summaryrefslogtreecommitdiffstats
path: root/Documentation/locking/lockdep-design.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/locking/lockdep-design.rst
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/locking/lockdep-design.rst')
-rw-r--r--Documentation/locking/lockdep-design.rst663
1 files changed, 663 insertions, 0 deletions
diff --git a/Documentation/locking/lockdep-design.rst b/Documentation/locking/lockdep-design.rst
new file mode 100644
index 000000000..9f3cfca9f
--- /dev/null
+++ b/Documentation/locking/lockdep-design.rst
@@ -0,0 +1,663 @@
+Runtime locking correctness validator
+=====================================
+
+started by Ingo Molnar <mingo@redhat.com>
+
+additions by Arjan van de Ven <arjan@linux.intel.com>
+
+Lock-class
+----------
+
+The basic object the validator operates upon is a 'class' of locks.
+
+A class of locks is a group of locks that are logically the same with
+respect to locking rules, even if the locks may have multiple (possibly
+tens of thousands of) instantiations. For example a lock in the inode
+struct is one class, while each inode has its own instantiation of that
+lock class.
+
+The validator tracks the 'usage state' of lock-classes, and it tracks
+the dependencies between different lock-classes. Lock usage indicates
+how a lock is used with regard to its IRQ contexts, while lock
+dependency can be understood as lock order, where L1 -> L2 suggests that
+a task is attempting to acquire L2 while holding L1. From lockdep's
+perspective, the two locks (L1 and L2) are not necessarily related; that
+dependency just means the order ever happened. The validator maintains a
+continuing effort to prove lock usages and dependencies are correct or
+the validator will shoot a splat if incorrect.
+
+A lock-class's behavior is constructed by its instances collectively:
+when the first instance of a lock-class is used after bootup the class
+gets registered, then all (subsequent) instances will be mapped to the
+class and hence their usages and dependecies will contribute to those of
+the class. A lock-class does not go away when a lock instance does, but
+it can be removed if the memory space of the lock class (static or
+dynamic) is reclaimed, this happens for example when a module is
+unloaded or a workqueue is destroyed.
+
+State
+-----
+
+The validator tracks lock-class usage history and divides the usage into
+(4 usages * n STATEs + 1) categories:
+
+where the 4 usages can be:
+
+- 'ever held in STATE context'
+- 'ever held as readlock in STATE context'
+- 'ever held with STATE enabled'
+- 'ever held as readlock with STATE enabled'
+
+where the n STATEs are coded in kernel/locking/lockdep_states.h and as of
+now they include:
+
+- hardirq
+- softirq
+
+where the last 1 category is:
+
+- 'ever used' [ == !unused ]
+
+When locking rules are violated, these usage bits are presented in the
+locking error messages, inside curlies, with a total of 2 * n STATEs bits.
+A contrived example::
+
+ modprobe/2287 is trying to acquire lock:
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+
+ but task is already holding lock:
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+
+
+For a given lock, the bit positions from left to right indicate the usage
+of the lock and readlock (if exists), for each of the n STATEs listed
+above respectively, and the character displayed at each bit position
+indicates:
+
+ === ===================================================
+ '.' acquired while irqs disabled and not in irq context
+ '-' acquired in irq context
+ '+' acquired with irqs enabled
+ '?' acquired in irq context with irqs enabled.
+ === ===================================================
+
+The bits are illustrated with an example::
+
+ (&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
+ ||||
+ ||| \-> softirq disabled and not in softirq context
+ || \--> acquired in softirq context
+ | \---> hardirq disabled and not in hardirq context
+ \----> acquired in hardirq context
+
+
+For a given STATE, whether the lock is ever acquired in that STATE
+context and whether that STATE is enabled yields four possible cases as
+shown in the table below. The bit character is able to indicate which
+exact case is for the lock as of the reporting time.
+
+ +--------------+-------------+--------------+
+ | | irq enabled | irq disabled |
+ +--------------+-------------+--------------+
+ | ever in irq | '?' | '-' |
+ +--------------+-------------+--------------+
+ | never in irq | '+' | '.' |
+ +--------------+-------------+--------------+
+
+The character '-' suggests irq is disabled because if otherwise the
+charactor '?' would have been shown instead. Similar deduction can be
+applied for '+' too.
+
+Unused locks (e.g., mutexes) cannot be part of the cause of an error.
+
+
+Single-lock state rules:
+------------------------
+
+A lock is irq-safe means it was ever used in an irq context, while a lock
+is irq-unsafe means it was ever acquired with irq enabled.
