1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <tools/fract.hxx>
#include <tools/debug.hxx>
#include <tools/stream.hxx>
#include <o3tl/safeint.hxx>
#include <sal/log.hxx>
#include <osl/diagnose.h>
#include <algorithm>
#include <cmath>
#include <boost/version.hpp>
#if BOOST_VERSION >= 106700
#include <boost/integer/common_factor_rt.hpp>
#else
#include <boost/math/common_factor_rt.hpp>
#endif
#include <boost/rational.hpp>
static boost::rational<sal_Int32> rational_FromDouble(double dVal);
static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits);
static boost::rational<sal_Int32> toRational(sal_Int32 n, sal_Int32 d)
{
return boost::rational<sal_Int32>(n, d);
}
// Initialized by setting nNum as nominator and nDen as denominator
// Negative values in the denominator are invalid and cause the
// inversion of both nominator and denominator signs
// in order to return the correct value.
Fraction::Fraction( sal_Int64 nNum, sal_Int64 nDen ) : mnNumerator(nNum), mnDenominator(nDen)
{
assert( nNum >= std::numeric_limits<sal_Int32>::min() );
assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
assert( nDen >= std::numeric_limits<sal_Int32>::min() );
assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
if ( nDen == 0 )
{
mbValid = false;
SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
return;
}
}
/**
* only here to prevent passing of NaN
*/
Fraction::Fraction( double nNum, double nDen ) : mnNumerator(sal_Int64(nNum)), mnDenominator(sal_Int64(nDen))
{
assert( !std::isnan(nNum) );
assert( !std::isnan(nDen) );
assert( nNum >= std::numeric_limits<sal_Int32>::min() );
assert( nNum <= std::numeric_limits<sal_Int32>::max( ));
assert( nDen >= std::numeric_limits<sal_Int32>::min() );
assert( nDen <= std::numeric_limits<sal_Int32>::max( ));
if ( nDen == 0 )
{
mbValid = false;
SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" );
return;
}
}
Fraction::Fraction( double dVal )
{
try
{
boost::rational<sal_Int32> v = rational_FromDouble( dVal );
mnNumerator = v.numerator();
mnDenominator = v.denominator();
}
catch (const boost::bad_rational&)
{
mbValid = false;
SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" );
}
}
Fraction::operator double() const
{
if (!mbValid)
{
SAL_WARN( "tools.fraction", "'double()' on invalid fraction" );
return 0.0;
}
// https://github.com/boostorg/boost/issues/335 when these are std::numeric_limits<sal_Int32>::min
if (mnNumerator == mnDenominator)
return 1.0;
return boost::rational_cast<double>(toRational(mnNumerator, mnDenominator));
}
// This methods first validates both values.
// If one of the arguments is invalid, the whole operation is invalid.
// After computation detect if result overflows a sal_Int32 value
// which cause the operation to be marked as invalid
Fraction& Fraction::operator += ( const Fraction& rVal )
{
if ( !rVal.mbValid )
mbValid = false;
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" );
return *this;
}
boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
a += toRational(rVal.mnNumerator, rVal.mnDenominator);
mnNumerator = a.numerator();
mnDenominator = a.denominator();
return *this;
}
Fraction& Fraction::operator -= ( const Fraction& rVal )
{
if ( !rVal.mbValid )
mbValid = false;
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" );
return *this;
}
boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
a -= toRational(rVal.mnNumerator, rVal.mnDenominator);
mnNumerator = a.numerator();
mnDenominator = a.denominator();
return *this;
}
namespace
{
template<typename T> bool checked_multiply_by(boost::rational<T>& i, const boost::rational<T>& r)
{
// Protect against self-modification
T num = r.numerator();
T den = r.denominator();
// Avoid overflow and preserve normalization
#if BOOST_VERSION >= 106700
T gcd1 = boost::integer::gcd(i.numerator(), den);
T gcd2 = boost::integer::gcd(num, i.denominator());
#else
T gcd1 = boost::math::gcd(i.numerator(), den);
T gcd2 = boost::math::gcd(num, i.denominator());
#endif
bool fail = false;
fail |= o3tl::checked_multiply(i.numerator() / gcd1, num / gcd2, num);
fail |= o3tl::checked_multiply(i.denominator() / gcd2, den / gcd1, den);
if (!fail)
i.assign(num, den);
return fail;
}
}
Fraction& Fraction::operator *= ( const Fraction& rVal )
{
if ( !rVal.mbValid )
mbValid = false;
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" );
return *this;
}
boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
boost::rational<sal_Int32> b = toRational(rVal.mnNumerator, rVal.mnDenominator);
bool bFail = checked_multiply_by(a, b);
mnNumerator = a.numerator();
mnDenominator = a.denominator();
if (bFail)
{
mbValid = false;
}
return *this;
}
Fraction& Fraction::operator /= ( const Fraction& rVal )
{
if ( !rVal.mbValid )
mbValid = false;
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" );
return *this;
}
boost::rational<sal_Int32> a = toRational(mnNumerator, mnDenominator);
a /= toRational(rVal.mnNumerator, rVal.mnDenominator);
mnNumerator = a.numerator();
mnDenominator = a.denominator();
return *this;
}
/** Inaccurate cancellation for a fraction.
