summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/dsa
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/networking/dsa
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--Documentation/networking/dsa/b53.rst183
-rw-r--r--Documentation/networking/dsa/bcm_sf2.rst115
-rw-r--r--Documentation/networking/dsa/configuration.rst292
-rw-r--r--Documentation/networking/dsa/dsa.rst587
-rw-r--r--Documentation/networking/dsa/index.rst13
-rw-r--r--Documentation/networking/dsa/lan9303.rst37
-rw-r--r--Documentation/networking/dsa/sja1105.rst581
7 files changed, 1808 insertions, 0 deletions
diff --git a/Documentation/networking/dsa/b53.rst b/Documentation/networking/dsa/b53.rst
new file mode 100644
index 000000000..b41637cdb
--- /dev/null
+++ b/Documentation/networking/dsa/b53.rst
@@ -0,0 +1,183 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================================
+Broadcom RoboSwitch Ethernet switch driver
+==========================================
+
+The Broadcom RoboSwitch Ethernet switch family is used in quite a range of
+xDSL router, cable modems and other multimedia devices.
+
+The actual implementation supports the devices BCM5325E, BCM5365, BCM539x,
+BCM53115 and BCM53125 as well as BCM63XX.
+
+Implementation details
+======================
+
+The driver is located in ``drivers/net/dsa/b53/`` and is implemented as a
+DSA driver; see ``Documentation/networking/dsa/dsa.rst`` for details on the
+subsystem and what it provides.
+
+The switch is, if possible, configured to enable a Broadcom specific 4-bytes
+switch tag which gets inserted by the switch for every packet forwarded to the
+CPU interface, conversely, the CPU network interface should insert a similar
+tag for packets entering the CPU port. The tag format is described in
+``net/dsa/tag_brcm.c``.
+
+The configuration of the device depends on whether or not tagging is
+supported.
+
+The interface names and example network configuration are used according the
+configuration described in the :ref:`dsa-config-showcases`.
+
+Configuration with tagging support
+----------------------------------
+
+The tagging based configuration is desired. It is not specific to the b53
+DSA driver and will work like all DSA drivers which supports tagging.
+
+See :ref:`dsa-tagged-configuration`.
+
+Configuration without tagging support
+-------------------------------------
+
+Older models (5325, 5365) support a different tag format that is not supported
+yet. 539x and 531x5 require managed mode and some special handling, which is
+also not yet supported. The tagging support is disabled in these cases and the
+switch need a different configuration.
+
+The configuration slightly differ from the :ref:`dsa-vlan-configuration`.
+
+The b53 tags the CPU port in all VLANs, since otherwise any PVID untagged
+VLAN programming would basically change the CPU port's default PVID and make
+it untagged, undesirable.
+
+In difference to the configuration described in :ref:`dsa-vlan-configuration`
+the default VLAN 1 has to be removed from the slave interface configuration in
+single port and gateway configuration, while there is no need to add an extra
+VLAN configuration in the bridge showcase.
+
+single port
+~~~~~~~~~~~
+The configuration can only be set up via VLAN tagging and bridge setup.
+By default packages are tagged with vid 1:
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+ ip link add link eth0 name eth0.3 type vlan id 3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+ ip link set eth0.3 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 2 pvid untagged
+ bridge vlan del dev lan1 vid 1
+ bridge vlan add dev lan2 vid 3 pvid untagged
+ bridge vlan del dev lan2 vid 1
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.1
+ ip addr add 192.0.2.5/30 dev eth0.2
+ ip addr add 192.0.2.9/30 dev eth0.3
+
+ # bring up the bridge devices
+ ip link set br0 up
+
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridge
+ ip link set dev wan master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set eth0.1 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set eth0.1 master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev wan vid 2 pvid untagged
+ bridge vlan del dev wan vid 1
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.2
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge devices
+ ip link set br0 up
diff --git a/Documentation/networking/dsa/bcm_sf2.rst b/Documentation/networking/dsa/bcm_sf2.rst
new file mode 100644
index 000000000..dee234039
--- /dev/null
+++ b/Documentation/networking/dsa/bcm_sf2.rst
@@ -0,0 +1,115 @@
+=============================================
+Broadcom Starfighter 2 Ethernet switch driver
+=============================================
+
+Broadcom's Starfighter 2 Ethernet switch hardware block is commonly found and
+deployed in the following products:
+
+- xDSL gateways such as BCM63138
+- streaming/multimedia Set Top Box such as BCM7445
+- Cable Modem/residential gateways such as BCM7145/BCM3390
+
+The switch is typically deployed in a configuration involving between 5 to 13
+ports, offering a range of built-in and customizable interfaces:
+
+- single integrated Gigabit PHY
+- quad integrated Gigabit PHY
+- quad external Gigabit PHY w/ MDIO multiplexer
+- integrated MoCA PHY
+- several external MII/RevMII/GMII/RGMII interfaces
+
+The switch also supports specific congestion control features which allow MoCA
+fail-over not to lose packets during a MoCA role re-election, as well as out of
+band back-pressure to the host CPU network interface when downstream interfaces
+are connected at a lower speed.
+
+The switch hardware block is typically interfaced using MMIO accesses and
+contains a bunch of sub-blocks/registers:
+
+- ``SWITCH_CORE``: common switch registers
+- ``SWITCH_REG``: external interfaces switch register
+- ``SWITCH_MDIO``: external MDIO bus controller (there is another one in SWITCH_CORE,
+ which is used for indirect PHY accesses)
+- ``SWITCH_INDIR_RW``: 64-bits wide register helper block
+- ``SWITCH_INTRL2_0/1``: Level-2 interrupt controllers
+- ``SWITCH_ACB``: Admission control block
+- ``SWITCH_FCB``: Fail-over control block
+
+Implementation details
+======================
+
+The driver is located in ``drivers/net/dsa/bcm_sf2.c`` and is implemented as a DSA
+driver; see ``Documentation/networking/dsa/dsa.rst`` for details on the subsystem
+and what it provides.
+
+The SF2 switch is configured to enable a Broadcom specific 4-bytes switch tag
+which gets inserted by the switch for every packet forwarded to the CPU
+interface, conversely, the CPU network interface should insert a similar tag for
+packets entering the CPU port. The tag format is described in
+``net/dsa/tag_brcm.c``.
+
+Overall, the SF2 driver is a fairly regular DSA driver; there are a few
+specifics covered below.
+
+Device Tree probing
+-------------------
+
+The DSA platform device driver is probed using a specific compatible string
+provided in ``net/dsa/dsa.c``. The reason for that is because the DSA subsystem gets
+registered as a platform device driver currently. DSA will provide the needed
+device_node pointers which are then accessible by the switch driver setup
+function to setup resources such as register ranges and interrupts. This
+currently works very well because none of the of_* functions utilized by the
+driver require a struct device to be bound to a struct device_node, but things
+may change in the future.
+
+MDIO indirect accesses
+----------------------
+
+Due to a limitation in how Broadcom switches have been designed, external
+Broadcom switches connected to a SF2 require the use of the DSA slave MDIO bus
+in order to properly configure them. By default, the SF2 pseudo-PHY address, and
+an external switch pseudo-PHY address will both be snooping for incoming MDIO
+transactions, since they are at the same address (30), resulting in some kind of
+"double" programming. Using DSA, and setting ``ds->phys_mii_mask`` accordingly, we
+selectively divert reads and writes towards external Broadcom switches
+pseudo-PHY addresses. Newer revisions of the SF2 hardware have introduced a
+configurable pseudo-PHY address which circumvents the initial design limitation.
+
+Multimedia over CoAxial (MoCA) interfaces
+-----------------------------------------
+
+MoCA interfaces are fairly specific and require the use of a firmware blob which
+gets loaded onto the MoCA processor(s) for packet processing. The switch
+hardware contains logic which will assert/de-assert link states accordingly for
+the MoCA interface whenever the MoCA coaxial cable gets disconnected or the
+firmware gets reloaded. The SF2 driver relies on such events to properly set its
+MoCA interface carrier state and properly report this to the networking stack.
