summaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide/media/imx.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/admin-guide/media/imx.rst
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/admin-guide/media/imx.rst')
-rw-r--r--Documentation/admin-guide/media/imx.rst714
1 files changed, 714 insertions, 0 deletions
diff --git a/Documentation/admin-guide/media/imx.rst b/Documentation/admin-guide/media/imx.rst
new file mode 100644
index 000000000..b8fa70f85
--- /dev/null
+++ b/Documentation/admin-guide/media/imx.rst
@@ -0,0 +1,714 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+i.MX Video Capture Driver
+=========================
+
+Introduction
+------------
+
+The Freescale i.MX5/6 contains an Image Processing Unit (IPU), which
+handles the flow of image frames to and from capture devices and
+display devices.
+
+For image capture, the IPU contains the following internal subunits:
+
+- Image DMA Controller (IDMAC)
+- Camera Serial Interface (CSI)
+- Image Converter (IC)
+- Sensor Multi-FIFO Controller (SMFC)
+- Image Rotator (IRT)
+- Video De-Interlacing or Combining Block (VDIC)
+
+The IDMAC is the DMA controller for transfer of image frames to and from
+memory. Various dedicated DMA channels exist for both video capture and
+display paths. During transfer, the IDMAC is also capable of vertical
+image flip, 8x8 block transfer (see IRT description), pixel component
+re-ordering (for example UYVY to YUYV) within the same colorspace, and
+packed <--> planar conversion. The IDMAC can also perform a simple
+de-interlacing by interweaving even and odd lines during transfer
+(without motion compensation which requires the VDIC).
+
+The CSI is the backend capture unit that interfaces directly with
+camera sensors over Parallel, BT.656/1120, and MIPI CSI-2 buses.
+
+The IC handles color-space conversion, resizing (downscaling and
+upscaling), horizontal flip, and 90/270 degree rotation operations.
+
+There are three independent "tasks" within the IC that can carry out
+conversions concurrently: pre-process encoding, pre-process viewfinder,
+and post-processing. Within each task, conversions are split into three
+sections: downsizing section, main section (upsizing, flip, colorspace
+conversion, and graphics plane combining), and rotation section.
+
+The IPU time-shares the IC task operations. The time-slice granularity
+is one burst of eight pixels in the downsizing section, one image line
+in the main processing section, one image frame in the rotation section.
+
+The SMFC is composed of four independent FIFOs that each can transfer
+captured frames from sensors directly to memory concurrently via four
+IDMAC channels.
+
+The IRT carries out 90 and 270 degree image rotation operations. The
+rotation operation is carried out on 8x8 pixel blocks at a time. This
+operation is supported by the IDMAC which handles the 8x8 block transfer
+along with block reordering, in coordination with vertical flip.
+
+The VDIC handles the conversion of interlaced video to progressive, with
+support for different motion compensation modes (low, medium, and high
+motion). The deinterlaced output frames from the VDIC can be sent to the
+IC pre-process viewfinder task for further conversions. The VDIC also
+contains a Combiner that combines two image planes, with alpha blending
+and color keying.
+
+In addition to the IPU internal subunits, there are also two units
+outside the IPU that are also involved in video capture on i.MX:
+
+- MIPI CSI-2 Receiver for camera sensors with the MIPI CSI-2 bus
+ interface. This is a Synopsys DesignWare core.
+- Two video multiplexers for selecting among multiple sensor inputs
+ to send to a CSI.
+
+For more info, refer to the latest versions of the i.MX5/6 reference
+manuals [#f1]_ and [#f2]_.
+
+
+Features
+--------
+
+Some of the features of this driver include:
+
+- Many different pipelines can be configured via media controller API,
+ that correspond to the hardware video capture pipelines supported in
+ the i.MX.
+
+- Supports parallel, BT.565, and MIPI CSI-2 interfaces.
+
+- Concurrent independent streams, by configuring pipelines to multiple
+ video capture interfaces using independent entities.
+
+- Scaling, color-space conversion, horizontal and vertical flip, and
+ image rotation via IC task subdevs.
