const { bool bRet = false; rRect.SetEmpty(); tools::Rectangle aRectangle; Point aPos; const GlyphItem* pGlyph; int nStart = 0; while (GetNextGlyph(&pGlyph, aPos, nStart)) { // get bounding rectangle of individual glyph if (pGlyph->GetGlyphBoundRect(aRectangle)) { // merge rectangle aRectangle += aPos; if (rRect.IsEmpty()) rRect = aRectangle; else rRect.Union(aRectangle); bRet = true; } } return bRet; } DeviceCoordinate GenericSalLayout::FillDXArray( DeviceCoordinate* pCharWidths ) const { if (pCharWidths) GetCharWidths(pCharWidths); return GetTextWidth(); } // the text width is the maximum logical extent of all glyphs DeviceCoordinate GenericSalLayout::GetTextWidth() const { if (!m_GlyphItems.IsValid()) return 0; // initialize the extent DeviceCoordinate nMinPos = 0; DeviceCoordinate nMaxPos = 0; for (auto const& aGlyphItem : *m_GlyphItems.Impl()) { // update the text extent with the glyph extent DeviceCoordinate nXPos = aGlyphItem.m_aLinearPos.getX(); if( nMinPos > nXPos ) nMinPos = nXPos; nXPos += aGlyphItem.m_nNewWidth - aGlyphItem.xOffset(); if( nMaxPos < nXPos ) nMaxPos = nXPos; } DeviceCoordinate nWidth = nMaxPos - nMinPos; return nWidth; } void GenericSalLayout::Justify( DeviceCoordinate nNewWidth ) { nNewWidth *= mnUnitsPerPixel; DeviceCoordinate nOldWidth = GetTextWidth(); if( !nOldWidth || nNewWidth==nOldWidth ) return; if (!m_GlyphItems.IsValid()) { return; } // find rightmost glyph, it won't get stretched std::vector::iterator pGlyphIterRight = m_GlyphItems.Impl()->begin(); pGlyphIterRight += m_GlyphItems.Impl()->size() - 1; std::vector::iterator pGlyphIter; // count stretchable glyphs int nStretchable = 0; int nMaxGlyphWidth = 0; for(pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter) { if( !pGlyphIter->IsDiacritic() ) ++nStretchable; if (nMaxGlyphWidth < pGlyphIter->origWidth()) nMaxGlyphWidth = pGlyphIter->origWidth(); } // move rightmost glyph to requested position nOldWidth -= pGlyphIterRight->origWidth(); if( nOldWidth <= 0 ) return; if( nNewWidth < nMaxGlyphWidth) nNewWidth = nMaxGlyphWidth; nNewWidth -= pGlyphIterRight->origWidth(); pGlyphIterRight->m_aLinearPos.setX( nNewWidth ); // justify glyph widths and positions int nDiffWidth = nNewWidth - nOldWidth; if( nDiffWidth >= 0) // expanded case { // expand width by distributing space between glyphs evenly int nDeltaSum = 0; for( pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter ) { // move glyph to justified position pGlyphIter->m_aLinearPos.AdjustX(nDeltaSum ); // do not stretch non-stretchable glyphs if( pGlyphIter->IsDiacritic() || (nStretchable <= 0) ) continue; // distribute extra space equally to stretchable glyphs int nDeltaWidth = nDiffWidth / nStretchable--; nDiffWidth -= nDeltaWidth; pGlyphIter->m_nNewWidth += nDeltaWidth; nDeltaSum += nDeltaWidth; } } else // condensed case { // squeeze width by moving glyphs proportionally double fSqueeze = static_cast(nNewWidth) / nOldWidth; if(m_GlyphItems.Impl()->size() > 1) { for( pGlyphIter = m_GlyphItems.Impl()->begin(); ++pGlyphIter != pGlyphIterRight;) { int nX = pGlyphIter->m_aLinearPos.getX(); nX = static_cast(nX * fSqueeze); pGlyphIter->m_aLinearPos.setX( nX ); } } // adjust glyph widths