+
+A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
+following states must be exclusive: only one of them is allowed to be set
+for any lock-class based on its usage::
+
+ <hardirq-safe> or <hardirq-unsafe>
+ <softirq-safe> or <softirq-unsafe>
+
+This is because if a lock can be used in irq context (irq-safe) then it
+cannot be ever acquired with irq enabled (irq-unsafe). Otherwise, a
+deadlock may happen. For example, in the scenario that after this lock
+was acquired but before released, if the context is interrupted this
+lock will be attempted to acquire twice, which creates a deadlock,
+referred to as lock recursion deadlock.
+
+The validator detects and reports lock usage that violates these
+single-lock state rules.
+
+Multi-lock dependency rules:
+----------------------------
+
+The same lock-class must not be acquired twice, because this could lead
+to lock recursion deadlocks.
+
+Furthermore, two locks can not be taken in inverse order::
+
+ <L1> -> <L2>
+ <L2> -> <L1>
+
+because this could lead to a deadlock - referred to as lock inversion
+deadlock - as attempts to acquire the two locks form a circle which
+could lead to the two contexts waiting for each other permanently. The
+validator will find such dependency circle in arbitrary complexity,
+i.e., there can be any other locking sequence between the acquire-lock
+operations; the validator will still find whether these locks can be
+acquired in a circular fashion.
+
+Furthermore, the following usage based lock dependencies are not allowed
+between any two lock-classes::
+
+ <hardirq-safe> -> <hardirq-unsafe>
+ <softirq-safe> -> <softirq-unsafe>
+
+The first rule comes from the fact that a hardirq-safe lock could be
+taken by a hardirq context, interrupting a hardirq-unsafe lock - and
+thus could result in a lock inversion deadlock. Likewise, a softirq-safe
+lock could be taken by an softirq context, interrupting a softirq-unsafe
+lock.
+
+The above rules are enforced for any locking sequence that occurs in the
+kernel: when acquiring a new lock, the validator checks whether there is
+any rule violation between the new lock and any of the held locks.
+
+When a lock-class changes its state, the following aspects of the above
+dependency rules are enforced:
+
+- if a new hardirq-safe lock is discovered, we check whether it
+ took any hardirq-unsafe lock in the past.
+
+- if a new softirq-safe lock is discovered, we check whether it took
+ any softirq-unsafe lock in the past.
+
+- if a new hardirq-unsafe lock is discovered, we check whether any
+ hardirq-safe lock took it in the past.
+
+- if a new softirq-unsafe lock is discovered, we check whether any
+ softirq-safe lock took it in the past.
+
+(Again, we do these checks too on the basis that an interrupt context
+could interrupt _any_ of the irq-unsafe or hardirq-unsafe locks, which
+could lead to a lock inversion deadlock - even if that lock scenario did
+not trigger in practice yet.)
+
+Exception: Nested data dependencies leading to nested locking
+-------------------------------------------------------------
+
+There are a few cases where the Linux kernel acquires more than one
+instance of the same lock-class. Such cases typically happen when there
+is some sort of hierarchy within objects of the same type. In these
+cases there is an inherent "natural" ordering between the two objects
+(defined by the properties of the hierarchy), and the kernel grabs the
+locks in this fixed order on each of the objects.
+
+An example of such an object hierarchy that results in "nested locking"
+is that of a "whole disk" block-dev object and a "partition" block-dev
+object; the partition is "part of" the whole device and as long as one
+always takes the whole disk lock as a higher lock than the partition
+lock, the lock ordering is fully correct. The validator does not
+automatically detect this natural ordering, as the locking rule behind
+the ordering is not static.
+
+In order to teach the validator about this correct usage model, new
+versions of the various locking primitives were added that allow you to
+specify a "nesting level". An example call, for the block device mutex,
+looks like this::
+
+ enum bdev_bd_mutex_lock_class
+ {
+ BD_MUTEX_NORMAL,
+ BD_MUTEX_WHOLE,
+ BD_MUTEX_PARTITION
+ };
+
+ mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
+
+In this case the locking is done on a bdev object that is known to be a
+partition.
+
+The validator treats a lock that is taken in such a nested fashion as a
+separate (sub)class for the purposes of validation.
+
+Note: When changing code to use the _nested() primitives, be careful and
+check really thoroughly that the hierarchy is correctly mapped; otherwise
+you can get false positives or false negatives.