+
+- Many pixel formats supported (RGB, packed and planar YUV, partial
+ planar YUV).
+
+- The VDIC subdev supports motion compensated de-interlacing, with three
+ motion compensation modes: low, medium, and high motion. Pipelines are
+ defined that allow sending frames to the VDIC subdev directly from the
+ CSI. There is also support in the future for sending frames to the
+ VDIC from memory buffers via a output/mem2mem devices.
+
+- Includes a Frame Interval Monitor (FIM) that can correct vertical sync
+ problems with the ADV718x video decoders.
+
+
+Topology
+--------
+
+The following shows the media topologies for the i.MX6Q SabreSD and
+i.MX6Q SabreAuto. Refer to these diagrams in the entity descriptions
+in the next section.
+
+The i.MX5/6 topologies can differ upstream from the IPUv3 CSI video
+multiplexers, but the internal IPUv3 topology downstream from there
+is common to all i.MX5/6 platforms. For example, the SabreSD, with the
+MIPI CSI-2 OV5640 sensor, requires the i.MX6 MIPI CSI-2 receiver. But
+the SabreAuto has only the ADV7180 decoder on a parallel bt.656 bus, and
+therefore does not require the MIPI CSI-2 receiver, so it is missing in
+its graph.
+
+.. _imx6q_topology_graph:
+
+.. kernel-figure:: imx6q-sabresd.dot
+ :alt: Diagram of the i.MX6Q SabreSD media pipeline topology
+ :align: center
+
+ Media pipeline graph on i.MX6Q SabreSD
+
+.. kernel-figure:: imx6q-sabreauto.dot
+ :alt: Diagram of the i.MX6Q SabreAuto media pipeline topology
+ :align: center
+
+ Media pipeline graph on i.MX6Q SabreAuto
+
+Entities
+--------
+
+imx6-mipi-csi2
+--------------
+
+This is the MIPI CSI-2 receiver entity. It has one sink pad to receive
+the MIPI CSI-2 stream (usually from a MIPI CSI-2 camera sensor). It has
+four source pads, corresponding to the four MIPI CSI-2 demuxed virtual
+channel outputs. Multiple source pads can be enabled to independently
+stream from multiple virtual channels.
+
+This entity actually consists of two sub-blocks. One is the MIPI CSI-2
+core. This is a Synopsys Designware MIPI CSI-2 core. The other sub-block
+is a "CSI-2 to IPU gasket". The gasket acts as a demultiplexer of the
+four virtual channels streams, providing four separate parallel buses
+containing each virtual channel that are routed to CSIs or video
+multiplexers as described below.
+
+On i.MX6 solo/dual-lite, all four virtual channel buses are routed to
+two video multiplexers. Both CSI0 and CSI1 can receive any virtual
+channel, as selected by the video multiplexers.
+
+On i.MX6 Quad, virtual channel 0 is routed to IPU1-CSI0 (after selected
+by a video mux), virtual channels 1 and 2 are hard-wired to IPU1-CSI1
+and IPU2-CSI0, respectively, and virtual channel 3 is routed to
+IPU2-CSI1 (again selected by a video mux).
+
+ipuX_csiY_mux
+-------------
+
+These are the video multiplexers. They have two or more sink pads to
+select from either camera sensors with a parallel interface, or from
+MIPI CSI-2 virtual channels from imx6-mipi-csi2 entity. They have a
+single source pad that routes to a CSI (ipuX_csiY entities).
+
+On i.MX6 solo/dual-lite, there are two video mux entities. One sits
+in front of IPU1-CSI0 to select between a parallel sensor and any of
+the four MIPI CSI-2 virtual channels (a total of five sink pads). The
+other mux sits in front of IPU1-CSI1, and again has five sink pads to
+select between a parallel sensor and any of the four MIPI CSI-2 virtual
+channels.
+
+On i.MX6 Quad, there are two video mux entities. One sits in front of
+IPU1-CSI0 to select between a parallel sensor and MIPI CSI-2 virtual
+channel 0 (two sink pads). The other mux sits in front of IPU2-CSI1 to
+select between a parallel sensor and MIPI CSI-2 virtual channel 3 (two
+sink pads).