to new positions for( pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter != pGlyphIterRight; ++pGlyphIter ) pGlyphIter->m_nNewWidth = pGlyphIter[1].m_aLinearPos.getX() - pGlyphIter[0].m_aLinearPos.getX(); } } // returns asian kerning values in quarter of character width units // to enable automatic halfwidth substitution for fullwidth punctuation // return value is negative for l, positive for r, zero for neutral // TODO: handle vertical layout as proposed in commit 43bf2ad49c2b3989bbbe893e4fee2e032a3920f5? static int lcl_CalcAsianKerning(sal_UCS4 c, bool bLeft) { // http://www.asahi-net.or.jp/~sd5a-ucd/freetexts/jis/x4051/1995/appendix.html static const signed char nTable[0x30] = { 0, -2, -2, 0, 0, 0, 0, 0, +2, -2, +2, -2, +2, -2, +2, -2, +2, -2, 0, 0, +2, -2, +2, -2, 0, 0, 0, 0, 0, +2, -2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, +2, +2, -2, -2 }; int nResult = 0; if( (c >= 0x3000) && (c < 0x3030) ) nResult = nTable[ c - 0x3000 ]; else switch( c ) { case 0x30FB: nResult = bLeft ? -1 : +1; // 25% left/right/top/bottom break; case 0x2019: case 0x201D: case 0xFF01: case 0xFF09: case 0xFF0C: case 0xFF1A: case 0xFF1B: nResult = -2; break; case 0x2018: case 0x201C: case 0xFF08: nResult = +2; break; default: break; } return nResult; } static bool lcl_CanApplyAsianKerning(sal_Unicode cp) { return (0x3000 == (cp & 0xFF00)) || (0xFF00 == (cp & 0xFF00)) || (0x2010 == (cp & 0xFFF0)); } void GenericSalLayout::ApplyAsianKerning(const OUString& rStr) { const int nLength = rStr.getLength(); long nOffset = 0; for (std::vector::iterator pGlyphIter = m_GlyphItems.Impl()->begin(), pGlyphIterEnd = m_GlyphItems.Impl()->end(); pGlyphIter != pGlyphIterEnd; ++pGlyphIter) { const int n = pGlyphIter->charPos(); if (n < nLength - 1) { // ignore code ranges that are not affected by asian punctuation compression const sal_Unicode cCurrent = rStr[n]; if (!lcl_CanApplyAsianKerning(cCurrent)) continue; const sal_Unicode cNext = rStr[n + 1]; if (!lcl_CanApplyAsianKerning(cNext)) continue; // calculate compression values const int nKernCurrent = +lcl_CalcAsianKerning(cCurrent, true); if (nKernCurrent == 0) continue; const int nKernNext = -lcl_CalcAsianKerning(cNext, false); if (nKernNext == 0) continue; // apply punctuation compression to logical glyph widths int nDelta = (nKernCurrent < nKernNext) ? nKernCurrent : nKernNext; if (nDelta < 0) { nDelta = (nDelta * pGlyphIter->origWidth() + 2) / 4; if( pGlyphIter+1 == pGlyphIterEnd ) pGlyphIter->m_nNewWidth += nDelta; nOffset += nDelta; } } // adjust the glyph positions to the new glyph widths if( pGlyphIter+1 != pGlyphIterEnd ) pGlyphIter->m_aLinearPos.AdjustX(nOffset); } } void GenericSalLayout::GetCaretPositions( int nMaxIndex, long* pCaretXArray ) const { // initialize result array for (int i = 0; i < nMaxIndex; ++i) pCaretXArray[i] = -1; // calculate caret positions using glyph array for (auto const& aGlyphItem : *m_GlyphItems.Impl()) { long nXPos = aGlyphItem.m_aLinearPos.getX(); long nXRight = nXPos + aGlyphItem.origWidth(); int n = aGlyphItem.charPos(); int nCurrIdx = 2 * (n - mnMinCharPos); // tdf#86399 if this is not the start of a cluster, don't overwrite the caret bounds of the cluster