+
+Annotations
+-----------
+
+Two constructs can be used to annotate and check where and if certain locks
+must be held: lockdep_assert_held*(&lock) and lockdep_*pin_lock(&lock).
+
+As the name suggests, lockdep_assert_held* family of macros assert that a
+particular lock is held at a certain time (and generate a WARN() otherwise).
+This annotation is largely used all over the kernel, e.g. kernel/sched/
+core.c::
+
+ void update_rq_clock(struct rq *rq)
+ {
+ s64 delta;
+
+ lockdep_assert_held(&rq->lock);
+ [...]
+ }
+
+where holding rq->lock is required to safely update a rq's clock.
+
+The other family of macros is lockdep_*pin_lock(), which is admittedly only
+used for rq->lock ATM. Despite their limited adoption these annotations
+generate a WARN() if the lock of interest is "accidentally" unlocked. This turns
+out to be especially helpful to debug code with callbacks, where an upper
+layer assumes a lock remains taken, but a lower layer thinks it can maybe drop
+and reacquire the lock ("unwittingly" introducing races). lockdep_pin_lock()
+returns a 'struct pin_cookie' that is then used by lockdep_unpin_lock() to check
+that nobody tampered with the lock, e.g. kernel/sched/sched.h::
+
+ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
+ {
+ rf->cookie = lockdep_pin_lock(&rq->lock);
+ [...]
+ }
+
+ static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
+ {
+ [...]
+ lockdep_unpin_lock(&rq->lock, rf->cookie);
+ }
+
+While comments about locking requirements might provide useful information,
+the runtime checks performed by annotations are invaluable when debugging
+locking problems and they carry the same level of details when inspecting
+code. Always prefer annotations when in doubt!
+
+Proof of 100% correctness:
+--------------------------
+
+The validator achieves perfect, mathematical 'closure' (proof of locking
+correctness) in the sense that for every simple, standalone single-task
+locking sequence that occurred at least once during the lifetime of the
+kernel, the validator proves it with a 100% certainty that no
+combination and timing of these locking sequences can cause any class of
+lock related deadlock. [1]_
+
+I.e. complex multi-CPU and multi-task locking scenarios do not have to
+occur in practice to prove a deadlock: only the simple 'component'
+locking chains have to occur at least once (anytime, in any
+task/context) for the validator to be able to prove correctness. (For
+example, complex deadlocks that would normally need more than 3 CPUs and
+a very unlikely constellation of tasks, irq-contexts and timings to
+occur, can be detected on a plain, lightly loaded single-CPU system as
+well!)
+
+This radically decreases the complexity of locking related QA of the
+kernel: what has to be done during QA is to trigger as many "simple"
+single-task locking dependencies in the kernel as possible, at least
+once, to prove locking correctness - instead of having to trigger every
+possible combination of locking interaction between CPUs, combined with
+every possible hardirq and softirq nesting scenario (which is impossible
+to do in practice).
+
+.. [1]
+
+ assuming that the validator itself is 100% correct, and no other
+ part of the system corrupts the state of the validator in any way.
+ We also assume that all NMI/SMM paths [which could interrupt
+ even hardirq-disabled codepaths] are correct and do not interfere
+ with the validator. We also assume that the 64-bit 'chain hash'
+ value is unique for every lock-chain in the system. Also, lock
+ recursion must not be higher than 20.
+
+Performance:
+------------
+
+The above rules require **massive** amounts of runtime checking. If we did
+that for every lock taken and for every irqs-enable event, it would
+render the system practically unusably slow. The complexity of checking
+is O(N^2), so even with just a few hundred lock-classes we'd have to do
+tens of thousands of checks for every event.
+
+This problem is solved by checking any given 'locking scenario' (unique
+sequence of locks taken after each other) only once. A simple stack of
+held locks is maintained, and a lightweight 64-bit hash value is
+calculated, which hash is unique for every lock chain. The hash value,
+when the chain is validated for the first time, is then put into a hash
+table, which hash-table can be checked in a lockfree manner. If the
+locking chain occurs again later on, the hash table tells us that we
+don't have to validate the chain again.
+
+Troubleshooting:
+----------------
+
+The validator tracks a maximum of MAX_LOCKDEP_KEYS number of lock classes.