+
+ipuX_csiY
+---------
+
+These are the CSI entities. They have a single sink pad receiving from
+either a video mux or from a MIPI CSI-2 virtual channel as described
+above.
+
+This entity has two source pads. The first source pad can link directly
+to the ipuX_vdic entity or the ipuX_ic_prp entity, using hardware links
+that require no IDMAC memory buffer transfer.
+
+When the direct source pad is routed to the ipuX_ic_prp entity, frames
+from the CSI can be processed by one or both of the IC pre-processing
+tasks.
+
+When the direct source pad is routed to the ipuX_vdic entity, the VDIC
+will carry out motion-compensated de-interlace using "high motion" mode
+(see description of ipuX_vdic entity).
+
+The second source pad sends video frames directly to memory buffers
+via the SMFC and an IDMAC channel, bypassing IC pre-processing. This
+source pad is routed to a capture device node, with a node name of the
+format "ipuX_csiY capture".
+
+Note that since the IDMAC source pad makes use of an IDMAC channel,
+pixel reordering within the same colorspace can be carried out by the
+IDMAC channel. For example, if the CSI sink pad is receiving in UYVY
+order, the capture device linked to the IDMAC source pad can capture
+in YUYV order. Also, if the CSI sink pad is receiving a packed YUV
+format, the capture device can capture a planar YUV format such as
+YUV420.
+
+The IDMAC channel at the IDMAC source pad also supports simple
+interweave without motion compensation, which is activated if the source
+pad's field type is sequential top-bottom or bottom-top, and the
+requested capture interface field type is set to interlaced (t-b, b-t,
+or unqualified interlaced). The capture interface will enforce the same
+field order as the source pad field order (interlaced-bt if source pad
+is seq-bt, interlaced-tb if source pad is seq-tb).
+
+For events produced by ipuX_csiY, see ref:`imx_api_ipuX_csiY`.
+
+Cropping in ipuX_csiY
+---------------------
+
+The CSI supports cropping the incoming raw sensor frames. This is
+implemented in the ipuX_csiY entities at the sink pad, using the
+crop selection subdev API.
+
+The CSI also supports fixed divide-by-two downscaling independently in
+width and height. This is implemented in the ipuX_csiY entities at
+the sink pad, using the compose selection subdev API.
+
+The output rectangle at the ipuX_csiY source pad is the same as
+the compose rectangle at the sink pad. So the source pad rectangle
+cannot be negotiated, it must be set using the compose selection
+API at sink pad (if /2 downscale is desired, otherwise source pad
+rectangle is equal to incoming rectangle).
+
+To give an example of crop and /2 downscale, this will crop a
+1280x960 input frame to 640x480, and then /2 downscale in both
+dimensions to 320x240 (assumes ipu1_csi0 is linked to ipu1_csi0_mux):
+
+.. code-block:: none
+
+ media-ctl -V "'ipu1_csi0_mux':2[fmt:UYVY2X8/1280x960]"
+ media-ctl -V "'ipu1_csi0':0[crop:(0,0)/640x480]"
+ media-ctl -V "'ipu1_csi0':0[compose:(0,0)/320x240]"
+
+Frame Skipping in ipuX_csiY
+---------------------------
+
+The CSI supports frame rate decimation, via frame skipping. Frame
+rate decimation is specified by setting the frame intervals at
+sink and source pads. The ipuX_csiY entity then applies the best
+frame skip setting to the CSI to achieve the desired frame rate
+at the source pad.
+
+The following example reduces an assumed incoming 60 Hz frame
+rate by half at the IDMAC output source pad:
+
+.. code-block:: none
+
+ media-ctl -V "'ipu1_csi0':0[fmt:UYVY2X8/640x480@1/60]"
+ media-ctl -V "'ipu1_csi0':2[fmt:UYVY2X8/640x480@1/30]"
+
+Frame Interval Monitor in ipuX_csiY
+-----------------------------------
+
+See ref:`imx_api_FIM`.
+
+ipuX_vdic
+---------
+
+The VDIC carries out motion compensated de-interlacing, with three
+motion compensation modes: low, medium, and high motion. The mode is
+specified with the menu control V4L2_CID_DEINTERLACING_MODE. The VDIC
+has two sink pads and a single source pad.
+
+The direct sink pad receives from an ipuX_csiY direct pad. With this
+link the VDIC can only operate in high motion mode.
+
+When the IDMAC sink pad is activated, it receives from an output
+or mem2mem device node. With this pipeline, the VDIC can also operate
+in low and medium modes, because these modes require receiving
+frames from memory buffers. Note that an output or mem2mem device
+is not implemented yet, so this sink pad currently has no links.
+
+The source pad routes to the IC pre-processing entity ipuX_ic_prp.
+
+ipuX_ic_prp
+-----------
+
+This is the IC pre-processing entity. It acts as a router, routing
+data from its sink pad to one or both of its source pads.
+
+This entity has a single sink pad. The sink pad can receive from the
+ipuX_csiY direct pad, or from ipuX_vdic.
+
+This entity has two source pads. One source pad routes to the
+pre-process encode task entity (ipuX_ic_prpenc), the other to the
+pre-process viewfinder task entity (ipuX_ic_prpvf). Both source pads
+can be activated at the same time if the sink pad is receiving from
+ipuX_csiY. Only the source pad to the pre-process viewfinder task entity
+can be activated if the sink pad is receiving from ipuX_vdic (frames
+from the VDIC can only be processed by the pre-process viewfinder task).
+
+ipuX_ic_prpenc
+--------------
+
+This is the IC pre-processing encode entity. It has a single sink
+pad from ipuX_ic_prp, and a single source pad. The source pad is
+routed to a capture device node, with a node name of the format
+"ipuX_ic_prpenc capture".
+
+This entity performs the IC pre-process encode task operations:
+color-space conversion, resizing (downscaling and upscaling),
+horizontal and vertical flip, and 90/270 degree rotation. Flip
+and rotation are provided via standard V4L2 controls.
+
+Like the ipuX_csiY IDMAC source, this entity also supports simple
+de-interlace without motion compensation, and pixel reordering.
+
+ipuX_ic_prpvf
+-------------
+
+This is the IC pre-processing viewfinder entity. It has a single sink
+pad from ipuX_ic_prp, and a single source pad. The source pad is routed
+to a capture device node, with a node name of the format
+"ipuX_ic_prpvf capture".
+
+This entity is identical in operation to ipuX_ic_prpenc, with the same
+resizing and CSC operations and flip/rotation controls. It will receive
+and process de-interlaced frames from the ipuX_vdic if ipuX_ic_prp is
+receiving from ipuX_vdic.
+
+Like the ipuX_csiY IDMAC source, this entity supports simple
+interweaving without motion compensation. However, note that if the
+ipuX_vdic is included in the pipeline (ipuX_ic_prp is receiving from
+ipuX_vdic), it's not possible to use interweave in ipuX_ic_prpvf,
+since the ipuX_vdic has already carried out de-interlacing (with
+motion compensation) and therefore the field type output from
+ipuX_vdic can only be none (progressive).
+
+Capture Pipelines
+-----------------
+
+The following describe the various use-cases supported by the pipelines.
+
+The links shown do not include the backend sensor, video mux, or mipi
+csi-2 receiver links. This depends on the type of sensor interface
+(parallel or mipi csi-2). So these pipelines begin with:
+
+sensor -> ipuX_csiY_mux -> ...
+
+for parallel sensors, or:
+
+sensor -> imx6-mipi-csi2 -> (ipuX_csiY_mux) -> ...
+
+for mipi csi-2 sensors. The imx6-mipi-csi2 receiver may need to route
+to the video mux (ipuX_csiY_mux) before sending to the CSI, depending
+on the mipi csi-2 virtual channel, hence ipuX_csiY_mux is shown in
+parenthesis.
+
+Unprocessed Video Capture:
+--------------------------
+
+Send frames directly from sensor to camera device interface node, with
+no conversions, via ipuX_csiY IDMAC source pad:
+
+-> ipuX_csiY:2 -> ipuX_csiY capture
+
+IC Direct Conversions:
+----------------------
+
+This pipeline uses the preprocess encode entity to route frames directly
+from the CSI to the IC, to carry out scaling up to 1024x1024 resolution,
+CSC, flipping, and image rotation:
+
+-> ipuX_csiY:1 -> 0:ipuX_ic_prp:1 -> 0:ipuX_ic_prpenc:1 -> ipuX_ic_prpenc capture
+
+Motion Compensated De-interlace:
+--------------------------------
+
+This pipeline routes frames from the CSI direct pad to the VDIC entity to
+support motion-compensated de-interlacing (high motion mode only),
+scaling up to 1024x1024, CSC, flip, and rotation:
+
+-> ipuX_csiY:1 -> 0:ipuX_vdic:2 -> 0:ipuX_ic_prp:2 -> 0:ipuX_ic_prpvf:1 -> ipuX_ic_prpvf capture
+
+
+Usage Notes
+-----------
+
+To aid in configuration and for backward compatibility with V4L2
+applications that access controls only from video device nodes, the
+capture device interfaces inherit controls from the active entities
+in the current pipeline, so controls can be accessed either directly
+from the subdev or from the active capture device interface. For
+example, the FIM controls are available either from the ipuX_csiY
+subdevs or from the active capture device.
+
+The following are specific usage notes for the Sabre* reference
+boards:
+
+
+i.MX6Q SabreLite with OV5642 and OV5640
+---------------------------------------
+
+This platform requires the OmniVision OV5642 module with a parallel
+camera interface, and the OV5640 module with a MIPI CSI-2
+interface. Both modules are available from Boundary Devices:
+
+- https://boundarydevices.com/product/nit6x_5mp
+- https://boundarydevices.com/product/nit6x_5mp_mipi
+
+Note that if only one camera module is available, the other sensor
+node can be disabled in the device tree.
+
+The OV5642 module is connected to the parallel bus input on the i.MX
+internal video mux to IPU1 CSI0. It's i2c bus connects to i2c bus 2.
+
+The MIPI CSI-2 OV5640 module is connected to the i.MX internal MIPI CSI-2
+receiver, and the four virtual channel outputs from the receiver are
+routed as follows: vc0 to the IPU1 CSI0 mux, vc1 directly to IPU1 CSI1,
+vc2 directly to IPU2 CSI0, and vc3 to the IPU2 CSI1 mux. The OV5640 is
+also connected to i2c bus 2 on the SabreLite, therefore the OV5642 and
+OV5640 must not share the same i2c slave address.
+
+The following basic example configures unprocessed video capture
+pipelines for both sensors. The OV5642 is routed to ipu1_csi0, and
+the OV5640, transmitting on MIPI CSI-2 virtual channel 1 (which is
+imx6-mipi-csi2 pad 2), is routed to ipu1_csi1. Both sensors are
+configured to output 640x480, and the OV5642 outputs YUYV2X8, the
+OV5640 UYVY2X8:
+
+.. code-block:: none
+
+ # Setup links for OV5642
+ media-ctl -l "'ov5642 1-0042':0 -> 'ipu1_csi0_mux':1[1]"
+ media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
+ # Setup links for OV5640
+ media-ctl -l "'ov5640 1-0040':0 -> 'imx6-mipi-csi2':0[1]"
+ media-ctl -l "'imx6-mipi-csi2':2 -> 'ipu1_csi1':0[1]"
+ media-ctl -l "'ipu1_csi1':2 -> 'ipu1_csi1 capture':0[1]"
+ # Configure pads for OV5642 pipeline
+ media-ctl -V "'ov5642 1-0042':0 [fmt:YUYV2X8/640x480 field:none]"
+ media-ctl -V "'ipu1_csi0_mux':2 [fmt:YUYV2X8/640x480 field:none]"
+ media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/640x480 field:none]"
+ # Configure pads for OV5640 pipeline
+ media-ctl -V "'ov5640 1-0040':0 [fmt:UYVY2X8/640x480 field:none]"
+ media-ctl -V "'imx6-mipi-csi2':2 [fmt:UYVY2X8/640x480 field:none]"
+ media-ctl -V "'ipu1_csi1':2 [fmt:AYUV32/640x480 field:none]"
+
+Streaming can then begin independently on the capture device nodes
+"ipu1_csi0 capture" and "ipu1_csi1 capture". The v4l2-ctl tool can
+be used to select any supported YUV pixelformat on the capture device
+nodes, including planar.
+
+i.MX6Q SabreAuto with ADV7180 decoder
+-------------------------------------
+
+On the i.MX6Q SabreAuto, an on-board ADV7180 SD decoder is connected to the
+parallel bus input on the internal video mux to IPU1 CSI0.
+
+The following example configures a pipeline to capture from the ADV7180
+video decoder, assuming NTSC 720x480 input signals, using simple
+interweave (unconverted and without motion compensation). The adv7180
+must output sequential or alternating fields (field type 'seq-bt' for
+NTSC, or 'alternate'):
+
+.. code-block:: none
+
+ # Setup links
+ media-ctl -l "'adv7180 3-0021':0 -> 'ipu1_csi0_mux':1[1]"
+ media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
+ # Configure pads
+ media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x480 field:seq-bt]"
+ media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/720x480]"
+ media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/720x480]"
+ # Configure "ipu1_csi0 capture" interface (assumed at /dev/video4)
+ v4l2-ctl -d4 --set-fmt-video=field=interlaced_bt
+
+Streaming can then begin on /dev/video4. The v4l2-ctl tool can also be
+used to select any supported YUV pixelformat on /dev/video4.
+
+This example configures a pipeline to capture from the ADV7180
+video decoder, assuming PAL 720x576 input signals, with Motion
+Compensated de-interlacing. The adv7180 must output sequential or
+alternating fields (field type 'seq-tb' for PAL, or 'alternate').
+
+.. code-block:: none
+
+ # Setup links
+ media-ctl -l "'adv7180 3-0021':0 -> 'ipu1_csi0_mux':1[1]"
+ media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':1 -> 'ipu1_vdic':0[1]"
+ media-ctl -l "'ipu1_vdic':2 -> 'ipu1_ic_prp':0[1]"
+ media-ctl -l "'ipu1_ic_prp':2 -> 'ipu1_ic_prpvf':0[1]"
+ media-ctl -l "'ipu1_ic_prpvf':1 -> 'ipu1_ic_prpvf capture':0[1]"
+ # Configure pads
+ media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x576 field:seq-tb]"
+ media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/720x576]"
+ media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/720x576]"
+ media-ctl -V "'ipu1_vdic':2 [fmt:AYUV32/720x576 field:none]"
+ media-ctl -V "'ipu1_ic_prp':2 [fmt:AYUV32/720x576 field:none]"
+ media-ctl -V "'ipu1_ic_prpvf':1 [fmt:AYUV32/720x576 field:none]"
+ # Configure "ipu1_ic_prpvf capture" interface (assumed at /dev/video2)
+ v4l2-ctl -d2 --set-fmt-video=field=none
+
+Streaming can then begin on /dev/video2. The v4l2-ctl tool can also be
+used to select any supported YUV pixelformat on /dev/video2.
+
+This platform accepts Composite Video analog inputs to the ADV7180 on
+Ain1 (connector J42).
+
+i.MX6DL SabreAuto with ADV7180 decoder
+--------------------------------------
+
+On the i.MX6DL SabreAuto, an on-board ADV7180 SD decoder is connected to the
+parallel bus input on the internal video mux to IPU1 CSI0.
+
+The following example configures a pipeline to capture from the ADV7180
+video decoder, assuming NTSC 720x480 input signals, using simple
+interweave (unconverted and without motion compensation). The adv7180
+must output sequential or alternating fields (field type 'seq-bt' for
+NTSC, or 'alternate'):
+
+.. code-block:: none
+
+ # Setup links
+ media-ctl -l "'adv7180 4-0021':0 -> 'ipu1_csi0_mux':4[1]"
+ media-ctl -l "'ipu1_csi0_mux':5 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
+ # Configure pads
+ media-ctl -V "'adv7180 4-0021':0 [fmt:UYVY2X8/720x480 field:seq-bt]"
+ media-ctl -V "'ipu1_csi0_mux':5 [fmt:UYVY2X8/720x480]"
+ media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/720x480]"
+ # Configure "ipu1_csi0 capture" interface (assumed at /dev/video0)
+ v4l2-ctl -d0 --set-fmt-video=field=interlaced_bt
+
+Streaming can then begin on /dev/video0. The v4l2-ctl tool can also be
+used to select any supported YUV pixelformat on /dev/video0.
+
+This example configures a pipeline to capture from the ADV7180
+video decoder, assuming PAL 720x576 input signals, with Motion
+Compensated de-interlacing. The adv7180 must output sequential or
+alternating fields (field type 'seq-tb' for PAL, or 'alternate').
+
+.. code-block:: none
+
+ # Setup links
+ media-ctl -l "'adv7180 4-0021':0 -> 'ipu1_csi0_mux':4[1]"
+ media-ctl -l "'ipu1_csi0_mux':5 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':1 -> 'ipu1_vdic':0[1]"
+ media-ctl -l "'ipu1_vdic':2 -> 'ipu1_ic_prp':0[1]"
+ media-ctl -l "'ipu1_ic_prp':2 -> 'ipu1_ic_prpvf':0[1]"
+ media-ctl -l "'ipu1_ic_prpvf':1 -> 'ipu1_ic_prpvf capture':0[1]"
+ # Configure pads
+ media-ctl -V "'adv7180 4-0021':0 [fmt:UYVY2X8/720x576 field:seq-tb]"
+ media-ctl -V "'ipu1_csi0_mux':5 [fmt:UYVY2X8/720x576]"
+ media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/720x576]"
+ media-ctl -V "'ipu1_vdic':2 [fmt:AYUV32/720x576 field:none]"
+ media-ctl -V "'ipu1_ic_prp':2 [fmt:AYUV32/720x576 field:none]"
+ media-ctl -V "'ipu1_ic_prpvf':1 [fmt:AYUV32/720x576 field:none]"
+ # Configure "ipu1_ic_prpvf capture" interface (assumed at /dev/video2)
+ v4l2-ctl -d2 --set-fmt-video=field=none
+
+Streaming can then begin on /dev/video2. The v4l2-ctl tool can also be
+used to select any supported YUV pixelformat on /dev/video2.
+
+This platform accepts Composite Video analog inputs to the ADV7180 on
+Ain1 (connector J42).
+
+i.MX6Q SabreSD with MIPI CSI-2 OV5640
+-------------------------------------
+
+Similarly to i.MX6Q SabreLite, the i.MX6Q SabreSD supports a parallel
+interface OV5642 module on IPU1 CSI0, and a MIPI CSI-2 OV5640
+module. The OV5642 connects to i2c bus 1 and the OV5640 to i2c bus 2.
+
+The device tree for SabreSD includes OF graphs for both the parallel
+OV5642 and the MIPI CSI-2 OV5640, but as of this writing only the MIPI
+CSI-2 OV5640 has been tested, so the OV5642 node is currently disabled.
+The OV5640 module connects to MIPI connector J5. The NXP part number
+for the OV5640 module that connects to the SabreSD board is H120729.
+
+The following example configures unprocessed video capture pipeline to
+capture from the OV5640, transmitting on MIPI CSI-2 virtual channel 0:
+
+.. code-block:: none
+
+ # Setup links
+ media-ctl -l "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
+ media-ctl -l "'imx6-mipi-csi2':1 -> 'ipu1_csi0_mux':0[1]"
+ media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
+ # Configure pads
+ media-ctl -V "'ov5640 1-003c':0 [fmt:UYVY2X8/640x480]"
+ media-ctl -V "'imx6-mipi-csi2':1 [fmt:UYVY2X8/640x480]"
+ media-ctl -V "'ipu1_csi0_mux':0 [fmt:UYVY2X8/640x480]"
+ media-ctl -V "'ipu1_csi0':0 [fmt:AYUV32/640x480]"
+
+Streaming can then begin on "ipu1_csi0 capture" node. The v4l2-ctl
+tool can be used to select any supported pixelformat on the capture
+device node.
+
+To determine what is the /dev/video node correspondent to
+"ipu1_csi0 capture":
+
+.. code-block:: none
+
+ media-ctl -e "ipu1_csi0 capture"
+ /dev/video0
+
+/dev/video0 is the streaming element in this case.
+
+Starting the streaming via v4l2-ctl:
+
+.. code-block:: none
+
+ v4l2-ctl --stream-mmap -d /dev/video0
+
+Starting the streaming via Gstreamer and sending the content to the display:
+
+.. code-block:: none
+
+ gst-launch-1.0 v4l2src device=/dev/video0 ! kmssink
+
+The following example configures a direct conversion pipeline to capture
+from the OV5640, transmitting on MIPI CSI-2 virtual channel 0. It also
+shows colorspace conversion and scaling at IC output.
+
+.. code-block:: none
+
+ # Setup links
+ media-ctl -l "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
+ media-ctl -l "'imx6-mipi-csi2':1 -> 'ipu1_csi0_mux':0[1]"
+ media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
+ media-ctl -l "'ipu1_csi0':1 -> 'ipu1_ic_prp':0[1]"
+ media-ctl -l "'ipu1_ic_prp':1 -> 'ipu1_ic_prpenc':0[1]"
+ media-ctl -l "'ipu1_ic_prpenc':1 -> 'ipu1_ic_prpenc capture':0[1]"
+ # Configure pads
+ media-ctl -V "'ov5640 1-003c':0 [fmt:UYVY2X8/640x480]"
+ media-ctl -V "'imx6-mipi-csi2':1 [fmt:UYVY2X8/640x480]"
+ media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/640x480]"
+ media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/640x480]"
+ media-ctl -V "'ipu1_ic_prp':1 [fmt:AYUV32/640x480]"
+ media-ctl -V "'ipu1_ic_prpenc':1 [fmt:ARGB8888_1X32/800x600]"
+ # Set a format at the capture interface
+ v4l2-ctl -d /dev/video1 --set-fmt-video=pixelformat=RGB3
+
+Streaming can then begin on "ipu1_ic_prpenc capture" node.
+
+To determine what is the /dev/video node correspondent to
+"ipu1_ic_prpenc capture":
+
+.. code-block:: none
+
+ media-ctl -e "ipu1_ic_prpenc capture"
+ /dev/video1
+
+
+/dev/video1 is the streaming element in this case.
+
+Starting the streaming via v4l2-ctl:
+
+.. code-block:: none
+
+ v4l2-ctl --stream-mmap -d /dev/video1
+
+Starting the streaming via Gstreamer and sending the content to the display:
+
+.. code-block:: none
+
+ gst-launch-1.0 v4l2src device=/dev/video1 ! kmssink
+
+Known Issues
+------------
+
+1. When using 90 or 270 degree rotation control at capture resolutions
+ near the IC resizer limit of 1024x1024, and combined with planar
+ pixel formats (YUV420, YUV422p), frame capture will often fail with
+ no end-of-frame interrupts from the IDMAC channel. To work around
+ this, use lower resolution and/or packed formats (YUYV, RGB3, etc.)
+ when 90 or 270 rotations are needed.
+
+
+File list
+---------
+
+drivers/staging/media/imx/
+include/media/imx.h
+include/linux/imx-media.h
+
+References
+----------
+
+.. [#f1] http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
+.. [#f2] http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf
+
+
+Authors
+-------
+
+- Steve Longerbeam <steve_longerbeam@mentor.com>
+- Philipp Zabel <kernel@pengutronix.de>
+- Russell King <linux@armlinux.org.uk>
+
+Copyright (C) 2012-2017 Mentor Graphics Inc.