start if (aGlyphItem.IsInCluster() && pCaretXArray[nCurrIdx] != -1) continue; if (!aGlyphItem.IsRTLGlyph() ) { // normal positions for LTR case pCaretXArray[ nCurrIdx ] = nXPos; pCaretXArray[ nCurrIdx+1 ] = nXRight; } else { // reverse positions for RTL case pCaretXArray[ nCurrIdx ] = nXRight; pCaretXArray[ nCurrIdx+1 ] = nXPos; } } } sal_Int32 GenericSalLayout::GetTextBreak( DeviceCoordinate nMaxWidth, DeviceCoordinate nCharExtra, int nFactor ) const { int nCharCapacity = mnEndCharPos - mnMinCharPos; std::unique_ptr const pCharWidths(new DeviceCoordinate[nCharCapacity]); GetCharWidths(pCharWidths.get()); DeviceCoordinate nWidth = 0; for( int i = mnMinCharPos; i < mnEndCharPos; ++i ) { nWidth += pCharWidths[ i - mnMinCharPos ] * nFactor; if( nWidth > nMaxWidth ) return i; nWidth += nCharExtra; } return -1; } bool GenericSalLayout::GetNextGlyph(const GlyphItem** pGlyph, Point& rPos, int& nStart, const PhysicalFontFace**, int* const pFallbackLevel) const { std::vector::const_iterator pGlyphIter = m_GlyphItems.Impl()->begin(); std::vector::const_iterator pGlyphIterEnd = m_GlyphItems.Impl()->end(); pGlyphIter += nStart; // find next glyph in substring for(; pGlyphIter != pGlyphIterEnd; ++nStart, ++pGlyphIter ) { int n = pGlyphIter->charPos(); if( (mnMinCharPos <= n) && (n < mnEndCharPos) ) break; } // return zero if no more glyph found if( nStart >= static_cast(m_GlyphItems.Impl()->size()) ) return false; if( pGlyphIter == pGlyphIterEnd ) return false; // update return data with glyph info *pGlyph = &(*pGlyphIter); if (pFallbackLevel) *pFallbackLevel = 0; ++nStart; // calculate absolute position in pixel units Point aRelativePos = pGlyphIter->m_aLinearPos; aRelativePos.setX( aRelativePos.X() / mnUnitsPerPixel ); aRelativePos.setY( aRelativePos.Y() / mnUnitsPerPixel ); rPos = GetDrawPosition( aRelativePos ); return true; } void GenericSalLayout::MoveGlyph( int nStart, long nNewXPos ) { if( nStart >= static_cast(m_GlyphItems.Impl()->size()) ) return; std::vector::iterator pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter += nStart; // the nNewXPos argument determines the new cell position // as RTL-glyphs are right justified in their cell // the cell position needs to be adjusted to the glyph position if( pGlyphIter->IsRTLGlyph() ) nNewXPos += pGlyphIter->m_nNewWidth - pGlyphIter->origWidth(); // calculate the x-offset to the old position long nXDelta = nNewXPos - pGlyphIter->m_aLinearPos.getX(); // adjust all following glyph positions if needed if( nXDelta != 0 ) { for( std::vector::iterator pGlyphIterEnd = m_GlyphItems.Impl()->end(); pGlyphIter != pGlyphIterEnd; ++pGlyphIter ) { pGlyphIter->m_aLinearPos.AdjustX(nXDelta ); } } } void GenericSalLayout::DropGlyph( int nStart ) { if( nStart >= static_cast(m_GlyphItems.Impl()->size())) return; std::vector::iterator pGlyphIter = m_GlyphItems.Impl()->begin(); pGlyphIter += nStart; pGlyphIter->dropGlyph(); } void GenericSalLayout::Simplify( bool bIsBase ) { // remove dropped glyphs inplace size_t j = 0; for(size_t i = 0; i < m_GlyphItems.Impl()->size(); i++ ) { if (bIsBase && (*m_GlyphItems.Impl())[i].IsDropped()) continue; if (!bIsBase && (*m_GlyphItems.Impl())[i].glyphId() == 