+Exceeding this number will trigger the following lockdep warning::
+
+ (DEBUG_LOCKS_WARN_ON(id >= MAX_LOCKDEP_KEYS))
+
+By default, MAX_LOCKDEP_KEYS is currently set to 8191, and typical
+desktop systems have less than 1,000 lock classes, so this warning
+normally results from lock-class leakage or failure to properly
+initialize locks. These two problems are illustrated below:
+
+1. Repeated module loading and unloading while running the validator
+ will result in lock-class leakage. The issue here is that each
+ load of the module will create a new set of lock classes for
+ that module's locks, but module unloading does not remove old
+ classes (see below discussion of reuse of lock classes for why).
+ Therefore, if that module is loaded and unloaded repeatedly,
+ the number of lock classes will eventually reach the maximum.
+
+2. Using structures such as arrays that have large numbers of
+ locks that are not explicitly initialized. For example,
+ a hash table with 8192 buckets where each bucket has its own
+ spinlock_t will consume 8192 lock classes -unless- each spinlock
+ is explicitly initialized at runtime, for example, using the
+ run-time spin_lock_init() as opposed to compile-time initializers
+ such as __SPIN_LOCK_UNLOCKED(). Failure to properly initialize
+ the per-bucket spinlocks would guarantee lock-class overflow.
+ In contrast, a loop that called spin_lock_init() on each lock
+ would place all 8192 locks into a single lock class.
+
+ The moral of this story is that you should always explicitly
+ initialize your locks.
+
+One might argue that the validator should be modified to allow
+lock classes to be reused. However, if you are tempted to make this
+argument, first review the code and think through the changes that would
+be required, keeping in mind that the lock classes to be removed are
+likely to be linked into the lock-dependency graph. This turns out to
+be harder to do than to say.
+
+Of course, if you do run out of lock classes, the next thing to do is
+to find the offending lock classes. First, the following command gives
+you the number of lock classes currently in use along with the maximum::
+
+ grep "lock-classes" /proc/lockdep_stats
+
+This command produces the following output on a modest system::
+
+ lock-classes: 748 [max: 8191]
+
+If the number allocated (748 above) increases continually over time,
+then there is likely a leak. The following command can be used to
+identify the leaking lock classes::
+
+ grep "BD" /proc/lockdep
+
+Run the command and save the output, then compare against the output from
+a later run of this command to identify the leakers. This same output
+can also help you find situations where runtime lock initialization has
+been omitted.
+
+Recursive read locks:
+---------------------
+The whole of the rest document tries to prove a certain type of cycle is equivalent
+to deadlock possibility.
+
+There are three types of lockers: writers (i.e. exclusive lockers, like
+spin_lock() or write_lock()), non-recursive readers (i.e. shared lockers, like
+down_read()) and recursive readers (recursive shared lockers, like rcu_read_lock()).
+And we use the following notations of those lockers in the rest of the document:
+
+ W or E: stands for writers (exclusive lockers).
+ r: stands for non-recursive readers.
+ R: stands for recursive readers.
+ S: stands for all readers (non-recursive + recursive), as both are shared lockers.
+ N: stands for writers and non-recursive readers, as both are not recursive.
+
+Obviously, N is "r or W" and S is "r or R".
+
+Recursive readers, as their name indicates, are the lockers allowed to acquire
+even inside the critical section of another reader of the same lock instance,
+in other words, allowing nested read-side critical sections of one lock instance.
+
+While non-recursive readers will cause a self deadlock if trying to acquire inside
+the critical section of another reader of the same lock instance.
+
+The difference between recursive readers and non-recursive readers is because:
+recursive readers get blocked only by a write lock *holder*, while non-recursive
+readers could get blocked by a write lock *waiter*. Considering the follow
+example::
+
+ TASK A: TASK B:
+
+ read_lock(X);
+ write_lock(X);
+ read_lock_2(X);
+
+Task A gets the reader (no matter whether recursive or non-recursive) on X via
+read_lock() first. And when task B tries to acquire writer on X, it will block
+and become a waiter for writer on X. Now if read_lock_2() is recursive readers,
+task A will make progress, because writer waiters don't block recursive readers,
+and there is no deadlock. However, if read_lock_2() is non-recursive readers,
+it will get blocked by writer waiter B, and cause a self deadlock.
+
+Block conditions on readers/writers of the same lock instance:
+--------------------------------------------------------------
+There are simply four block conditions:
+
+1. Writers block other writers.
+2. Readers block writers.
+3. Writers block both recursive readers and non-recursive readers.