+
+The MoCA interfaces are supported using the PHY library's fixed PHY/emulated PHY
+device and the switch driver registers a ``fixed_link_update`` callback for such
+PHYs which reflects the link state obtained from the interrupt handler.
+
+
+Power Management
+----------------
+
+Whenever possible, the SF2 driver tries to minimize the overall switch power
+consumption by applying a combination of:
+
+- turning off internal buffers/memories
+- disabling packet processing logic
+- putting integrated PHYs in IDDQ/low-power
+- reducing the switch core clock based on the active port count
+- enabling and advertising EEE
+- turning off RGMII data processing logic when the link goes down
+
+Wake-on-LAN
+-----------
+
+Wake-on-LAN is currently implemented by utilizing the host processor Ethernet
+MAC controller wake-on logic. Whenever Wake-on-LAN is requested, an intersection
+between the user request and the supported host Ethernet interface WoL
+capabilities is done and the intersection result gets configured. During
+system-wide suspend/resume, only ports not participating in Wake-on-LAN are
+disabled.
diff --git a/Documentation/networking/dsa/configuration.rst b/Documentation/networking/dsa/configuration.rst
new file mode 100644
index 000000000..11bd5e610
--- /dev/null
+++ b/Documentation/networking/dsa/configuration.rst
@@ -0,0 +1,292 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================
+DSA switch configuration from userspace
+=======================================
+
+The DSA switch configuration is not integrated into the main userspace
+network configuration suites by now and has to be performed manualy.
+
+.. _dsa-config-showcases:
+
+Configuration showcases
+-----------------------
+
+To configure a DSA switch a couple of commands need to be executed. In this
+documentation some common configuration scenarios are handled as showcases:
+
+*single port*
+ Every switch port acts as a different configurable Ethernet port
+
+*bridge*
+ Every switch port is part of one configurable Ethernet bridge
+
+*gateway*
+ Every switch port except one upstream port is part of a configurable
+ Ethernet bridge.
+ The upstream port acts as different configurable Ethernet port.
+
+All configurations are performed with tools from iproute2, which is available
+at https://www.kernel.org/pub/linux/utils/net/iproute2/
+
+Through DSA every port of a switch is handled like a normal linux Ethernet
+interface. The CPU port is the switch port connected to an Ethernet MAC chip.
+The corresponding linux Ethernet interface is called the master interface.
+All other corresponding linux interfaces are called slave interfaces.
+
+The slave interfaces depend on the master interface. They can only brought up,
+when the master interface is up.
+
+In this documentation the following Ethernet interfaces are used:
+
+*eth0*
+ the master interface
+
+*lan1*
+ a slave interface
+
+*lan2*
+ another slave interface
+
+*lan3*
+ a third slave interface
+
+*wan*
+ A slave interface dedicated for upstream traffic
+
+Further Ethernet interfaces can be configured similar.
+The configured IPs and networks are:
+
+*single port*
+ * lan1: 192.0.2.1/30 (192.0.2.0 - 192.0.2.3)
+ * lan2: 192.0.2.5/30 (192.0.2.4 - 192.0.2.7)
+ * lan3: 192.0.2.9/30 (192.0.2.8 - 192.0.2.11)
+
+*bridge*
+ * br0: 192.0.2.129/25 (192.0.2.128 - 192.0.2.255)
+
+*gateway*
+ * br0: 192.0.2.129/25 (192.0.2.128 - 192.0.2.255)
+ * wan: 192.0.2.1/30 (192.0.2.0 - 192.0.2.3)
+
+.. _dsa-tagged-configuration:
+
+Configuration with tagging support
+----------------------------------
+
+The tagging based configuration is desired and supported by the majority of
+DSA switches. These switches are capable to tag incoming and outgoing traffic
+without using a VLAN based configuration.
+
+single port
+~~~~~~~~~~~
+
+.. code-block:: sh
+
+ # configure each interface
+ ip addr add 192.0.2.1/30 dev lan1
+ ip addr add 192.0.2.5/30 dev lan2
+ ip addr add 192.0.2.9/30 dev lan3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # configure the upstream port
+ ip addr add 192.0.2.1/30 dev wan
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+.. _dsa-vlan-configuration:
+
+Configuration without tagging support
+-------------------------------------
+
+A minority of switches are not capable to use a taging protocol
+(DSA_TAG_PROTO_NONE). These switches can be configured by a VLAN based
+configuration.
+
+single port
+~~~~~~~~~~~
+The configuration can only be set up via VLAN tagging and bridge setup.
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+ ip link add link eth0 name eth0.3 type vlan id 3
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+ ip link set eth0.3 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 2 pvid untagged
+ bridge vlan add dev lan3 vid 3 pvid untagged
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.1
+ ip addr add 192.0.2.5/30 dev eth0.2
+ ip addr add 192.0.2.9/30 dev eth0.3
+
+ # bring up the bridge devices
+ ip link set br0 up
+
+
+bridge
+~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+
+ # bring up the slave interfaces
+ ip link set lan1 up
+ ip link set lan2 up
+ ip link set lan3 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridge
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+ ip link set dev lan3 master br0
+ ip link set eth0.1 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 1 pvid untagged
+ bridge vlan add dev lan3 vid 1 pvid untagged
+
+ # configure the bridge
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge
+ ip link set dev br0 up
+
+gateway
+~~~~~~~
+
+.. code-block:: sh
+
+ # tag traffic on CPU port
+ ip link add link eth0 name eth0.1 type vlan id 1
+ ip link add link eth0 name eth0.2 type vlan id 2
+
+ # The master interface needs to be brought up before the slave ports.
+ ip link set eth0 up
+ ip link set eth0.1 up
+ ip link set eth0.2 up
+
+ # bring up the slave interfaces
+ ip link set wan up
+ ip link set lan1 up
+ ip link set lan2 up
+
+ # create bridge
+ ip link add name br0 type bridge
+
+ # activate VLAN filtering
+ ip link set dev br0 type bridge vlan_filtering 1
+
+ # add ports to bridges
+ ip link set dev wan master br0
+ ip link set eth0.1 master br0
+ ip link set dev lan1 master br0
+ ip link set dev lan2 master br0
+
+ # tag traffic on ports
+ bridge vlan add dev lan1 vid 1 pvid untagged
+ bridge vlan add dev lan2 vid 1 pvid untagged
+ bridge vlan add dev wan vid 2 pvid untagged
+
+ # configure the VLANs
+ ip addr add 192.0.2.1/30 dev eth0.2
+ ip addr add 192.0.2.129/25 dev br0
+
+ # bring up the bridge devices
+ ip link set br0 up
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst
new file mode 100644
index 000000000..a8d15dd2b
--- /dev/null
+++ b/Documentation/networking/dsa/dsa.rst
@@ -0,0 +1,587 @@
+============
+Architecture
+============
+
+This document describes the **Distributed Switch Architecture (DSA)** subsystem
+design principles, limitations, interactions with other subsystems, and how to
+develop drivers for this subsystem as well as a TODO for developers interested
+in joining the effort.
+
+Design principles
+=================
+
+The Distributed Switch Architecture is a subsystem which was primarily designed
+to support Marvell Ethernet switches (MV88E6xxx, a.k.a Linkstreet product line)
+using Linux, but has since evolved to support other vendors as well.
+
+The original philosophy behind this design was to be able to use unmodified
+Linux tools such as bridge, iproute2, ifconfig to work transparently whether
+they configured/queried a switch port network device or a regular network
+device.
+
+An Ethernet switch is typically comprised of multiple front-panel ports, and one
+or more CPU or management port. The DSA subsystem currently relies on the
+presence of a management port connected to an Ethernet controller capable of
+receiving Ethernet frames from the switch. This is a very common setup for all
+kinds of Ethernet switches found in Small Home and Office products: routers,
+gateways, or even top-of-the rack switches. This host Ethernet controller will
+be later referred to as "master" and "cpu" in DSA terminology and code.