0) continue; if( i != j ) { (*m_GlyphItems.Impl())[j] = (*m_GlyphItems.Impl())[i]; } j += 1; } m_GlyphItems.Impl()->erase(m_GlyphItems.Impl()->begin() + j, m_GlyphItems.Impl()->end()); } MultiSalLayout::MultiSalLayout( std::unique_ptr pBaseLayout ) : SalLayout() , mnLevel( 1 ) , mbIncomplete( false ) { assert(dynamic_cast(pBaseLayout.get())); mpLayouts[ 0 ].reset(static_cast(pBaseLayout.release())); mnUnitsPerPixel = mpLayouts[ 0 ]->GetUnitsPerPixel(); } void MultiSalLayout::SetIncomplete(bool bIncomplete) { mbIncomplete = bIncomplete; maFallbackRuns[mnLevel-1] = ImplLayoutRuns(); } MultiSalLayout::~MultiSalLayout() { } void MultiSalLayout::AddFallback( std::unique_ptr pFallback, ImplLayoutRuns const & rFallbackRuns) { assert(dynamic_cast(pFallback.get())); if( mnLevel >= MAX_FALLBACK ) return; mpLayouts[ mnLevel ].reset(static_cast(pFallback.release())); maFallbackRuns[ mnLevel-1 ] = rFallbackRuns; ++mnLevel; } bool MultiSalLayout::LayoutText( ImplLayoutArgs& rArgs, const SalLayoutGlyphs* ) { if( mnLevel <= 1 ) return false; if (!mbIncomplete) maFallbackRuns[ mnLevel-1 ] = rArgs.maRuns; return true; } void MultiSalLayout::AdjustLayout( ImplLayoutArgs& rArgs ) { SalLayout::AdjustLayout( rArgs ); ImplLayoutArgs aMultiArgs = rArgs; std::unique_ptr pJustificationArray; if( !rArgs.mpDXArray && rArgs.mnLayoutWidth ) { // for stretched text in a MultiSalLayout the target width needs to be // distributed by individually adjusting its virtual character widths DeviceCoordinate nTargetWidth = aMultiArgs.mnLayoutWidth; nTargetWidth *= mnUnitsPerPixel; // convert target width to base font units aMultiArgs.mnLayoutWidth = 0; // we need to get the original unmodified layouts ready for( int n = 0; n < mnLevel; ++n ) mpLayouts[n]->SalLayout::AdjustLayout( aMultiArgs ); // then we can measure the unmodified metrics int nCharCount = rArgs.mnEndCharPos - rArgs.mnMinCharPos; pJustificationArray.reset(new DeviceCoordinate[nCharCount]); FillDXArray( pJustificationArray.get() ); // #i17359# multilayout is not simplified yet, so calculating the // unjustified width needs handholding; also count the number of // stretchable virtual char widths DeviceCoordinate nOrigWidth = 0; int nStretchable = 0; for( int i = 0; i < nCharCount; ++i ) { // convert array from widths to sum of widths nOrigWidth += pJustificationArray[i]; if( pJustificationArray[i] > 0 ) ++nStretchable; } // now we are able to distribute the extra width over the virtual char widths if( nOrigWidth && (nTargetWidth != nOrigWidth) ) { DeviceCoordinate nDiffWidth = nTargetWidth - nOrigWidth; DeviceCoordinate nWidthSum = 0; for( int i = 0; i < nCharCount; ++i ) { DeviceCoordinate nJustWidth = pJustificationArray[i]; if( (nJustWidth > 0) && (nStretchable > 0) ) { DeviceCoordinate nDeltaWidth = nDiffWidth / nStretchable; nJustWidth += nDeltaWidth; nDiffWidth -= nDeltaWidth; --nStretchable; } nWidthSum += nJustWidth; pJustificationArray[i] = nWidthSum; } if( nWidthSum != nTargetWidth ) pJustificationArray[ nCharCount-1 ] = nTargetWidth; // the justification array is still in base level units // => convert it to pixel units if( mnUnitsPerPixel > 1 ) { for( int i = 0; i < nCharCount; ++i ) { DeviceCoordinate