+4. And readers (recursive or not) don't block other recursive readers but
+ may block non-recursive readers (because of the potential co-existing
+ writer waiters)
+
+Block condition matrix, Y means the row blocks the column, and N means otherwise.
+
+ +---+---+---+---+
+ | | E | r | R |
+ +---+---+---+---+
+ | E | Y | Y | Y |
+ +---+---+---+---+
+ | r | Y | Y | N |
+ +---+---+---+---+
+ | R | Y | Y | N |
+ +---+---+---+---+
+
+ (W: writers, r: non-recursive readers, R: recursive readers)
+
+
+acquired recursively. Unlike non-recursive read locks, recursive read locks
+only get blocked by current write lock *holders* other than write lock
+*waiters*, for example::
+
+ TASK A: TASK B:
+
+ read_lock(X);
+
+ write_lock(X);
+
+ read_lock(X);
+
+is not a deadlock for recursive read locks, as while the task B is waiting for
+the lock X, the second read_lock() doesn't need to wait because it's a recursive
+read lock. However if the read_lock() is non-recursive read lock, then the above
+case is a deadlock, because even if the write_lock() in TASK B cannot get the
+lock, but it can block the second read_lock() in TASK A.
+
+Note that a lock can be a write lock (exclusive lock), a non-recursive read
+lock (non-recursive shared lock) or a recursive read lock (recursive shared
+lock), depending on the lock operations used to acquire it (more specifically,
+the value of the 'read' parameter for lock_acquire()). In other words, a single
+lock instance has three types of acquisition depending on the acquisition
+functions: exclusive, non-recursive read, and recursive read.
+
+To be concise, we call that write locks and non-recursive read locks as
+"non-recursive" locks and recursive read locks as "recursive" locks.
+
+Recursive locks don't block each other, while non-recursive locks do (this is
+even true for two non-recursive read locks). A non-recursive lock can block the
+corresponding recursive lock, and vice versa.
+
+A deadlock case with recursive locks involved is as follow::
+
+ TASK A: TASK B:
+
+ read_lock(X);
+ read_lock(Y);
+ write_lock(Y);
+ write_lock(X);
+
+Task A is waiting for task B to read_unlock() Y and task B is waiting for task
+A to read_unlock() X.
+
+Dependency types and strong dependency paths:
+---------------------------------------------
+Lock dependencies record the orders of the acquisitions of a pair of locks, and
+because there are 3 types for lockers, there are, in theory, 9 types of lock
+dependencies, but we can show that 4 types of lock dependencies are enough for
+deadlock detection.
+
+For each lock dependency::
+
+ L1 -> L2
+
+, which means lockdep has seen L1 held before L2 held in the same context at runtime.
+And in deadlock detection, we care whether we could get blocked on L2 with L1 held,
+IOW, whether there is a locker L3 that L1 blocks L3 and L2 gets blocked by L3. So
+we only care about 1) what L1 blocks and 2) what blocks L2. As a result, we can combine
+recursive readers and non-recursive readers for L1 (as they block the same types) and
+we can combine writers and non-recursive readers for L2 (as they get blocked by the
+same types).
+
+With the above combination for simplification, there are 4 types of dependency edges
+in the lockdep graph:
+
+1) -(ER)->:
+ exclusive writer to recursive reader dependency, "X -(ER)-> Y" means
+ X -> Y and X is a writer and Y is a recursive reader.
+
+2) -(EN)->:
+ exclusive writer to non-recursive locker dependency, "X -(EN)-> Y" means
+ X -> Y and X is a writer and Y is either a writer or non-recursive reader.
+
+3) -(SR)->:
+ shared reader to recursive reader dependency, "X -(SR)-> Y" means
+ X -> Y and X is a reader (recursive or not) and Y is a recursive reader.
+
+4) -(SN)->:
+ shared reader to non-recursive locker dependency, "X -(SN)-> Y" means
+ X -> Y and X is a reader (recursive or not) and Y is either a writer or
+ non-recursive reader.
+
+Note that given two locks, they may have multiple dependencies between them,
+for example::
+
+ TASK A:
+
+ read_lock(X);
+ write_lock(Y);
+ ...
+
+ TASK B:
+
+ write_lock(X);
+ write_lock(Y);
+
+, we have both X -(SN)-> Y and X -(EN)-> Y in the dependency graph.