Clip both nominator and denominator to said number of bits. If
either of those already have equal or less number of bits used,
this method does nothing.
@param nSignificantBits denotes, how many significant binary
digits to maintain, in both nominator and denominator.
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
largest error occurs with the following pair of values:
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
= 1082130431/1073741824
= approx. 1.007812499
A ReduceInaccurate(8) yields 1/1.
*/
void Fraction::ReduceInaccurate( unsigned nSignificantBits )
{
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" );
return;
}
if ( !mnNumerator )
return;
auto a = toRational(mnNumerator, mnDenominator);
rational_ReduceInaccurate(a, nSignificantBits);
mnNumerator = a.numerator();
mnDenominator = a.denominator();
}
sal_Int32 Fraction::GetNumerator() const
{
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" );
return 0;
}
return mnNumerator;
}
sal_Int32 Fraction::GetDenominator() const
{
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" );
return -1;
}
return mnDenominator;
}
Fraction::operator sal_Int32() const
{
if ( !mbValid )
{
SAL_WARN( "tools.fraction", "'operator sal_Int32()' on invalid fraction" );
return 0;
}
return boost::rational_cast<sal_Int32>(toRational(mnNumerator, mnDenominator));
}
Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg += rVal2;
return aErg;
}
Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg -= rVal2;
return aErg;
}
Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg *= rVal2;
return aErg;
}
Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 )
{
Fraction aErg( rVal1 );
aErg /= rVal2;
return aErg;
}
bool operator !=( const Fraction& rVal1, const Fraction& rVal2 )
{
return !(rVal1 == rVal2);
}
bool operator <=( const Fraction& rVal1, const Fraction& rVal2 )
{
return !(rVal1 > rVal2);
}
bool operator >=( const Fraction& rVal1, const Fraction& rVal2 )
{
return !(rVal1 < rVal2);
}
bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.mbValid || !rVal2.mbValid )
{
SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" );
return false;
}
return toRational(rVal1.mnNumerator, rVal1.mnDenominator) == toRational(rVal2.mnNumerator, rVal2.mnDenominator);
}
bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.mbValid || !rVal2.mbValid )
{
SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" );
return false;
}
return toRational(rVal1.mnNumerator, rVal1.mnDenominator) < toRational(rVal2.mnNumerator, rVal2.mnDenominator);
}
bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.mbValid || !rVal2.mbValid )
{
SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" );
return false;
}
return toRational(rVal1.mnNumerator, rVal1.mnDenominator) > toRational(rVal2.mnNumerator, rVal2.mnDenominator);
}
SvStream& ReadFraction( SvStream& rIStream, Fraction & rFract )
{
sal_Int32 num(0), den(0);
rIStream.ReadInt32( num );
rIStream.ReadInt32( den );
if ( den <= 0 )
{
SAL_WARN( "tools.fraction", "'ReadFraction()' read an invalid fraction" );
rFract.mbValid = false;
}
else
{
rFract.mnNumerator = num;
rFract.mnDenominator = den;
rFract.mbValid = true;
}
return rIStream;
}
SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract )
{
if ( !rFract.mbValid )
{
SAL_WARN( "tools.fraction", "'WriteFraction()' write an invalid fraction" );
rOStream.WriteInt32( 0 );
rOStream.WriteInt32( -1 );
} else {
rOStream.WriteInt32( rFract.mnNumerator );
rOStream.WriteInt32( rFract.mnDenominator );
}
return rOStream;
}
// If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational.