+
+The D in DSA stands for Distributed, because the subsystem has been designed
+with the ability to configure and manage cascaded switches on top of each other
+using upstream and downstream Ethernet links between switches. These specific
+ports are referred to as "dsa" ports in DSA terminology and code. A collection
+of multiple switches connected to each other is called a "switch tree".
+
+For each front-panel port, DSA will create specialized network devices which are
+used as controlling and data-flowing endpoints for use by the Linux networking
+stack. These specialized network interfaces are referred to as "slave" network
+interfaces in DSA terminology and code.
+
+The ideal case for using DSA is when an Ethernet switch supports a "switch tag"
+which is a hardware feature making the switch insert a specific tag for each
+Ethernet frames it received to/from specific ports to help the management
+interface figure out:
+
+- what port is this frame coming from
+- what was the reason why this frame got forwarded
+- how to send CPU originated traffic to specific ports
+
+The subsystem does support switches not capable of inserting/stripping tags, but
+the features might be slightly limited in that case (traffic separation relies
+on Port-based VLAN IDs).
+
+Note that DSA does not currently create network interfaces for the "cpu" and
+"dsa" ports because:
+
+- the "cpu" port is the Ethernet switch facing side of the management
+ controller, and as such, would create a duplication of feature, since you
+ would get two interfaces for the same conduit: master netdev, and "cpu" netdev
+
+- the "dsa" port(s) are just conduits between two or more switches, and as such
+ cannot really be used as proper network interfaces either, only the
+ downstream, or the top-most upstream interface makes sense with that model
+
+Switch tagging protocols
+------------------------
+
+DSA currently supports 5 different tagging protocols, and a tag-less mode as
+well. The different protocols are implemented in:
+
+- ``net/dsa/tag_trailer.c``: Marvell's 4 trailer tag mode (legacy)
+- ``net/dsa/tag_dsa.c``: Marvell's original DSA tag
+- ``net/dsa/tag_edsa.c``: Marvell's enhanced DSA tag
+- ``net/dsa/tag_brcm.c``: Broadcom's 4 bytes tag
+- ``net/dsa/tag_qca.c``: Qualcomm's 2 bytes tag
+
+The exact format of the tag protocol is vendor specific, but in general, they
+all contain something which:
+
+- identifies which port the Ethernet frame came from/should be sent to
+- provides a reason why this frame was forwarded to the management interface
+
+Master network devices
+----------------------
+
+Master network devices are regular, unmodified Linux network device drivers for
+the CPU/management Ethernet interface. Such a driver might occasionally need to
+know whether DSA is enabled (e.g.: to enable/disable specific offload features),
+but the DSA subsystem has been proven to work with industry standard drivers:
+``e1000e,`` ``mv643xx_eth`` etc. without having to introduce modifications to these
+drivers. Such network devices are also often referred to as conduit network
+devices since they act as a pipe between the host processor and the hardware
+Ethernet switch.
+
+Networking stack hooks
+----------------------
+
+When a master netdev is used with DSA, a small hook is placed in the
+networking stack is in order to have the DSA subsystem process the Ethernet
+switch specific tagging protocol. DSA accomplishes this by registering a
+specific (and fake) Ethernet type (later becoming ``skb->protocol``) with the
+networking stack, this is also known as a ``ptype`` or ``packet_type``. A typical
+Ethernet Frame receive sequence looks like this:
+
+Master network device (e.g.: e1000e):
+
+1. Receive interrupt fires:
+
+ - receive function is invoked
+ - basic packet processing is done: getting length, status etc.
+ - packet is prepared to be processed by the Ethernet layer by calling
+ ``eth_type_trans``
+
+2. net/ethernet/eth.c::
+
+ eth_type_trans(skb, dev)
+ if (dev->dsa_ptr != NULL)
+ -> skb->protocol = ETH_P_XDSA
+
+3. drivers/net/ethernet/\*::
+
+ netif_receive_skb(skb)
+ -> iterate over registered packet_type
+ -> invoke handler for ETH_P_XDSA, calls dsa_switch_rcv()
+
+4. net/dsa/dsa.c::
+
+ -> dsa_switch_rcv()
+ -> invoke switch tag specific protocol handler in 'net/dsa/tag_*.c'
+
+5. net/dsa/tag_*.c:
+
+ - inspect and strip switch tag protocol to determine originating port
+ - locate per-port network device
+ - invoke ``eth_type_trans()`` with the DSA slave network device
+ - invoked ``netif_receive_skb()``
+
+Past this point, the DSA slave network devices get delivered regular Ethernet
+frames that can be processed by the networking stack.
+
+Slave network devices
+---------------------
+
+Slave network devices created by DSA are stacked on top of their master network
+device, each of these network interfaces will be responsible for being a
+controlling and data-flowing end-point for each front-panel port of the switch.
+These interfaces are specialized in order to:
+
+- insert/remove the switch tag protocol (if it exists) when sending traffic
+ to/from specific switch ports
+- query the switch for ethtool operations: statistics, link state,
+ Wake-on-LAN, register dumps...
+- external/internal PHY management: link, auto-negotiation etc.
+
+These slave network devices have custom net_device_ops and ethtool_ops function
+pointers which allow DSA to introduce a level of layering between the networking
+stack/ethtool, and the switch driver implementation.
+
+Upon frame transmission from these slave network devices, DSA will look up which
+switch tagging protocol is currently registered with these network devices, and
+invoke a specific transmit routine which takes care of adding the relevant
+switch tag in the Ethernet frames.
+
+These frames are then queued for transmission using the master network device
+``ndo_start_xmit()`` function, since they contain the appropriate switch tag, the
+Ethernet switch will be able to process these incoming frames from the
+management interface and delivers these frames to the physical switch port.
+
+Graphical representation
+------------------------
+
+Summarized, this is basically how DSA looks like from a network device
+perspective::
+
+
+ |---------------------------
+ | CPU network device (eth0)|
+ ----------------------------
+ | <tag added by switch |
+ | |
+ | |
+ | tag added by CPU> |
+ |--------------------------------------------|
+ | Switch driver |
+ |--------------------------------------------|
+ || || ||
+ |-------| |-------| |-------|
+ | sw0p0 | | sw0p1 | | sw0p2 |
+ |-------| |-------| |-------|
+
+
+
+Slave MDIO bus
+--------------
+
+In order to be able to read to/from a switch PHY built into it, DSA creates a
+slave MDIO bus which allows a specific switch driver to divert and intercept
+MDIO reads/writes towards specific PHY addresses. In most MDIO-connected
+switches, these functions would utilize direct or indirect PHY addressing mode
+to return standard MII registers from the switch builtin PHYs, allowing the PHY
+library and/or to return link status, link partner pages, auto-negotiation
+results etc..
+
+For Ethernet switches which have both external and internal MDIO busses, the
+slave MII bus can be utilized to mux/demux MDIO reads and writes towards either
+internal or external MDIO devices this switch might be connected to: internal
+PHYs, external PHYs, or even external switches.
+
+Data structures
+---------------
+
+DSA data structures are defined in ``include/net/dsa.h`` as well as
+``net/dsa/dsa_priv.h``:
+
+- ``dsa_chip_data``: platform data configuration for a given switch device,
+ this structure describes a switch device's parent device, its address, as
+ well as various properties of its ports: names/labels, and finally a routing
+ table indication (when cascading switches)
+
+- ``dsa_platform_data``: platform device configuration data which can reference
+ a collection of dsa_chip_data structure if multiples switches are cascaded,
+ the master network device this switch tree is attached to needs to be
+ referenced
+
+- ``dsa_switch_tree``: structure assigned to the master network device under
+ ``dsa_ptr``, this structure references a dsa_platform_data structure as well as
+ the tagging protocol supported by the switch tree, and which receive/transmit
+ function hooks should be invoked, information about the directly attached
+ switch is also provided: CPU port. Finally, a collection of dsa_switch are
+ referenced to address individual switches in the tree.
+
+- ``dsa_switch``: structure describing a switch device in the tree, referencing
+ a ``dsa_switch_tree`` as a backpointer, slave network devices, master network
+ device, and a reference to the backing``dsa_switch_ops``
+
+- ``dsa_switch_ops``: structure referencing function pointers, see below for a
+ full description.
