summaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/README.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/admin-guide/README.rst
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/admin-guide/README.rst')
-rw-r--r--Documentation/admin-guide/README.rst415
1 files changed, 415 insertions, 0 deletions
diff --git a/Documentation/admin-guide/README.rst b/Documentation/admin-guide/README.rst
new file mode 100644
index 000000000..95a28f47a
--- /dev/null
+++ b/Documentation/admin-guide/README.rst
@@ -0,0 +1,415 @@
+.. _readme:
+
+Linux kernel release 5.x <http://kernel.org/>
+=============================================
+
+These are the release notes for Linux version 5. Read them carefully,
+as they tell you what this is all about, explain how to install the
+kernel, and what to do if something goes wrong.
+
+What is Linux?
+--------------
+
+ Linux is a clone of the operating system Unix, written from scratch by
+ Linus Torvalds with assistance from a loosely-knit team of hackers across
+ the Net. It aims towards POSIX and Single UNIX Specification compliance.
+
+ It has all the features you would expect in a modern fully-fledged Unix,
+ including true multitasking, virtual memory, shared libraries, demand
+ loading, shared copy-on-write executables, proper memory management,
+ and multistack networking including IPv4 and IPv6.
+
+ It is distributed under the GNU General Public License v2 - see the
+ accompanying COPYING file for more details.
+
+On what hardware does it run?
+-----------------------------
+
+ Although originally developed first for 32-bit x86-based PCs (386 or higher),
+ today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
+ UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
+ IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
+ ARC architectures.
+
+ Linux is easily portable to most general-purpose 32- or 64-bit architectures
+ as long as they have a paged memory management unit (PMMU) and a port of the
+ GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
+ also been ported to a number of architectures without a PMMU, although
+ functionality is then obviously somewhat limited.
+ Linux has also been ported to itself. You can now run the kernel as a
+ userspace application - this is called UserMode Linux (UML).
+
+Documentation
+-------------
+
+ - There is a lot of documentation available both in electronic form on
+ the Internet and in books, both Linux-specific and pertaining to
+ general UNIX questions. I'd recommend looking into the documentation
+ subdirectories on any Linux FTP site for the LDP (Linux Documentation
+ Project) books. This README is not meant to be documentation on the
+ system: there are much better sources available.
+
+ - There are various README files in the Documentation/ subdirectory:
+ these typically contain kernel-specific installation notes for some
+ drivers for example. Please read the
+ :ref:`Documentation/process/changes.rst <changes>` file, as it
+ contains information about the problems, which may result by upgrading
+ your kernel.
+
+Installing the kernel source
+----------------------------
+
+ - If you install the full sources, put the kernel tarball in a
+ directory where you have permissions (e.g. your home directory) and
+ unpack it::
+
+ xz -cd linux-5.x.tar.xz | tar xvf -
+
+ Replace "X" with the version number of the latest kernel.
+
+ Do NOT use the /usr/src/linux area! This area has a (usually
+ incomplete) set of kernel headers that are used by the library header
+ files. They should match the library, and not get messed up by
+ whatever the kernel-du-jour happens to be.
+
+ - You can also upgrade between 5.x releases by patching. Patches are
+ distributed in the xz format. To install by patching, get all the
+ newer patch files, enter the top level directory of the kernel source
+ (linux-5.x) and execute::
+
+ xz -cd ../patch-5.x.xz | patch -p1
+
+ Replace "x" for all versions bigger than the version "x" of your current
+ source tree, **in_order**, and you should be ok. You may want to remove
+ the backup files (some-file-name~ or some-file-name.orig), and make sure
+ that there are no failed patches (some-file-name# or some-file-name.rej).
+ If there are, either you or I have made a mistake.
+
+ Unlike patches for the 5.x kernels, patches for the 5.x.y kernels
+ (also known as the -stable kernels) are not incremental but instead apply
+ directly to the base 5.x kernel. For example, if your base kernel is 5.0
+ and you want to apply the 5.0.3 patch, you must not first apply the 5.0.1
+ and 5.0.2 patches. Similarly, if you are running kernel version 5.0.2 and
+ want to jump to 5.0.3, you must first reverse the 5.0.2 patch (that is,
+ patch -R) **before** applying the 5.0.3 patch. You can read more on this in
+ :ref:`Documentation/process/applying-patches.rst <applying_patches>`.