// Otherwise, dVal and denominator are multiplied by 10, until one of them
// is larger than (LONG_MAX / 10).
//
// NOTE: here we use 'sal_Int32' due that only values in sal_Int32 range are valid.
static boost::rational<sal_Int32> rational_FromDouble(double dVal)
{
if ( dVal > std::numeric_limits<sal_Int32>::max() ||
dVal < std::numeric_limits<sal_Int32>::min() ||
std::isnan(dVal) )
throw boost::bad_rational();
const sal_Int32 nMAX = std::numeric_limits<sal_Int32>::max() / 10;
sal_Int32 nDen = 1;
while ( std::abs( dVal ) < nMAX && nDen < nMAX ) {
dVal *= 10;
nDen *= 10;
}
return boost::rational<sal_Int32>( sal_Int32(dVal), nDen );
}
// Similar to clz_table that can be googled
const char nbits_table[32] =
{
32, 1, 23, 2, 29, 24, 14, 3,
30, 27, 25, 18, 20, 15, 10, 4,
31, 22, 28, 13, 26, 17, 19, 9,
21, 12, 16, 8, 11, 7, 6, 5
};
static int impl_NumberOfBits( sal_uInt32 nNum )
{
// http://en.wikipedia.org/wiki/De_Bruijn_sequence
// background paper: Using de Bruijn Sequences to Index a 1 in a
// Computer Word (1998) Charles E. Leiserson,
// Harald Prokop, Keith H. Randall
// (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
const sal_uInt32 nDeBruijn = 0x7DCD629;
if ( nNum == 0 )
return 0;
// Get it to form like 0000001111111111b
nNum |= ( nNum >> 1 );
nNum |= ( nNum >> 2 );
nNum |= ( nNum >> 4 );
nNum |= ( nNum >> 8 );
nNum |= ( nNum >> 16 );
sal_uInt32 nNumber;
int nBonus;
nNumber = nNum;
nBonus = 0;
// De facto shift left of nDeBruijn using multiplication (nNumber
// is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
// nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
// zero, sets the next bit to one, and thus effectively shift-left
// nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
// sequence in the msb for each distinct position of the last
// leading 0 bit - that's the property of a de Bruijn number.
nNumber = nDeBruijn + ( nDeBruijn * nNumber );
// 5-bit window indexes the result
return ( nbits_table[nNumber >> 27] ) + nBonus;
}
/** Inaccurate cancellation for a fraction.
Clip both nominator and denominator to said number of bits. If
either of those already have equal or less number of bits used,
this method does nothing.
@param nSignificantBits denotes, how many significant binary
digits to maintain, in both nominator and denominator.
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
largest error occurs with the following pair of values:
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
= 1082130431/1073741824
= approx. 1.007812499
A ReduceInaccurate(8) yields 1/1.
*/
static void rational_ReduceInaccurate(boost::rational<sal_Int32>& rRational, unsigned nSignificantBits)
{
if ( !rRational )
return;
// http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation
const bool bNeg = ( rRational.numerator() < 0 );
sal_Int32 nMul = bNeg? -rRational.numerator(): rRational.numerator();
sal_Int32 nDiv = rRational.denominator();
DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
// How much bits can we lose?
const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
// Remove the bits
nMul >>= nToLose;
nDiv >>= nToLose;
if ( !nMul || !nDiv ) {
// Return without reduction
OSL_FAIL( "Oops, we reduced too much..." );
return;
}
rRational.assign( bNeg ? -nMul : nMul, nDiv );
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|