nVal = pJustificationArray[ i ]; nVal += (mnUnitsPerPixel + 1) / 2; pJustificationArray[ i ] = nVal / mnUnitsPerPixel; } } // change the mpDXArray temporarily (just for the justification) aMultiArgs.mpDXArray = pJustificationArray.get(); } } // Compute rtl flags, since in some scripts glyphs/char order can be // reversed for a few character sequences e.g. Myanmar std::vector vRtl(rArgs.mnEndCharPos - rArgs.mnMinCharPos, false); rArgs.ResetPos(); bool bRtl; int nRunStart, nRunEnd; while (rArgs.GetNextRun(&nRunStart, &nRunEnd, &bRtl)) { if (bRtl) std::fill(vRtl.begin() + (nRunStart - rArgs.mnMinCharPos), vRtl.begin() + (nRunEnd - rArgs.mnMinCharPos), true); } rArgs.ResetPos(); // prepare "merge sort" int nStartOld[ MAX_FALLBACK ]; int nStartNew[ MAX_FALLBACK ]; const GlyphItem* pGlyphs[MAX_FALLBACK]; bool bValid[MAX_FALLBACK] = { false }; Point aPos; int nLevel = 0, n; for( n = 0; n < mnLevel; ++n ) { // now adjust the individual components if( n > 0 ) { aMultiArgs.maRuns = maFallbackRuns[ n-1 ]; aMultiArgs.mnFlags |= SalLayoutFlags::ForFallback; } mpLayouts[n]->AdjustLayout( aMultiArgs ); // remove unused parts of component if( n > 0 ) { if (mbIncomplete && (n == mnLevel-1)) mpLayouts[n]->Simplify( true ); else mpLayouts[n]->Simplify( false ); } // prepare merging components nStartNew[ nLevel ] = nStartOld[ nLevel ] = 0; bValid[nLevel] = mpLayouts[n]->GetNextGlyph(&pGlyphs[nLevel], aPos, nStartNew[nLevel]); if( (n > 0) && !bValid[ nLevel ] ) { // an empty fallback layout can be released mpLayouts[n].reset(); } else { // reshuffle used fallbacks if needed if( nLevel != n ) { mpLayouts[ nLevel ] = std::move(mpLayouts[ n ]); maFallbackRuns[ nLevel ] = maFallbackRuns[ n ]; } ++nLevel; } } mnLevel = nLevel; // prepare merge the fallback levels long nXPos = 0; double fUnitMul = 1.0; for( n = 0; n < nLevel; ++n ) maFallbackRuns[n].ResetPos(); int nFirstValid = -1; for( n = 0; n < nLevel; ++n ) { if(bValid[n]) { nFirstValid = n; break; } } assert(nFirstValid >= 0); // get the next codepoint index that needs fallback int nActiveCharPos = pGlyphs[nFirstValid]->charPos(); int nActiveCharIndex = nActiveCharPos - mnMinCharPos; // get the end index of the active run int nLastRunEndChar = (nActiveCharIndex >= 0 && vRtl[nActiveCharIndex]) ? rArgs.mnEndCharPos : rArgs.mnMinCharPos - 1; int nRunVisibleEndChar = pGlyphs[nFirstValid]->charPos(); // merge the fallback levels while( bValid[nFirstValid] && (nLevel > 0)) { // find best fallback level for( n = 0; n < nLevel; ++n ) if( bValid[n] && !maFallbackRuns[n].PosIsInAnyRun( nActiveCharPos ) ) // fallback level n wins when it requested no further fallback break; int nFBLevel = n; if( n < nLevel ) { // use base(n==0) or fallback(n>=1) level fUnitMul = mnUnitsPerPixel; fUnitMul /= mpLayouts[n]->GetUnitsPerPixel(); long nNewPos = static_cast(nXPos/fUnitMul + 0.5); mpLayouts[n]->MoveGlyph( nStartOld[n], nNewPos ); } else { n = 0; // keep NotDef in base level fUnitMul = 1.0; } if( n > 0 ) { // drop the NotDef glyphs in the base layout run if a fallback run exists while ( (maFallbackRuns[n-1].PosIsInRun(pGlyphs[nFirstValid]->charPos())) && (!maFallbackRuns[n].PosIsInAnyRun(pGlyphs[nFirstValid]->charPos())) ) { mpLayouts[0]->DropGlyph( nStartOld[0] ); nStartOld[0] = nStartNew[0]; bValid[nFirstValid] = mpLayouts[0]->GetNextGlyph(&pGlyphs[nFirstValid], aPos, nStartNew[0]); if( !bValid[nFirstValid] ) break; } } // skip to end of layout run and calculate its advance width DeviceCoordinate nRunAdvance = 0; bool bKeepNotDef = (nFBLevel >= nLevel); for(;;) { nRunAdvance += pGlyphs[n]->m_nNewWidth; // proceed to next glyph nStartOld[n] = nStartNew[n]; int nOrigCharPos = pGlyphs[n]->charPos(); bValid[n] = mpLayouts[n]->GetNextGlyph(&pGlyphs[n], aPos, nStartNew[n]); // break after last glyph of active layout if( !bValid[n] ) { // performance optimization (when a fallback layout is no longer needed) if( n >= nLevel-1 ) --nLevel; break; } //If the next character is one which belongs to the next level, then we //are finished here for now, and we'll pick up after the next level has //been processed if ((n+1 < nLevel) && (pGlyphs[n]->charPos() != nOrigCharPos)) { if (nOrigCharPos < pGlyphs[n]->charPos()) { if (pGlyphs[n+1]->charPos() > nOrigCharPos && (pGlyphs[n+1]->charPos() < pGlyphs[n]->charPos())) break; } else if (nOrigCharPos > pGlyphs[n]->charPos()) { if (pGlyphs[n+1]->charPos() > pGlyphs[n]->charPos() && (pGlyphs[n+1]->charPos() < nOrigCharPos)) break; } } // break at end of layout run if( n > 0 ) { // skip until end of fallback run if (!maFallbackRuns[n-1].PosIsInRun(pGlyphs[n]->charPos())) break; } else { // break when a fallback is needed and available bool bNeedFallback = maFallbackRuns[0].PosIsInRun(pGlyphs[nFirstValid]->charPos()); if( bNeedFallback ) if (!maFallbackRuns[nLevel-1].PosIsInRun(pGlyphs[nFirstValid]->charPos())) break; // break when change from resolved to unresolved base layout run if( bKeepNotDef && !bNeedFallback ) { maFallbackRuns[0].NextRun(); break; } bKeepNotDef = bNeedFallback; } // check for reordered glyphs if (aMultiArgs.mpDXArray && nRunVisibleEndChar < mnEndCharPos && nRunVisibleEndChar >= mnMinCharPos && pGlyphs[n]->charPos() < mnEndCharPos && pGlyphs[n]->charPos() >= mnMinCharPos) { if (vRtl[nActiveCharPos - mnMinCharPos]) { if (aMultiArgs.mpDXArray[nRunVisibleEndChar-mnMinCharPos] >= aMultiArgs.mpDXArray[pGlyphs[n]->charPos() - mnMinCharPos]) { nRunVisibleEndChar = pGlyphs[n]->charPos(); } } else if (aMultiArgs.mpDXArray[nRunVisibleEndChar-mnMinCharPos] <= aMultiArgs.mpDXArray[pGlyphs[n]->charPos() - mnMinCharPos]) { nRunVisibleEndChar = pGlyphs[n]->charPos(); } } } // if a justification array is available // => use it directly to calculate the corresponding run width if( aMultiArgs.mpDXArray ) { // the run advance is the width from the first char // in the run to the first char in the next run nRunAdvance = 0; nActiveCharIndex = nActiveCharPos - mnMinCharPos; if (nActiveCharIndex >= 0 && vRtl[nActiveCharIndex]) { if (nRunVisibleEndChar > mnMinCharPos && nRunVisibleEndChar <= mnEndCharPos) nRunAdvance -= aMultiArgs.mpDXArray[nRunVisibleEndChar - 1 - mnMinCharPos]; if (nLastRunEndChar > mnMinCharPos && nLastRunEndChar <= mnEndCharPos) nRunAdvance += aMultiArgs.mpDXArray[nLastRunEndChar - 1 - mnMinCharPos]; } else { if (nRunVisibleEndChar >= mnMinCharPos) nRunAdvance += aMultiArgs.mpDXArray[nRunVisibleEndChar - mnMinCharPos]; if (nLastRunEndChar >= mnMinCharPos) nRunAdvance -= aMultiArgs.mpDXArray[nLastRunEndChar - mnMinCharPos]; } nLastRunEndChar = nRunVisibleEndChar; nRunVisibleEndChar = pGlyphs[nFirstValid]->charPos(); // the requested width is still in pixel units // => convert it to base level font units nRunAdvance *= mnUnitsPerPixel; } else { // the measured width is still in fallback font units // => convert it to base level font units if( n > 0 ) // optimization: because (fUnitMul==1.0) for (n==0) nRunAdvance = static_cast(nRunAdvance*fUnitMul + 0.5); } // calculate new x position (in base level units) nXPos += nRunAdvance; // prepare for next fallback run nActiveCharPos = pGlyphs[nFirstValid]->charPos(); // it essential that the runs don't get ahead of themselves and in the // if( bKeepNotDef && !bNeedFallback ) statement above, the next run may // have already been reached on the base level for( int i = nFBLevel; --i >= 0;) { if (maFallbackRuns[i].GetRun(&nRunStart, &nRunEnd, &bRtl)) { if (bRtl) { if (nRunStart > nActiveCharPos) maFallbackRuns[i].NextRun(); } else { if (nRunEnd <= nActiveCharPos) maFallbackRuns[i].NextRun(); } } } } mpLayouts[0]->Simplify( true ); } void MultiSalLayout::InitFont() const { if( mnLevel > 0 ) mpLayouts[0]->InitFont(); } void MultiSalLayout::DrawText( SalGraphics& rGraphics ) const { for( int i = mnLevel; --i >= 0; ) { SalLayout& rLayout = *mpLayouts[ i ]; rLayout.DrawBase() += maDrawBase; rLayout.DrawOffset() += maDrawOffset; rLayout.InitFont(); rLayout.DrawText( rGraphics ); rLayout.DrawOffset() -= maDrawOffset; rLayout.DrawBase() -= maDrawBase; } // NOTE: now the baselevel font is active again } sal_Int32 MultiSalLayout::GetTextBreak( DeviceCoordinate nMaxWidth, DeviceCoordinate nCharExtra, int nFactor ) const { if( mnLevel <= 0 ) return -1; if( mnLevel == 1 ) return mpLayouts[0]->GetTextBreak( nMaxWidth, nCharExtra, nFactor ); int nCharCount = mnEndCharPos - mnMinCharPos; std::unique_ptr const pCharWidths(new DeviceCoordinate[nCharCount]); std::unique_ptr const pFallbackCharWidths(new DeviceCoordinate[nCharCount]); mpLayouts[0]->FillDXArray( pCharWidths.get() ); for( int n = 1; n < mnLevel; ++n ) { SalLayout& rLayout = *mpLayouts[ n ]; rLayout.FillDXArray( pFallbackCharWidths.get() ); double fUnitMul = mnUnitsPerPixel; fUnitMul /= rLayout.GetUnitsPerPixel(); for( int i = 0; i < nCharCount; ++i ) { if( pCharWidths[ i ] == 0 ) { DeviceCoordinate w = pFallbackCharWidths[i]; w = static_cast(w * fUnitMul + 0.5); pCharWidths[ i ] = w; } } } DeviceCoordinate nWidth = 0; for( int i = 0; i < nCharCount; ++i ) { nWidth += pCharWidths[ i ] * nFactor; if( nWidth > nMaxWidth ) return (i + mnMinCharPos); nWidth += nCharExtra; } return -1; } DeviceCoordinate MultiSalLayout::FillDXArray( DeviceCoordinate* pCharWidths ) const { DeviceCoordinate nMaxWidth = 0; // prepare merging of fallback levels std::unique_ptr pTempWidths; const int nCharCount = mnEndCharPos - mnMinCharPos; if( pCharWidths ) { for( int i = 0; i < nCharCount; ++i ) pCharWidths[i] = 0; pTempWidths.reset(new DeviceCoordinate[nCharCount]); } for( int n = mnLevel; --n >= 0; ) { // query every fallback level DeviceCoordinate