+
+ Alternatively, the script patch-kernel can be used to automate this
+ process. It determines the current kernel version and applies any
+ patches found::
+
+ linux/scripts/patch-kernel linux
+
+ The first argument in the command above is the location of the
+ kernel source. Patches are applied from the current directory, but
+ an alternative directory can be specified as the second argument.
+
+ - Make sure you have no stale .o files and dependencies lying around::
+
+ cd linux
+ make mrproper
+
+ You should now have the sources correctly installed.
+
+Software requirements
+---------------------
+
+ Compiling and running the 5.x kernels requires up-to-date
+ versions of various software packages. Consult
+ :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
+ required and how to get updates for these packages. Beware that using
+ excessively old versions of these packages can cause indirect
+ errors that are very difficult to track down, so don't assume that
+ you can just update packages when obvious problems arise during
+ build or operation.
+
+Build directory for the kernel
+------------------------------
+
+ When compiling the kernel, all output files will per default be
+ stored together with the kernel source code.
+ Using the option ``make O=output/dir`` allows you to specify an alternate
+ place for the output files (including .config).
+ Example::
+
+ kernel source code: /usr/src/linux-5.x
+ build directory: /home/name/build/kernel
+
+ To configure and build the kernel, use::
+
+ cd /usr/src/linux-5.x
+ make O=/home/name/build/kernel menuconfig
+ make O=/home/name/build/kernel
+ sudo make O=/home/name/build/kernel modules_install install
+
+ Please note: If the ``O=output/dir`` option is used, then it must be
+ used for all invocations of make.
+
+Configuring the kernel
+----------------------
+
+ Do not skip this step even if you are only upgrading one minor
+ version. New configuration options are added in each release, and
+ odd problems will turn up if the configuration files are not set up
+ as expected. If you want to carry your existing configuration to a
+ new version with minimal work, use ``make oldconfig``, which will
+ only ask you for the answers to new questions.
+
+ - Alternative configuration commands are::
+
+ "make config" Plain text interface.
+
+ "make menuconfig" Text based color menus, radiolists & dialogs.
+
+ "make nconfig" Enhanced text based color menus.
+
+ "make xconfig" Qt based configuration tool.
+
+ "make gconfig" GTK+ based configuration tool.
+
+ "make oldconfig" Default all questions based on the contents of
+ your existing ./.config file and asking about
+ new config symbols.
+
+ "make olddefconfig"
+ Like above, but sets new symbols to their default
+ values without prompting.
+
+ "make defconfig" Create a ./.config file by using the default
+ symbol values from either arch/$ARCH/defconfig
+ or arch/$ARCH/configs/${PLATFORM}_defconfig,
+ depending on the architecture.
+
+ "make ${PLATFORM}_defconfig"
+ Create a ./.config file by using the default
+ symbol values from
+ arch/$ARCH/configs/${PLATFORM}_defconfig.
+ Use "make help" to get a list of all available
+ platforms of your architecture.
+
+ "make allyesconfig"
+ Create a ./.config file by setting symbol
+ values to 'y' as much as possible.
+
+ "make allmodconfig"
+ Create a ./.config file by setting symbol
+ values to 'm' as much as possible.
+
+ "make allnoconfig" Create a ./.config file by setting symbol
+ values to 'n' as much as possible.
+
+ "make randconfig" Create a ./.config file by setting symbol
+ values to random values.
+
+ "make localmodconfig" Create a config based on current config and
+ loaded modules (lsmod). Disables any module
+ option that is not needed for the loaded modules.
+
+ To create a localmodconfig for another machine,
+ store the lsmod of that machine into a file
+ and pass it in as a LSMOD parameter.
+
+ Also, you can preserve modules in certain folders
+ or kconfig files by specifying their paths in
+ parameter LMC_KEEP.
+
+ target$ lsmod > /tmp/mylsmod
+ target$ scp /tmp/mylsmod host:/tmp
+
+ host$ make LSMOD=/tmp/mylsmod \
+ LMC_KEEP="drivers/usb:drivers/gpu:fs" \
+ localmodconfig
+
+ The above also works when cross compiling.
+
+ "make localyesconfig" Similar to localmodconfig, except it will convert
+ all module options to built in (=y) options. You can
+ also preserve modules by LMC_KEEP.
+
+ "make kvmconfig" Enable additional options for kvm guest kernel support.
+
+ "make xenconfig" Enable additional options for xen dom0 guest kernel
+ support.
+
+ "make tinyconfig" Configure the tiniest possible kernel.
+
+ You can find more information on using the Linux kernel config tools
+ in Documentation/kbuild/kconfig.rst.
+
+ - NOTES on ``make config``:
+
+ - Having unnecessary drivers will make the kernel bigger, and can
+ under some circumstances lead to problems: probing for a
+ nonexistent controller card may confuse your other controllers.
+
+ - A kernel with math-emulation compiled in will still use the
+ coprocessor if one is present: the math emulation will just
+ never get used in that case. The kernel will be slightly larger,
+ but will work on different machines regardless of whether they
+ have a math coprocessor or not.
+
+ - The "kernel hacking" configuration details usually result in a
+ bigger or slower kernel (or both), and can even make the kernel
+ less stable by configuring some routines to actively try to
+ break bad code to find kernel problems (kmalloc()). Thus you
+ should probably answer 'n' to the questions for "development",
+ "experimental", or "debugging" features.
+
+Compiling the kernel
+--------------------
+
+ - Make sure you have at least gcc 4.9 available.
+ For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.
+
+ Please note that you can still run a.out user programs with this kernel.
+
+ - Do a ``make`` to create a compressed kernel image. It is also
+ possible to do ``make install`` if you have lilo installed to suit the
+ kernel makefiles, but you may want to check your particular lilo setup first.
+
+ To do the actual install, you have to be root, but none of the normal
+ build should require that. Don't take the name of root in vain.
+
+ - If you configured any of the parts of the kernel as ``modules``, you
+ will also have to do ``make modules_install``.
+
+ - Verbose kernel compile/build output:
+
+ Normally, the kernel build system runs in a fairly quiet mode (but not
+ totally silent). However, sometimes you or other kernel developers need
+ to see compile, link, or other commands exactly as they are executed.
+ For this, use "verbose" build mode. This is done by passing
+ ``V=1`` to the ``make`` command, e.g.::
+
+ make V=1 all
+
+ To have the build system also tell the reason for the rebuild of each
+ target, use ``V=2``. The default is ``V=0``.
+
+ - Keep a backup kernel handy in case something goes wrong. This is
+ especially true for the development releases, since each new release
+ contains new code which has not been debugged. Make sure you keep a
+ backup of the modules corresponding to that kernel, as well. If you
+ are installing a new kernel with the same version number as your
+ working kernel, make a backup of your modules directory before you
+ do a ``make modules_install``.
+
+ Alternatively, before compiling, use the kernel config option
+ "LOCALVERSION" to append a unique suffix to the regular kernel version.
+ LOCALVERSION can be set in the "General Setup" menu.
+
+ - In order to boot your new kernel, you'll need to copy the kernel
+ image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
+ to the place where your regular bootable kernel is found.
+
+ - Booting a kernel directly from a floppy without the assistance of a
+ bootloader such as LILO, is no longer supported.
+
+ If you boot Linux from the hard drive, chances are you use LILO, which
+ uses the kernel image as specified in the file /etc/lilo.conf. The
+ kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
+ /boot/bzImage. To use the new kernel, save a copy of the old image
+ and copy the new image over the old one. Then, you MUST RERUN LILO
+ to update the loading map! If you don't, you won't be able to boot
+ the new kernel image.
+
+ Reinstalling LILO is usually a matter of running /sbin/lilo.
+ You may wish to edit /etc/lilo.conf to specify an entry for your
+ old kernel image (say, /vmlinux.old) in case the new one does not
+ work. See the LILO docs for more information.
+
+ After reinstalling LILO, you should be all set. Shutdown the system,
+ reboot, and enjoy!
+
+ If you ever need to change the default root device, video mode,
+ etc. in the kernel image, use your bootloader's boot options
+ where appropriate. No need to recompile the kernel to change
+ these parameters.
+
+ - Reboot with the new kernel and enjoy.
+
+If something goes wrong
+-----------------------
+
+ - If you have problems that seem to be due to kernel bugs, please check
+ the file MAINTAINERS to see if there is a particular person associated
+ with the part of the kernel that you are having trouble with. If there
+ isn't anyone listed there, then the second best thing is to mail
+ them to me (torvalds@linux-foundation.org), and possibly to any other
+ relevant mailing-list or to the newsgroup.
+
+ - In all bug-reports, *please* tell what kernel you are talking about,
+ how to duplicate the problem, and what your setup is (use your common
+ sense). If the problem is new, tell me so, and if the problem is
+ old, please try to tell me when you first noticed it.
+
+ - If the bug results in a message like::
+
+ unable to handle kernel paging request at address C0000010
+ Oops: 0002
+ EIP: 0010:XXXXXXXX
+ eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
+ esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
+ ds: xxxx es: xxxx fs: xxxx gs: xxxx
+ Pid: xx, process nr: xx
+ xx xx xx xx xx xx xx xx xx xx
+
+ or similar kernel debugging information on your screen or in your
+ system log, please duplicate it *exactly*. The dump may look
+ incomprehensible to you, but it does contain information that may
+ help debugging the problem. The text above the dump is also
+ important: it tells something about why the kernel dumped code (in
+ the above example, it's due to a bad kernel pointer). More information
+ on making sense of the dump is in Documentation/admin-guide/bug-hunting.rst
+
+ - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
+ as is, otherwise you will have to use the ``ksymoops`` program to make
+ sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
+ This utility can be downloaded from
+ https://www.kernel.org/pub/linux/utils/kernel/ksymoops/ .
+ Alternatively, you can do the dump lookup by hand:
+
+ - In debugging dumps like the above, it helps enormously if you can
+ look up what the EIP value means. The hex value as such doesn't help
+ me or anybody else very much: it will depend on your particular
+ kernel setup. What you should do is take the hex value from the EIP
+ line (ignore the ``0010:``), and look it up in the kernel namelist to
+ see which kernel function contains the offending address.
+
+ To find out the kernel function name, you'll need to find the system
+ binary associated with the kernel that exhibited the symptom. This is
+ the file 'linux/vmlinux'. To extract the namelist and match it against
+ the EIP from the kernel crash, do::
+
+ nm vmlinux | sort | less
+
+ This will give you a list of kernel addresses sorted in ascending
+ order, from which it is simple to find the function that contains the
+ offending address. Note that the address given by the kernel
+ debugging messages will not necessarily match exactly with the
+ function addresses (in fact, that is very unlikely), so you can't
+ just 'grep' the list: the list will, however, give you the starting
+ point of each kernel function, so by looking for the function that
+ has a starting address lower than the one you are searching for but
+ is followed by a function with a higher address you will find the one
+ you want. In fact, it may be a good idea to include a bit of
+ "context" in your problem report, giving a few lines around the
+ interesting one.
+
+ If you for some reason cannot do the above (you have a pre-compiled
+ kernel image or similar), telling me as much about your setup as
+ possible will help. Please read the :ref:`admin-guide/reporting-bugs.rst <reportingbugs>`
+ document for details.
+
+ - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
+ cannot change values or set break points.) To do this, first compile the
+ kernel with -g; edit arch/x86/Makefile appropriately, then do a ``make
+ clean``. You'll also need to enable CONFIG_PROC_FS (via ``make config``).
+
+ After you've rebooted with the new kernel, do ``gdb vmlinux /proc/kcore``.
+ You can now use all the usual gdb commands. The command to look up the
+ point where your system crashed is ``l *0xXXXXXXXX``. (Replace the XXXes
+ with the EIP value.)
+
+ gdb'ing a non-running kernel currently fails because ``gdb`` (wrongly)
+ disregards the starting offset for which the kernel is compiled.