+
+We use -(xN)-> to represent edges that are either -(EN)-> or -(SN)->, the
+similar for -(Ex)->, -(xR)-> and -(Sx)->
+
+A "path" is a series of conjunct dependency edges in the graph. And we define a
+"strong" path, which indicates the strong dependency throughout each dependency
+in the path, as the path that doesn't have two conjunct edges (dependencies) as
+-(xR)-> and -(Sx)->. In other words, a "strong" path is a path from a lock
+walking to another through the lock dependencies, and if X -> Y -> Z is in the
+path (where X, Y, Z are locks), and the walk from X to Y is through a -(SR)-> or
+-(ER)-> dependency, the walk from Y to Z must not be through a -(SN)-> or
+-(SR)-> dependency.
+
+We will see why the path is called "strong" in next section.
+
+Recursive Read Deadlock Detection:
+----------------------------------
+
+We now prove two things:
+
+Lemma 1:
+
+If there is a closed strong path (i.e. a strong circle), then there is a
+combination of locking sequences that causes deadlock. I.e. a strong circle is
+sufficient for deadlock detection.
+
+Lemma 2:
+
+If there is no closed strong path (i.e. strong circle), then there is no
+combination of locking sequences that could cause deadlock. I.e. strong
+circles are necessary for deadlock detection.
+
+With these two Lemmas, we can easily say a closed strong path is both sufficient
+and necessary for deadlocks, therefore a closed strong path is equivalent to
+deadlock possibility. As a closed strong path stands for a dependency chain that
+could cause deadlocks, so we call it "strong", considering there are dependency
+circles that won't cause deadlocks.
+
+Proof for sufficiency (Lemma 1):
+
+Let's say we have a strong circle::
+
+ L1 -> L2 ... -> Ln -> L1
+
+, which means we have dependencies::
+
+ L1 -> L2
+ L2 -> L3
+ ...
+ Ln-1 -> Ln
+ Ln -> L1
+
+We now can construct a combination of locking sequences that cause deadlock:
+
+Firstly let's make one CPU/task get the L1 in L1 -> L2, and then another get
+the L2 in L2 -> L3, and so on. After this, all of the Lx in Lx -> Lx+1 are
+held by different CPU/tasks.
+
+And then because we have L1 -> L2, so the holder of L1 is going to acquire L2
+in L1 -> L2, however since L2 is already held by another CPU/task, plus L1 ->
+L2 and L2 -> L3 are not -(xR)-> and -(Sx)-> (the definition of strong), which
+means either L2 in L1 -> L2 is a non-recursive locker (blocked by anyone) or
+the L2 in L2 -> L3, is writer (blocking anyone), therefore the holder of L1
+cannot get L2, it has to wait L2's holder to release.
+
+Moreover, we can have a similar conclusion for L2's holder: it has to wait L3's
+holder to release, and so on. We now can prove that Lx's holder has to wait for
+Lx+1's holder to release, and note that Ln+1 is L1, so we have a circular
+waiting scenario and nobody can get progress, therefore a deadlock.
+
+Proof for necessary (Lemma 2):
+
+Lemma 2 is equivalent to: If there is a deadlock scenario, then there must be a
+strong circle in the dependency graph.
+
+According to Wikipedia[1], if there is a deadlock, then there must be a circular
+waiting scenario, means there are N CPU/tasks, where CPU/task P1 is waiting for
+a lock held by P2, and P2 is waiting for a lock held by P3, ... and Pn is waiting
+for a lock held by P1. Let's name the lock Px is waiting as Lx, so since P1 is waiting
+for L1 and holding Ln, so we will have Ln -> L1 in the dependency graph. Similarly,
+we have L1 -> L2, L2 -> L3, ..., Ln-1 -> Ln in the dependency graph, which means we
+have a circle::
+
+ Ln -> L1 -> L2 -> ... -> Ln
+
+, and now let's prove the circle is strong:
+
+For a lock Lx, Px contributes the dependency Lx-1 -> Lx and Px+1 contributes
+the dependency Lx -> Lx+1, and since Px is waiting for Px+1 to release Lx,
+so it's impossible that Lx on Px+1 is a reader and Lx on Px is a recursive
+reader, because readers (no matter recursive or not) don't block recursive
+readers, therefore Lx-1 -> Lx and Lx -> Lx+1 cannot be a -(xR)-> -(Sx)-> pair,
+and this is true for any lock in the circle, therefore, the circle is strong.
+
+References:
+-----------
+[1]: https://en.wikipedia.org/wiki/Deadlock
+[2]: Shibu, K. (2009). Intro To Embedded Systems (1st ed.). Tata McGraw-Hill