nTextWidth = mpLayouts[n]->FillDXArray( pTempWidths.get() ); if( !nTextWidth ) continue; // merge results from current level double fUnitMul = mnUnitsPerPixel; fUnitMul /= mpLayouts[n]->GetUnitsPerPixel(); nTextWidth = static_cast(nTextWidth * fUnitMul + 0.5); if( nMaxWidth < nTextWidth ) nMaxWidth = nTextWidth; if( !pCharWidths ) continue; // calculate virtual char widths using most probable fallback layout for( int i = 0; i < nCharCount; ++i ) { // #i17359# restriction: // one char cannot be resolved from different fallbacks if( pCharWidths[i] != 0 ) continue; DeviceCoordinate nCharWidth = pTempWidths[i]; if( !nCharWidth ) continue; nCharWidth = static_cast(nCharWidth * fUnitMul + 0.5); pCharWidths[i] = nCharWidth; } } return nMaxWidth; } void MultiSalLayout::GetCaretPositions( int nMaxIndex, long* pCaretXArray ) const { SalLayout& rLayout = *mpLayouts[ 0 ]; rLayout.GetCaretPositions( nMaxIndex, pCaretXArray ); if( mnLevel > 1 ) { std::unique_ptr const pTempPos(new long[nMaxIndex]); for( int n = 1; n < mnLevel; ++n ) { mpLayouts[ n ]->GetCaretPositions( nMaxIndex, pTempPos.get() ); double fUnitMul = mnUnitsPerPixel; fUnitMul /= mpLayouts[n]->GetUnitsPerPixel(); for( int i = 0; i < nMaxIndex; ++i ) if( pTempPos[i] >= 0 ) { long w = pTempPos[i]; w = static_cast(w*fUnitMul + 0.5); pCaretXArray[i] = w; } } } } bool MultiSalLayout::GetNextGlyph(const GlyphItem** pGlyph, Point& rPos, int& nStart, const PhysicalFontFace** pFallbackFont, int* const pFallbackLevel) const { // NOTE: nStart is tagged with current font index int nLevel = static_cast(nStart) >> GF_FONTSHIFT; nStart &= ~GF_FONTMASK; for(; nLevel < mnLevel; ++nLevel, nStart=0 ) { GenericSalLayout& rLayout = *mpLayouts[ nLevel ]; rLayout.InitFont(); const PhysicalFontFace* pFontFace = rLayout.GetFont().GetFontFace(); if (rLayout.GetNextGlyph(pGlyph, rPos, nStart)) { int nFontTag = nLevel << GF_FONTSHIFT; nStart |= nFontTag; if (pFallbackFont) *pFallbackFont = pFontFace; if (pFallbackLevel) *pFallbackLevel = nLevel; rPos += maDrawBase; rPos += maDrawOffset; return true; } } // #111016# reset to base level font when done mpLayouts[0]->InitFont(); return false; } bool MultiSalLayout::GetOutline(basegfx::B2DPolyPolygonVector& rPPV) const { bool bRet = false; for( int i = mnLevel; --i >= 0; ) { SalLayout& rLayout = *mpLayouts[ i ]; rLayout.DrawBase() = maDrawBase; rLayout.DrawOffset() += maDrawOffset; rLayout.InitFont(); bRet |= rLayout.GetOutline(rPPV); rLayout.DrawOffset() -= maDrawOffset; } return bRet; } bool MultiSalLayout::IsKashidaPosValid(int nCharPos) const { // Check the base layout bool bValid = mpLayouts[0]->IsKashidaPosValid(nCharPos); // If base layout returned false, it might be because the character was not // supported there, so we check fallback layouts. if (!bValid) { for (int i = 1; i < mnLevel; ++i) { // - 1 because there is no fallback run for the base layout, IIUC. if (maFallbackRuns[i - 1].PosIsInAnyRun(nCharPos)) { bValid = mpLayouts[i]->IsKashidaPosValid(nCharPos); break; } } } return bValid; } const SalLayoutGlyphs* SalLayout::GetGlyphs() const { // No access to the glyphs by default. return nullptr; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */