summaryrefslogtreecommitdiffstats
path: root/Documentation/arm/sa1100
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/arm/sa1100
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/arm/sa1100')
-rw-r--r--Documentation/arm/sa1100/assabet.rst301
-rw-r--r--Documentation/arm/sa1100/cerf.rst35
-rw-r--r--Documentation/arm/sa1100/index.rst13
-rw-r--r--Documentation/arm/sa1100/lart.rst15
-rw-r--r--Documentation/arm/sa1100/serial_uart.rst51
5 files changed, 415 insertions, 0 deletions
diff --git a/Documentation/arm/sa1100/assabet.rst b/Documentation/arm/sa1100/assabet.rst
new file mode 100644
index 000000000..a761e128f
--- /dev/null
+++ b/Documentation/arm/sa1100/assabet.rst
@@ -0,0 +1,301 @@
+============================================
+The Intel Assabet (SA-1110 evaluation) board
+============================================
+
+Please see:
+http://developer.intel.com
+
+Also some notes from John G Dorsey <jd5q@andrew.cmu.edu>:
+http://www.cs.cmu.edu/~wearable/software/assabet.html
+
+
+Building the kernel
+-------------------
+
+To build the kernel with current defaults::
+
+ make assabet_defconfig
+ make oldconfig
+ make zImage
+
+The resulting kernel image should be available in linux/arch/arm/boot/zImage.
+
+
+Installing a bootloader
+-----------------------
+
+A couple of bootloaders able to boot Linux on Assabet are available:
+
+BLOB (http://www.lartmaker.nl/lartware/blob/)
+
+ BLOB is a bootloader used within the LART project. Some contributed
+ patches were merged into BLOB to add support for Assabet.
+
+Compaq's Bootldr + John Dorsey's patch for Assabet support
+(http://www.handhelds.org/Compaq/bootldr.html)
+(http://www.wearablegroup.org/software/bootldr/)
+
+ Bootldr is the bootloader developed by Compaq for the iPAQ Pocket PC.
+ John Dorsey has produced add-on patches to add support for Assabet and
+ the JFFS filesystem.
+
+RedBoot (http://sources.redhat.com/redboot/)
+
+ RedBoot is a bootloader developed by Red Hat based on the eCos RTOS
+ hardware abstraction layer. It supports Assabet amongst many other
+ hardware platforms.
+
+RedBoot is currently the recommended choice since it's the only one to have
+networking support, and is the most actively maintained.
+
+Brief examples on how to boot Linux with RedBoot are shown below. But first
+you need to have RedBoot installed in your flash memory. A known to work
+precompiled RedBoot binary is available from the following location:
+
+- ftp://ftp.netwinder.org/users/n/nico/
+- ftp://ftp.arm.linux.org.uk/pub/linux/arm/people/nico/
+- ftp://ftp.handhelds.org/pub/linux/arm/sa-1100-patches/
+
+Look for redboot-assabet*.tgz. Some installation infos are provided in
+redboot-assabet*.txt.
+
+
+Initial RedBoot configuration
+-----------------------------
+
+The commands used here are explained in The RedBoot User's Guide available
+on-line at http://sources.redhat.com/ecos/docs.html.
+Please refer to it for explanations.
+
+If you have a CF network card (my Assabet kit contained a CF+ LP-E from
+Socket Communications Inc.), you should strongly consider using it for TFTP
+file transfers. You must insert it before RedBoot runs since it can't detect
+it dynamically.
+
+To initialize the flash directory::
+
+ fis init -f
+
+To initialize the non-volatile settings, like whether you want to use BOOTP or
+a static IP address, etc, use this command::
+
+ fconfig -i
+
+
+Writing a kernel image into flash
+---------------------------------
+
+First, the kernel image must be loaded into RAM. If you have the zImage file
+available on a TFTP server::
+
+ load zImage -r -b 0x100000
+
+If you rather want to use Y-Modem upload over the serial port::
+
+ load -m ymodem -r -b 0x100000
+
+To write it to flash::
+
+ fis create "Linux kernel" -b 0x100000 -l 0xc0000
+
+
+Booting the kernel
+------------------
+
+The kernel still requires a filesystem to boot. A ramdisk image can be loaded
+as follows::
+
+ load ramdisk_image.gz -r -b 0x800000
+
+Again, Y-Modem upload can be used instead of TFTP by replacing the file name
+by '-y ymodem'.
+
+Now the kernel can be retrieved from flash like this::
+
+ fis load "Linux kernel"
+
+or loaded as described previously. To boot the kernel::
+
+ exec -b 0x100000 -l 0xc0000
+
+The ramdisk image could be stored into flash as well, but there are better
+solutions for on-flash filesystems as mentioned below.
+
+
+Using JFFS2
+-----------
+
+Using JFFS2 (the Second Journalling Flash File System) is probably the most
+convenient way to store a writable filesystem into flash. JFFS2 is used in
+conjunction with the MTD layer which is responsible for low-level flash
+management. More information on the Linux MTD can be found on-line at:
+http://www.linux-mtd.infradead.org/. A JFFS howto with some infos about
+creating JFFS/JFFS2 images is available from the same site.
+
+For instance, a sample JFFS2 image can be retrieved from the same FTP sites
+mentioned below for the precompiled RedBoot image.
+
+To load this file::
+
+ load sample_img.jffs2 -r -b 0x100000
+
+The result should look like::
+
+ RedBoot> load sample_img.jffs2 -r -b 0x100000
+ Raw file loaded 0x00100000-0x00377424
+
+Now we must know the size of the unallocated flash::
+
+ fis free
+
+Result::
+
+ RedBoot> fis free
+ 0x500E0000 .. 0x503C0000
+
+The values above may be different depending on the size of the filesystem and
+the type of flash. See their usage below as an example and take care of
+substituting yours appropriately.
+
+We must determine some values::
+
+ size of unallocated flash: 0x503c0000 - 0x500e0000 = 0x2e0000
+ size of the filesystem image: 0x00377424 - 0x00100000 = 0x277424
+
+We want to fit the filesystem image of course, but we also want to give it all
+the remaining flash space as well. To write it::
+
+ fis unlock -f 0x500E0000 -l 0x2e0000
+ fis erase -f 0x500E0000 -l 0x2e0000
+ fis write -b 0x100000 -l 0x277424 -f 0x500E0000
+ fis create "JFFS2" -n -f 0x500E0000 -l 0x2e0000
+
+Now the filesystem is associated to a MTD "partition" once Linux has discovered
+what they are in the boot process. From Redboot, the 'fis list' command
+displays them::
+
+ RedBoot> fis list
+ Name FLASH addr Mem addr Length Entry point
+ RedBoot 0x50000000 0x50000000 0x00020000 0x00000000
+ RedBoot config 0x503C0000 0x503C0000 0x00020000 0x00000000
+ FIS directory 0x503E0000 0x503E0000 0x00020000 0x00000000
+ Linux kernel 0x50020000 0x00100000 0x000C0000 0x00000000
+ JFFS2 0x500E0000 0x500E0000 0x002E0000 0x00000000
+
+However Linux should display something like::
+
+ SA1100 flash: probing 32-bit flash bus
+ SA1100 flash: Found 2 x16 devices at 0x0 in 32-bit mode
+ Using RedBoot partition definition
+ Creating 5 MTD partitions on "SA1100 flash":
+ 0x00000000-0x00020000 : "RedBoot"
+ 0x00020000-0x000e0000 : "Linux kernel"
+ 0x000e0000-0x003c0000 : "JFFS2"
+ 0x003c0000-0x003e0000 : "RedBoot config"
+ 0x003e0000-0x00400000 : "FIS directory"
+
+What's important here is the position of the partition we are interested in,
+which is the third one. Within Linux, this correspond to /dev/mtdblock2.
+Therefore to boot Linux with the kernel and its root filesystem in flash, we
+need this RedBoot command::
+
+ fis load "Linux kernel"
+ exec -b 0x100000 -l 0xc0000 -c "root=/dev/mtdblock2"
+
+Of course other filesystems than JFFS might be used, like cramfs for example.
+You might want to boot with a root filesystem over NFS, etc. It is also
+possible, and sometimes more convenient, to flash a filesystem directly from
+within Linux while booted from a ramdisk or NFS. The Linux MTD repository has
+many tools to deal with flash memory as well, to erase it for example. JFFS2
+can then be mounted directly on a freshly erased partition and files can be
+copied over directly. Etc...
+
+
+RedBoot scripting
+-----------------
+
+All the commands above aren't so useful if they have to be typed in every
+time the Assabet is rebooted. Therefore it's possible to automate the boot
+process using RedBoot's scripting capability.
+
+For example, I use this to boot Linux with both the kernel and the ramdisk
+images retrieved from a TFTP server on the network::
+
+ RedBoot> fconfig
+ Run script at boot: false true
+ Boot script:
+ Enter script, terminate with empty line
+ >> load zImage -r -b 0x100000
+ >> load ramdisk_ks.gz -r -b 0x800000
+ >> exec -b 0x100000 -l 0xc0000
+ >>
+ Boot script timeout (1000ms resolution): 3
+ Use BOOTP for network configuration: true
+ GDB connection port: 9000
+ Network debug at boot time: false
+ Update RedBoot non-volatile configuration - are you sure (y/n)? y
+
+Then, rebooting the Assabet is just a matter of waiting for the login prompt.
+
+
+
+Nicolas Pitre
+nico@fluxnic.net
+
+June 12, 2001
+
+
+Status of peripherals in -rmk tree (updated 14/10/2001)
+-------------------------------------------------------
+
+Assabet:
+ Serial ports:
+ Radio: TX, RX, CTS, DSR, DCD, RI
+ - PM: Not tested.
+ - COM: TX, RX, CTS, DSR, DCD, RTS, DTR, PM
+ - PM: Not tested.
+ - I2C: Implemented, not fully tested.
+ - L3: Fully tested, pass.
+ - PM: Not tested.
+
+ Video:
+ - LCD: Fully tested. PM
+
+ (LCD doesn't like being blanked with neponset connected)
+
+ - Video out: Not fully
+
+ Audio:
+ UDA1341:
+ - Playback: Fully tested, pass.
+ - Record: Implemented, not tested.
+ - PM: Not tested.
+
+ UCB1200:
+ - Audio play: Implemented, not heavily tested.
+ - Audio rec: Implemented, not heavily tested.
+ - Telco audio play: Implemented, not heavily tested.
+ - Telco audio rec: Implemented, not heavily tested.
+ - POTS control: No
+ - Touchscreen: Yes
+ - PM: Not tested.
+
+ Other:
+ - PCMCIA:
+ - LPE: Fully tested, pass.
+ - USB: No
+ - IRDA:
+ - SIR: Fully tested, pass.
+ - FIR: Fully tested, pass.
+ - PM: Not tested.
+
+Neponset:
+ Serial ports:
+ - COM1,2: TX, RX, CTS, DSR, DCD, RTS, DTR
+ - PM: Not tested.
+ - USB: Implemented, not heavily tested.
+ - PCMCIA: Implemented, not heavily tested.
+ - CF: Implemented, not heavily tested.
+ - PM: Not tested.
+
+More stuff can be found in the -np (Nicolas Pitre's) tree.
diff --git a/Documentation/arm/sa1100/cerf.rst b/Documentation/arm/sa1100/cerf.rst
new file mode 100644
index 000000000..7fa71b609
--- /dev/null
+++ b/Documentation/arm/sa1100/cerf.rst
@@ -0,0 +1,35 @@
+==============
+CerfBoard/Cube
+==============
+
+*** The StrongARM version of the CerfBoard/Cube has been discontinued ***
+
+The Intrinsyc CerfBoard is a StrongARM 1110-based computer on a board
+that measures approximately 2" square. It includes an Ethernet
+controller, an RS232-compatible serial port, a USB function port, and
+one CompactFlash+ slot on the back. Pictures can be found at the
+Intrinsyc website, http://www.intrinsyc.com.
+
+This document describes the support in the Linux kernel for the
+Intrinsyc CerfBoard.
+
+Supported in this version
+=========================
+
+ - CompactFlash+ slot (select PCMCIA in General Setup and any options
+ that may be required)
+ - Onboard Crystal CS8900 Ethernet controller (Cerf CS8900A support in
+ Network Devices)
+ - Serial ports with a serial console (hardcoded to 38400 8N1)
+
+In order to get this kernel onto your Cerf, you need a server that runs
+both BOOTP and TFTP. Detailed instructions should have come with your
+evaluation kit on how to use the bootloader. This series of commands
+will suffice::
+
+ make ARCH=arm CROSS_COMPILE=arm-linux- cerfcube_defconfig
+ make ARCH=arm CROSS_COMPILE=arm-linux- zImage
+ make ARCH=arm CROSS_COMPILE=arm-linux- modules
+ cp arch/arm/boot/zImage <TFTP directory>
+
+support@intrinsyc.com
diff --git a/Documentation/arm/sa1100/index.rst b/Documentation/arm/sa1100/index.rst
new file mode 100644
index 000000000..c9aed4328
--- /dev/null
+++ b/Documentation/arm/sa1100/index.rst
@@ -0,0 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
+Intel StrongARM 1100
+====================
+
+.. toctree::
+ :maxdepth: 1
+
+ assabet
+ cerf
+ lart
+ serial_uart
diff --git a/Documentation/arm/sa1100/lart.rst b/Documentation/arm/sa1100/lart.rst
new file mode 100644
index 000000000..94c0568d1
--- /dev/null
+++ b/Documentation/arm/sa1100/lart.rst
@@ -0,0 +1,15 @@
+====================================
+Linux Advanced Radio Terminal (LART)
+====================================
+
+The LART is a small (7.5 x 10cm) SA-1100 board, designed for embedded
+applications. It has 32 MB DRAM, 4MB Flash ROM, double RS232 and all
+other StrongARM-gadgets. Almost all SA signals are directly accessible
+through a number of connectors. The powersupply accepts voltages
+between 3.5V and 16V and is overdimensioned to support a range of
+daughterboards. A quad Ethernet / IDE / PS2 / sound daughterboard
+is under development, with plenty of others in different stages of
+planning.
+
+The hardware designs for this board have been released under an open license;
+see the LART page at http://www.lartmaker.nl/ for more information.
diff --git a/Documentation/arm/sa1100/serial_uart.rst b/Documentation/arm/sa1100/serial_uart.rst
new file mode 100644
index 000000000..ea983642b
--- /dev/null
+++ b/Documentation/arm/sa1100/serial_uart.rst
@@ -0,0 +1,51 @@
+==================
+SA1100 serial port
+==================
+
+The SA1100 serial port had its major/minor numbers officially assigned::
+
+ > Date: Sun, 24 Sep 2000 21:40:27 -0700
+ > From: H. Peter Anvin <hpa@transmeta.com>
+ > To: Nicolas Pitre <nico@CAM.ORG>
+ > Cc: Device List Maintainer <device@lanana.org>
+ > Subject: Re: device
+ >
+ > Okay. Note that device numbers 204 and 205 are used for "low density
+ > serial devices", so you will have a range of minors on those majors (the
+ > tty device layer handles this just fine, so you don't have to worry about
+ > doing anything special.)
+ >
+ > So your assignments are:
+ >
+ > 204 char Low-density serial ports
+ > 5 = /dev/ttySA0 SA1100 builtin serial port 0
+ > 6 = /dev/ttySA1 SA1100 builtin serial port 1
+ > 7 = /dev/ttySA2 SA1100 builtin serial port 2
+ >
+ > 205 char Low-density serial ports (alternate device)
+ > 5 = /dev/cusa0 Callout device for ttySA0
+ > 6 = /dev/cusa1 Callout device for ttySA1
+ > 7 = /dev/cusa2 Callout device for ttySA2
+ >
+
+You must create those inodes in /dev on the root filesystem used
+by your SA1100-based device::
+
+ mknod ttySA0 c 204 5
+ mknod ttySA1 c 204 6
+ mknod ttySA2 c 204 7
+ mknod cusa0 c 205 5
+ mknod cusa1 c 205 6
+ mknod cusa2 c 205 7
+
+In addition to the creation of the appropriate device nodes above, you
+must ensure your user space applications make use of the correct device
+name. The classic example is the content of the /etc/inittab file where
+you might have a getty process started on ttyS0.
+
+In this case:
+
+- replace occurrences of ttyS0 with ttySA0, ttyS1 with ttySA1, etc.
+
+- don't forget to add 'ttySA0', 'console', or the appropriate tty name
+ in /etc/securetty for root to be allowed to login as well.