+
+Design limitations
+==================
+
+Limits on the number of devices and ports
+-----------------------------------------
+
+DSA currently limits the number of maximum switches within a tree to 4
+(``DSA_MAX_SWITCHES``), and the number of ports per switch to 12 (``DSA_MAX_PORTS``).
+These limits could be extended to support larger configurations would this need
+arise.
+
+Lack of CPU/DSA network devices
+-------------------------------
+
+DSA does not currently create slave network devices for the CPU or DSA ports, as
+described before. This might be an issue in the following cases:
+
+- inability to fetch switch CPU port statistics counters using ethtool, which
+ can make it harder to debug MDIO switch connected using xMII interfaces
+
+- inability to configure the CPU port link parameters based on the Ethernet
+ controller capabilities attached to it: http://patchwork.ozlabs.org/patch/509806/
+
+- inability to configure specific VLAN IDs / trunking VLANs between switches
+ when using a cascaded setup
+
+Common pitfalls using DSA setups
+--------------------------------
+
+Once a master network device is configured to use DSA (dev->dsa_ptr becomes
+non-NULL), and the switch behind it expects a tagging protocol, this network
+interface can only exclusively be used as a conduit interface. Sending packets
+directly through this interface (e.g.: opening a socket using this interface)
+will not make us go through the switch tagging protocol transmit function, so
+the Ethernet switch on the other end, expecting a tag will typically drop this
+frame.
+
+Slave network devices check that the master network device is UP before allowing
+you to administratively bring UP these slave network devices. A common
+configuration mistake is forgetting to bring UP the master network device first.
+
+Interactions with other subsystems
+==================================
+
+DSA currently leverages the following subsystems:
+
+- MDIO/PHY library: ``drivers/net/phy/phy.c``, ``mdio_bus.c``
+- Switchdev:``net/switchdev/*``
+- Device Tree for various of_* functions
+
+MDIO/PHY library
+----------------
+
+Slave network devices exposed by DSA may or may not be interfacing with PHY
+devices (``struct phy_device`` as defined in ``include/linux/phy.h)``, but the DSA
+subsystem deals with all possible combinations:
+
+- internal PHY devices, built into the Ethernet switch hardware
+- external PHY devices, connected via an internal or external MDIO bus
+- internal PHY devices, connected via an internal MDIO bus
+- special, non-autonegotiated or non MDIO-managed PHY devices: SFPs, MoCA; a.k.a
+ fixed PHYs
+
+The PHY configuration is done by the ``dsa_slave_phy_setup()`` function and the
+logic basically looks like this:
+
+- if Device Tree is used, the PHY device is looked up using the standard
+ "phy-handle" property, if found, this PHY device is created and registered
+ using ``of_phy_connect()``
+
+- if Device Tree is used, and the PHY device is "fixed", that is, conforms to
+ the definition of a non-MDIO managed PHY as defined in
+ ``Documentation/devicetree/bindings/net/fixed-link.txt``, the PHY is registered
+ and connected transparently using the special fixed MDIO bus driver
+
+- finally, if the PHY is built into the switch, as is very common with
+ standalone switch packages, the PHY is probed using the slave MII bus created
+ by DSA
+
+
+SWITCHDEV
+---------
+
+DSA directly utilizes SWITCHDEV when interfacing with the bridge layer, and
+more specifically with its VLAN filtering portion when configuring VLANs on top
+of per-port slave network devices. Since DSA primarily deals with
+MDIO-connected switches, although not exclusively, SWITCHDEV's
+prepare/abort/commit phases are often simplified into a prepare phase which
+checks whether the operation is supported by the DSA switch driver, and a commit
+phase which applies the changes.
+
+As of today, the only SWITCHDEV objects supported by DSA are the FDB and VLAN
+objects.
+
+Device Tree
+-----------
+
+DSA features a standardized binding which is documented in
+``Documentation/devicetree/bindings/net/dsa/dsa.txt``. PHY/MDIO library helper
+functions such as ``of_get_phy_mode()``, ``of_phy_connect()`` are also used to query
+per-port PHY specific details: interface connection, MDIO bus location etc..
+
+Driver development
+==================
+
+DSA switch drivers need to implement a dsa_switch_ops structure which will
+contain the various members described below.
+
+``register_switch_driver()`` registers this dsa_switch_ops in its internal list
+of drivers to probe for. ``unregister_switch_driver()`` does the exact opposite.
+
+Unless requested differently by setting the priv_size member accordingly, DSA
+does not allocate any driver private context space.
+
+Switch configuration
+--------------------
+
+- ``tag_protocol``: this is to indicate what kind of tagging protocol is supported,
+ should be a valid value from the ``dsa_tag_protocol`` enum
+
+- ``probe``: probe routine which will be invoked by the DSA platform device upon
+ registration to test for the presence/absence of a switch device. For MDIO
+ devices, it is recommended to issue a read towards internal registers using
+ the switch pseudo-PHY and return whether this is a supported device. For other
+ buses, return a non-NULL string
+
+- ``setup``: setup function for the switch, this function is responsible for setting
+ up the ``dsa_switch_ops`` private structure with all it needs: register maps,
+ interrupts, mutexes, locks etc.. This function is also expected to properly
+ configure the switch to separate all network interfaces from each other, that
+ is, they should be isolated by the switch hardware itself, typically by creating
+ a Port-based VLAN ID for each port and allowing only the CPU port and the
+ specific port to be in the forwarding vector. Ports that are unused by the
+ platform should be disabled. Past this function, the switch is expected to be
+ fully configured and ready to serve any kind of request. It is recommended
+ to issue a software reset of the switch during this setup function in order to
+ avoid relying on what a previous software agent such as a bootloader/firmware
+ may have previously configured.
+
+PHY devices and link management
+-------------------------------
+
+- ``get_phy_flags``: Some switches are interfaced to various kinds of Ethernet PHYs,
+ if the PHY library PHY driver needs to know about information it cannot obtain
+ on its own (e.g.: coming from switch memory mapped registers), this function
+ should return a 32-bits bitmask of "flags", that is private between the switch
+ driver and the Ethernet PHY driver in ``drivers/net/phy/\*``.
+
+- ``phy_read``: Function invoked by the DSA slave MDIO bus when attempting to read
+ the switch port MDIO registers. If unavailable, return 0xffff for each read.
+ For builtin switch Ethernet PHYs, this function should allow reading the link
+ status, auto-negotiation results, link partner pages etc..
+
+- ``phy_write``: Function invoked by the DSA slave MDIO bus when attempting to write
+ to the switch port MDIO registers. If unavailable return a negative error
+ code.
+
+- ``adjust_link``: Function invoked by the PHY library when a slave network device
+ is attached to a PHY device. This function is responsible for appropriately
+ configuring the switch port link parameters: speed, duplex, pause based on
+ what the ``phy_device`` is providing.
+
+- ``fixed_link_update``: Function invoked by the PHY library, and specifically by
+ the fixed PHY driver asking the switch driver for link parameters that could
+ not be auto-negotiated, or obtained by reading the PHY registers through MDIO.
+ This is particularly useful for specific kinds of hardware such as QSGMII,
+ MoCA or other kinds of non-MDIO managed PHYs where out of band link
+ information is obtained
+
+Ethtool operations
+------------------
+
+- ``get_strings``: ethtool function used to query the driver's strings, will
+ typically return statistics strings, private flags strings etc.
+
+- ``get_ethtool_stats``: ethtool function used to query per-port statistics and
+ return their values. DSA overlays slave network devices general statistics:
+ RX/TX counters from the network device, with switch driver specific statistics
+ per port
+
+- ``get_sset_count``: ethtool function used to query the number of statistics items
+
+- ``get_wol``: ethtool function used to obtain Wake-on-LAN settings per-port, this
+ function may, for certain implementations also query the master network device
+ Wake-on-LAN settings if this interface needs to participate in Wake-on-LAN
+
+- ``set_wol``: ethtool function used to configure Wake-on-LAN settings per-port,
+ direct counterpart to set_wol with similar restrictions
+
+- ``set_eee``: ethtool function which is used to configure a switch port EEE (Green
+ Ethernet) settings, can optionally invoke the PHY library to enable EEE at the
+ PHY level if relevant. This function should enable EEE at the switch port MAC
+ controller and data-processing logic
+
+- ``get_eee``: ethtool function which is used to query a switch port EEE settings,
+ this function should return the EEE state of the switch port MAC controller
+ and data-processing logic as well as query the PHY for its currently configured
+ EEE settings
+
+- ``get_eeprom_len``: ethtool function returning for a given switch the EEPROM
+ length/size in bytes
+
+- ``get_eeprom``: ethtool function returning for a given switch the EEPROM contents
+
+- ``set_eeprom``: ethtool function writing specified data to a given switch EEPROM
+
+- ``get_regs_len``: ethtool function returning the register length for a given
+ switch
+
+- ``get_regs``: ethtool function returning the Ethernet switch internal register
+ contents. This function might require user-land code in ethtool to
+ pretty-print register values and registers
+
+Power management
+----------------
+
+- ``suspend``: function invoked by the DSA platform device when the system goes to
+ suspend, should quiesce all Ethernet switch activities, but keep ports
+ participating in Wake-on-LAN active as well as additional wake-up logic if
+ supported
+
+- ``resume``: function invoked by the DSA platform device when the system resumes,
+ should resume all Ethernet switch activities and re-configure the switch to be
+ in a fully active state
+
+- ``port_enable``: function invoked by the DSA slave network device ndo_open
+ function when a port is administratively brought up, this function should be
+ fully enabling a given switch port. DSA takes care of marking the port with
+ ``BR_STATE_BLOCKING`` if the port is a bridge member, or ``BR_STATE_FORWARDING`` if it
+ was not, and propagating these changes down to the hardware
+
+- ``port_disable``: function invoked by the DSA slave network device ndo_close
+ function when a port is administratively brought down, this function should be
+ fully disabling a given switch port. DSA takes care of marking the port with
+ ``BR_STATE_DISABLED`` and propagating changes to the hardware if this port is
+ disabled while being a bridge member
+
+Bridge layer
+------------
+
+- ``port_bridge_join``: bridge layer function invoked when a given switch port is
+ added to a bridge, this function should be doing the necessary at the switch
+ level to permit the joining port from being added to the relevant logical
+ domain for it to ingress/egress traffic with other members of the bridge.
+
+- ``port_bridge_leave``: bridge layer function invoked when a given switch port is
+ removed from a bridge, this function should be doing the necessary at the
+ switch level to deny the leaving port from ingress/egress traffic from the
+ remaining bridge members. When the port leaves the bridge, it should be aged
+ out at the switch hardware for the switch to (re) learn MAC addresses behind
+ this port.
+
+- ``port_stp_state_set``: bridge layer function invoked when a given switch port STP
+ state is computed by the bridge layer and should be propagated to switch
+ hardware to forward/block/learn traffic. The switch driver is responsible for
+ computing a STP state change based on current and asked parameters and perform
+ the relevant ageing based on the intersection results
+
+Bridge VLAN filtering
+---------------------
+
+- ``port_vlan_filtering``: bridge layer function invoked when the bridge gets
+ configured for turning on or off VLAN filtering. If nothing specific needs to
+ be done at the hardware level, this callback does not need to be implemented.
+ When VLAN filtering is turned on, the hardware must be programmed with
+ rejecting 802.1Q frames which have VLAN IDs outside of the programmed allowed
+ VLAN ID map/rules. If there is no PVID programmed into the switch port,
+ untagged frames must be rejected as well. When turned off the switch must
+ accept any 802.1Q frames irrespective of their VLAN ID, and untagged frames are
+ allowed.
+
+- ``port_vlan_prepare``: bridge layer function invoked when the bridge prepares the
+ configuration of a VLAN on the given port. If the operation is not supported
+ by the hardware, this function should return ``-EOPNOTSUPP`` to inform the bridge
+ code to fallback to a software implementation. No hardware setup must be done
+ in this function. See port_vlan_add for this and details.
+
+- ``port_vlan_add``: bridge layer function invoked when a VLAN is configured
+ (tagged or untagged) for the given switch port
+
+- ``port_vlan_del``: bridge layer function invoked when a VLAN is removed from the
+ given switch port
+
+- ``port_vlan_dump``: bridge layer function invoked with a switchdev callback
+ function that the driver has to call for each VLAN the given port is a member
+ of. A switchdev object is used to carry the VID and bridge flags.
+
+- ``port_fdb_add``: bridge layer function invoked when the bridge wants to install a
+ Forwarding Database entry, the switch hardware should be programmed with the
+ specified address in the specified VLAN Id in the forwarding database
+ associated with this VLAN ID. If the operation is not supported, this
+ function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to
+ a software implementation.
+
+.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
+ of DSA, would be its port-based VLAN, used by the associated bridge device.
+
+- ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
+ Forwarding Database entry, the switch hardware should be programmed to delete
+ the specified MAC address from the specified VLAN ID if it was mapped into
+ this port forwarding database
+
+- ``port_fdb_dump``: bridge layer function invoked with a switchdev callback
+ function that the driver has to call for each MAC address known to be behind
+ the given port. A switchdev object is used to carry the VID and FDB info.
+
+- ``port_mdb_prepare``: bridge layer function invoked when the bridge prepares the
+ installation of a multicast database entry. If the operation is not supported,
+ this function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback
+ to a software implementation. No hardware setup must be done in this function.
+ See ``port_fdb_add`` for this and details.
+
+- ``port_mdb_add``: bridge layer function invoked when the bridge wants to install
+ a multicast database entry, the switch hardware should be programmed with the
+ specified address in the specified VLAN ID in the forwarding database
+ associated with this VLAN ID.
+
+.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
+ of DSA, would be its port-based VLAN, used by the associated bridge device.
+
+- ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
+ multicast database entry, the switch hardware should be programmed to delete
+ the specified MAC address from the specified VLAN ID if it was mapped into
+ this port forwarding database.
+
+- ``port_mdb_dump``: bridge layer function invoked with a switchdev callback
+ function that the driver has to call for each MAC address known to be behind
+ the given port. A switchdev object is used to carry the VID and MDB info.
+
+TODO
+====
+
+Making SWITCHDEV and DSA converge towards an unified codebase
+-------------------------------------------------------------
+
+SWITCHDEV properly takes care of abstracting the networking stack with offload
+capable hardware, but does not enforce a strict switch device driver model. On
+the other DSA enforces a fairly strict device driver model, and deals with most
+of the switch specific. At some point we should envision a merger between these
+two subsystems and get the best of both worlds.
+
+Other hanging fruits
+--------------------
+
+- making the number of ports fully dynamic and not dependent on ``DSA_MAX_PORTS``
+- allowing more than one CPU/management interface:
+ http://comments.gmane.org/gmane.linux.network/365657
+- porting more drivers from other vendors:
+ http://comments.gmane.org/gmane.linux.network/365510
diff --git a/Documentation/networking/dsa/index.rst b/Documentation/networking/dsa/index.rst
new file mode 100644
index 000000000..ee631e2d6
--- /dev/null
+++ b/Documentation/networking/dsa/index.rst
@@ -0,0 +1,13 @@
+===============================
+Distributed Switch Architecture
+===============================
+
+.. toctree::
+ :maxdepth: 1
+
+ dsa
+ b53
+ bcm_sf2
+ lan9303
+ sja1105
+ configuration
diff --git a/Documentation/networking/dsa/lan9303.rst b/Documentation/networking/dsa/lan9303.rst
new file mode 100644
index 000000000..e3c820db2
--- /dev/null
+++ b/Documentation/networking/dsa/lan9303.rst
@@ -0,0 +1,37 @@
+==============================
+LAN9303 Ethernet switch driver
+==============================
+
+The LAN9303 is a three port 10/100 Mbps ethernet switch with integrated phys for
+the two external ethernet ports. The third port is an RMII/MII interface to a
+host master network interface (e.g. fixed link).
+
+
+Driver details
+==============
+
+The driver is implemented as a DSA driver, see ``Documentation/networking/dsa/dsa.rst``.
+
+See ``Documentation/devicetree/bindings/net/dsa/lan9303.txt`` for device tree
+binding.
+
+The LAN9303 can be managed both via MDIO and I2C, both supported by this driver.
+
+At startup the driver configures the device to provide two separate network
+interfaces (which is the default state of a DSA device). Due to HW limitations,
+no HW MAC learning takes place in this mode.
+
+When both user ports are joined to the same bridge, the normal HW MAC learning
+is enabled. This means that unicast traffic is forwarded in HW. Broadcast and
+multicast is flooded in HW. STP is also supported in this mode. The driver
+support fdb/mdb operations as well, meaning IGMP snooping is supported.
+
+If one of the user ports leave the bridge, the ports goes back to the initial
+separated operation.
+
+
+Driver limitations
+==================
+
+ - Support for VLAN filtering is not implemented
+ - The HW does not support VLAN-specific fdb entries
diff --git a/Documentation/networking/dsa/sja1105.rst b/Documentation/networking/dsa/sja1105.rst
new file mode 100644
index 000000000..7395a33ba
--- /dev/null
+++ b/Documentation/networking/dsa/sja1105.rst
@@ -0,0 +1,581 @@
+=========================
+NXP SJA1105 switch driver
+=========================
+
+Overview
+========
+
+The NXP SJA1105 is a family of 6 devices:
+
+- SJA1105E: First generation, no TTEthernet
+- SJA1105T: First generation, TTEthernet
+- SJA1105P: Second generation, no TTEthernet, no SGMII
+- SJA1105Q: Second generation, TTEthernet, no SGMII
+- SJA1105R: Second generation, no TTEthernet, SGMII
+- SJA1105S: Second generation, TTEthernet, SGMII
+
+These are SPI-managed automotive switches, with all ports being gigabit
+capable, and supporting MII/RMII/RGMII and optionally SGMII on one port.
+
+Being automotive parts, their configuration interface is geared towards
+set-and-forget use, with minimal dynamic interaction at runtime. They
+require a static configuration to be composed by software and packed
+with CRC and table headers, and sent over SPI.
+
+The static configuration is composed of several configuration tables. Each
+table takes a number of entries. Some configuration tables can be (partially)
+reconfigured at runtime, some not. Some tables are mandatory, some not:
+
+============================= ================== =============================
+Table Mandatory Reconfigurable
+============================= ================== =============================
+Schedule no no
+Schedule entry points if Scheduling no
+VL Lookup no no
+VL Policing if VL Lookup no
+VL Forwarding if VL Lookup no
+L2 Lookup no no
+L2 Policing yes no
+VLAN Lookup yes yes
+L2 Forwarding yes partially (fully on P/Q/R/S)
+MAC Config yes partially (fully on P/Q/R/S)
+Schedule Params if Scheduling no
+Schedule Entry Points Params if Scheduling no
+VL Forwarding Params if VL Forwarding no
+L2 Lookup Params no partially (fully on P/Q/R/S)
+L2 Forwarding Params yes no
+Clock Sync Params no no
+AVB Params no no
+General Params yes partially
+Retagging no yes
+xMII Params yes no
+SGMII no yes
+============================= ================== =============================
+
+
+Also the configuration is write-only (software cannot read it back from the
+switch except for very few exceptions).
+
+The driver creates a static configuration at probe time, and keeps it at
+all times in memory, as a shadow for the hardware state. When required to
+change a hardware setting, the static configuration is also updated.
+If that changed setting can be transmitted to the switch through the dynamic
+reconfiguration interface, it is; otherwise the switch is reset and
+reprogrammed with the updated static configuration.
+
+Traffic support
+===============
+
+The switches do not have hardware support for DSA tags, except for "slow
+protocols" for switch control as STP and PTP. For these, the switches have two
+programmable filters for link-local destination MACs.
+These are used to trap BPDUs and PTP traffic to the master netdevice, and are
+further used to support STP and 1588 ordinary clock/boundary clock
+functionality. For frames trapped to the CPU, source port and switch ID
+information is encoded by the hardware into the frames.
+
+But by leveraging ``CONFIG_NET_DSA_TAG_8021Q`` (a software-defined DSA tagging
+format based on VLANs), general-purpose traffic termination through the network
+stack can be supported under certain circumstances.
+
+Depending on VLAN awareness state, the following operating modes are possible
+with the switch:
+
+- Mode 1 (VLAN-unaware): a port is in this mode when it is used as a standalone
+ net device, or when it is enslaved to a bridge with ``vlan_filtering=0``.
+- Mode 2 (fully VLAN-aware): a port is in this mode when it is enslaved to a
+ bridge with ``vlan_filtering=1``. Access to the entire VLAN range is given to
+ the user through ``bridge vlan`` commands, but general-purpose (anything
+ other than STP, PTP etc) traffic termination is not possible through the
+ switch net devices. The other packets can be still by user space processed
+ through the DSA master interface (similar to ``DSA_TAG_PROTO_NONE``).
+- Mode 3 (best-effort VLAN-aware): a port is in this mode when enslaved to a
+ bridge with ``vlan_filtering=1``, and the devlink property of its parent
+ switch named ``best_effort_vlan_filtering`` is set to ``true``. When
+ configured like this, the range of usable VIDs is reduced (0 to 1023 and 3072
+ to 4094), so is the number of usable VIDs (maximum of 7 non-pvid VLANs per
+ port*), and shared VLAN learning is performed (FDB lookup is done only by
+ DMAC, not also by VID).
+
+To summarize, in each mode, the following types of traffic are supported over
+the switch net devices:
+
++-------------+-----------+--------------+------------+
+| | Mode 1 | Mode 2 | Mode 3 |
++=============+===========+==============+============+
+| Regular | Yes | No | Yes |
+| traffic | | (use master) | |
++-------------+-----------+--------------+------------+
+| Management | Yes | Yes | Yes |
+| traffic | | | |
+| (BPDU, PTP) | | | |
++-------------+-----------+--------------+------------+
+
+To configure the switch to operate in Mode 3, the following steps can be
+followed::
+
+ ip link add dev br0 type bridge
+ # swp2 operates in Mode 1 now
+ ip link set dev swp2 master br0
+ # swp2 temporarily moves to Mode 2
+ ip link set dev br0 type bridge vlan_filtering 1
+ [ 61.204770] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
+ [ 61.239944] sja1105 spi0.1: Disabled switch tagging
+ # swp3 now operates in Mode 3
+ devlink dev param set spi/spi0.1 name best_effort_vlan_filtering value true cmode runtime
+ [ 64.682927] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
+ [ 64.711925] sja1105 spi0.1: Enabled switch tagging
+ # Cannot use VLANs in range 1024-3071 while in Mode 3.
+ bridge vlan add dev swp2 vid 1025 untagged pvid
+ RTNETLINK answers: Operation not permitted
+ bridge vlan add dev swp2 vid 100
+ bridge vlan add dev swp2 vid 101 untagged
+ bridge vlan
+ port vlan ids
+ swp5 1 PVID Egress Untagged
+
+ swp2 1 PVID Egress Untagged
+ 100
+ 101 Egress Untagged
+
+ swp3 1 PVID Egress Untagged
+
+ swp4 1 PVID Egress Untagged
+
+ br0 1 PVID Egress Untagged
+ bridge vlan add dev swp2 vid 102
+ bridge vlan add dev swp2 vid 103
+ bridge vlan add dev swp2 vid 104
+ bridge vlan add dev swp2 vid 105
+ bridge vlan add dev swp2 vid 106
+ bridge vlan add dev swp2 vid 107
+ # Cannot use mode than 7 VLANs per port while in Mode 3.
+ [ 3885.216832] sja1105 spi0.1: No more free subvlans
+
+\* "maximum of 7 non-pvid VLANs per port": Decoding VLAN-tagged packets on the
+CPU in mode 3 is possible through VLAN retagging of packets that go from the
+switch to the CPU. In cross-chip topologies, the port that goes to the CPU
+might also go to other switches. In that case, those other switches will see
+only a retagged packet (which only has meaning for the CPU). So if they are
+interested in this VLAN, they need to apply retagging in the reverse direction,
+to recover the original value from it. This consumes extra hardware resources
+for this switch. There is a maximum of 32 entries in the Retagging Table of
+each switch device.
+
+As an example, consider this cross-chip topology::
+
+ +-------------------------------------------------+
+ | Host SoC |
+ | +-------------------------+ |
+ | | DSA master for embedded | |
+ | | switch (non-sja1105) | |
+ | +--------+-------------------------+--------+ |
+ | | embedded L2 switch | |
+ | | | |
+ | | +--------------+ +--------------+ | |
+ | | |DSA master for| |DSA master for| | |
+ | | | SJA1105 1 | | SJA1105 2 | | |
+ +--+---+--------------+-----+--------------+---+--+
+
+ +-----------------------+ +-----------------------+
+ | SJA1105 switch 1 | | SJA1105 switch 2 |
+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
+ |sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3|
+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
+
+To reach the CPU, SJA1105 switch 1 (spi/spi2.1) uses the same port as is uses
+to reach SJA1105 switch 2 (spi/spi2.2), which would be port 4 (not drawn).
+Similarly for SJA1105 switch 2.
+
+Also consider the following commands, that add VLAN 100 to every sja1105 user
+port::
+
+ devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value true cmode runtime
+ devlink dev param set spi/spi2.2 name best_effort_vlan_filtering value true cmode runtime
+ ip link add dev br0 type bridge
+ for port in sw1p0 sw1p1 sw1p2 sw1p3 \
+ sw2p0 sw2p1 sw2p2 sw2p3; do
+ ip link set dev $port master br0
+ done
+ ip link set dev br0 type bridge vlan_filtering 1
+ for port in sw1p0 sw1p1 sw1p2 sw1p3 \
+ sw2p0 sw2p1 sw2p2; do
+ bridge vlan add dev $port vid 100
+ done
+ ip link add link br0 name br0.100 type vlan id 100 && ip link set dev br0.100 up
+ ip addr add 192.168.100.3/24 dev br0.100
+ bridge vlan add dev br0 vid 100 self
+
+ bridge vlan
+ port vlan ids
+ sw1p0 1 PVID Egress Untagged
+ 100
+
+ sw1p1 1 PVID Egress Untagged
+ 100
+
+ sw1p2 1 PVID Egress Untagged
+ 100
+
+ sw1p3 1 PVID Egress Untagged
+ 100
+
+ sw2p0 1 PVID Egress Untagged
+ 100
+
+ sw2p1 1 PVID Egress Untagged
+ 100
+
+ sw2p2 1 PVID Egress Untagged
+ 100
+
+ sw2p3 1 PVID Egress Untagged
+
+ br0 1 PVID Egress Untagged
+ 100
+
+SJA1105 switch 1 consumes 1 retagging entry for each VLAN on each user port
+towards the CPU. It also consumes 1 retagging entry for each non-pvid VLAN that
+it is also interested in, which is configured on any port of any neighbor
+switch.
+
+In this case, SJA1105 switch 1 consumes a total of 11 retagging entries, as
+follows:
+
+- 8 retagging entries for VLANs 1 and 100 installed on its user ports
+ (``sw1p0`` - ``sw1p3``)
+- 3 retagging entries for VLAN 100 installed on the user ports of SJA1105
+ switch 2 (``sw2p0`` - ``sw2p2``), because it also has ports that are
+ interested in it. The VLAN 1 is a pvid on SJA1105 switch 2 and does not need
+ reverse retagging.
+
+SJA1105 switch 2 also consumes 11 retagging entries, but organized as follows:
+
+- 7 retagging entries for the bridge VLANs on its user ports (``sw2p0`` -
+ ``sw2p3``).
+- 4 retagging entries for VLAN 100 installed on the user ports of SJA1105
+ switch 1 (``sw1p0`` - ``sw1p3``).
+
+Switching features
+==================
+
+The driver supports the configuration of L2 forwarding rules in hardware for
+port bridging. The forwarding, broadcast and flooding domain between ports can
+be restricted through two methods: either at the L2 forwarding level (isolate
+one bridge's ports from another's) or at the VLAN port membership level
+(isolate ports within the same bridge). The final forwarding decision taken by
+the hardware is a logical AND of these two sets of rules.
+
+The hardware tags all traffic internally with a port-based VLAN (pvid), or it
+decodes the VLAN information from the 802.1Q tag. Advanced VLAN classification
+is not possible. Once attributed a VLAN tag, frames are checked against the
+port's membership rules and dropped at ingress if they don't match any VLAN.
+This behavior is available when switch ports are enslaved to a bridge with
+``vlan_filtering 1``.
+
+Normally the hardware is not configurable with respect to VLAN awareness, but
+by changing what TPID the switch searches 802.1Q tags for, the semantics of a
+bridge with ``vlan_filtering 0`` can be kept (accept all traffic, tagged or
+untagged), and therefore this mode is also supported.
+
+Segregating the switch ports in multiple bridges is supported (e.g. 2 + 2), but
+all bridges should have the same level of VLAN awareness (either both have
+``vlan_filtering`` 0, or both 1). Also an inevitable limitation of the fact
+that VLAN awareness is global at the switch level is that once a bridge with
+``vlan_filtering`` enslaves at least one switch port, the other un-bridged
+ports are no longer available for standalone traffic termination.
+
+Topology and loop detection through STP is supported.
+
+L2 FDB manipulation (add/delete/dump) is currently possible for the first
+generation devices. Aging time of FDB entries, as well as enabling fully static
+management (no address learning and no flooding of unknown traffic) is not yet
+configurable in the driver.
+
+A special comment about bridging with other netdevices (illustrated with an
+example):
+
+A board has eth0, eth1, swp0@eth1, swp1@eth1, swp2@eth1, swp3@eth1.
+The switch ports (swp0-3) are under br0.
+It is desired that eth0 is turned into another switched port that communicates
+with swp0-3.
+
+If br0 has vlan_filtering 0, then eth0 can simply be added to br0 with the
+intended results.
+If br0 has vlan_filtering 1, then a new br1 interface needs to be created that
+enslaves eth0 and eth1 (the DSA master of the switch ports). This is because in
+this mode, the switch ports beneath br0 are not capable of regular traffic, and
+are only used as a conduit for switchdev operations.
+
+Offloads
+========
+
+Time-aware scheduling
+---------------------
+
+The switch supports a variation of the enhancements for scheduled traffic
+specified in IEEE 802.1Q-2018 (formerly 802.1Qbv). This means it can be used to
+ensure deterministic latency for priority traffic that is sent in-band with its
+gate-open event in the network schedule.
+
+This capability can be managed through the tc-taprio offload ('flags 2'). The
+difference compared to the software implementation of taprio is that the latter
+would only be able to shape traffic originated from the CPU, but not
+autonomously forwarded flows.
+
+The device has 8 traffic classes, and maps incoming frames to one of them based
+on the VLAN PCP bits (if no VLAN is present, the port-based default is used).
+As described in the previous sections, depending on the value of
+``vlan_filtering``, the EtherType recognized by the switch as being VLAN can
+either be the typical 0x8100 or a custom value used internally by the driver
+for tagging. Therefore, the switch ignores the VLAN PCP if used in standalone
+or bridge mode with ``vlan_filtering=0``, as it will not recognize the 0x8100
+EtherType. In these modes, injecting into a particular TX queue can only be
+done by the DSA net devices, which populate the PCP field of the tagging header
+on egress. Using ``vlan_filtering=1``, the behavior is the other way around:
+offloaded flows can be steered to TX queues based on the VLAN PCP, but the DSA
+net devices are no longer able to do that. To inject frames into a hardware TX
+queue with VLAN awareness active, it is necessary to create a VLAN
+sub-interface on the DSA master port, and send normal (0x8100) VLAN-tagged
+towards the switch, with the VLAN PCP bits set appropriately.
+
+Management traffic (having DMAC 01-80-C2-xx-xx-xx or 01-19-1B-xx-xx-xx) is the
+notable exception: the switch always treats it with a fixed priority and
+disregards any VLAN PCP bits even if present. The traffic class for management
+traffic has a value of 7 (highest priority) at the moment, which is not
+configurable in the driver.
+
+Below is an example of configuring a 500 us cyclic schedule on egress port
+``swp5``. The traffic class gate for management traffic (7) is open for 100 us,
+and the gates for all other traffic classes are open for 400 us::
+
+ #!/bin/bash
+
+ set -e -u -o pipefail
+
+ NSEC_PER_SEC="1000000000"
+
+ gatemask() {
+ local tc_list="$1"
+ local mask=0
+
+ for tc in ${tc_list}; do
+ mask=$((${mask} | (1 << ${tc})))
+ done
+
+ printf "%02x" ${mask}
+ }
+
+ if ! systemctl is-active --quiet ptp4l; then
+ echo "Please start the ptp4l service"
+ exit
+ fi
+
+ now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }')
+ # Phase-align the base time to the start of the next second.
+ sec=$(echo "${now}" | gawk -F. '{ print $1; }')
+ base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))"
+
+ tc qdisc add dev swp5 parent root handle 100 taprio \
+ num_tc 8 \
+ map 0 1 2 3 5 6 7 \
+ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
+ base-time ${base_time} \
+ sched-entry S $(gatemask 7) 100000 \
+ sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \
+ flags 2
+
+It is possible to apply the tc-taprio offload on multiple egress ports. There
+are hardware restrictions related to the fact that no gate event may trigger
+simultaneously on two ports. The driver checks the consistency of the schedules
+against this restriction and errors out when appropriate. Schedule analysis is
+needed to avoid this, which is outside the scope of the document.
+
+Routing actions (redirect, trap, drop)
+--------------------------------------
+
+The switch is able to offload flow-based redirection of packets to a set of
+destination ports specified by the user. Internally, this is implemented by
+making use of Virtual Links, a TTEthernet concept.
+
+The driver supports 2 types of keys for Virtual Links:
+
+- VLAN-aware virtual links: these match on destination MAC address, VLAN ID and
+ VLAN PCP.
+- VLAN-unaware virtual links: these match on destination MAC address only.
+
+The VLAN awareness state of the bridge (vlan_filtering) cannot be changed while
+there are virtual link rules installed.
+
+Composing multiple actions inside the same rule is supported. When only routing
+actions are requested, the driver creates a "non-critical" virtual link. When
+the action list also contains tc-gate (more details below), the virtual link
+becomes "time-critical" (draws frame buffers from a reserved memory partition,
+etc).
+
+The 3 routing actions that are supported are "trap", "drop" and "redirect".
+
+Example 1: send frames received on swp2 with a DA of 42:be:24:9b:76:20 to the
+CPU and to swp3. This type of key (DA only) when the port's VLAN awareness
+state is off::
+
+ tc qdisc add dev swp2 clsact
+ tc filter add dev swp2 ingress flower skip_sw dst_mac 42:be:24:9b:76:20 \
+ action mirred egress redirect dev swp3 \
+ action trap
+
+Example 2: drop frames received on swp2 with a DA of 42:be:24:9b:76:20, a VID
+of 100 and a PCP of 0::
+
+ tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \
+ dst_mac 42:be:24:9b:76:20 vlan_id 100 vlan_prio 0 action drop
+
+Time-based ingress policing
+---------------------------
+
+The TTEthernet hardware abilities of the switch can be constrained to act
+similarly to the Per-Stream Filtering and Policing (PSFP) clause specified in
+IEEE 802.1Q-2018 (formerly 802.1Qci). This means it can be used to perform
+tight timing-based admission control for up to 1024 flows (identified by a
+tuple composed of destination MAC address, VLAN ID and VLAN PCP). Packets which
+are received outside their expected reception window are dropped.
+
+This capability can be managed through the offload of the tc-gate action. As
+routing actions are intrinsic to virtual links in TTEthernet (which performs
+explicit routing of time-critical traffic and does not leave that in the hands
+of the FDB, flooding etc), the tc-gate action may never appear alone when
+asking sja1105 to offload it. One (or more) redirect or trap actions must also
+follow along.
+
+Example: create a tc-taprio schedule that is phase-aligned with a tc-gate
+schedule (the clocks must be synchronized by a 1588 application stack, which is
+outside the scope of this document). No packet delivered by the sender will be
+dropped. Note that the reception window is larger than the transmission window
+(and much more so, in this example) to compensate for the packet propagation
+delay of the link (which can be determined by the 1588 application stack).
+
+Receiver (sja1105)::
+
+ tc qdisc add dev swp2 clsact
+ now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \
+ sec=$(echo $now | awk -F. '{print $1}') && \
+ base_time="$(((sec + 2) * 1000000000))" && \
+ echo "base time ${base_time}"
+ tc filter add dev swp2 ingress flower skip_sw \
+ dst_mac 42:be:24:9b:76:20 \
+ action gate base-time ${base_time} \
+ sched-entry OPEN 60000 -1 -1 \
+ sched-entry CLOSE 40000 -1 -1 \
+ action trap
+
+Sender::
+
+ now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \
+ sec=$(echo $now | awk -F. '{print $1}') && \
+ base_time="$(((sec + 2) * 1000000000))" && \
+ echo "base time ${base_time}"
+ tc qdisc add dev eno0 parent root taprio \
+ num_tc 8 \
+ map 0 1 2 3 4 5 6 7 \
+ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
+ base-time ${base_time} \
+ sched-entry S 01 50000 \
+ sched-entry S 00 50000 \
+ flags 2
+
+The engine used to schedule the ingress gate operations is the same that the
+one used for the tc-taprio offload. Therefore, the restrictions regarding the
+fact that no two gate actions (either tc-gate or tc-taprio gates) may fire at
+the same time (during the same 200 ns slot) still apply.
+
+To come in handy, it is possible to share time-triggered virtual links across
+more than 1 ingress port, via flow blocks. In this case, the restriction of
+firing at the same time does not apply because there is a single schedule in
+the system, that of the shared virtual link::
+
+ tc qdisc add dev swp2 ingress_block 1 clsact
+ tc qdisc add dev swp3 ingress_block 1 clsact
+ tc filter add block 1 flower skip_sw dst_mac 42:be:24:9b:76:20 \
+ action gate index 2 \
+ base-time 0 \
+ sched-entry OPEN 50000000 -1 -1 \
+ sched-entry CLOSE 50000000 -1 -1 \
+ action trap
+
+Hardware statistics for each flow are also available ("pkts" counts the number
+of dropped frames, which is a sum of frames dropped due to timing violations,
+lack of destination ports and MTU enforcement checks). Byte-level counters are
+not available.
+
+Device Tree bindings and board design
+=====================================
+
+This section references ``Documentation/devicetree/bindings/net/dsa/sja1105.txt``
+and aims to showcase some potential switch caveats.
+
+RMII PHY role and out-of-band signaling
+---------------------------------------
+
+In the RMII spec, the 50 MHz clock signals are either driven by the MAC or by
+an external oscillator (but not by the PHY).
+But the spec is rather loose and devices go outside it in several ways.
+Some PHYs go against the spec and may provide an output pin where they source
+the 50 MHz clock themselves, in an attempt to be helpful.
+On the other hand, the SJA1105 is only binary configurable - when in the RMII
+MAC role it will also attempt to drive the clock signal. To prevent this from
+happening it must be put in RMII PHY role.
+But doing so has some unintended consequences.
+In the RMII spec, the PHY can transmit extra out-of-band signals via RXD[1:0].
+These are practically some extra code words (/J/ and /K/) sent prior to the
+preamble of each frame. The MAC does not have this out-of-band signaling
+mechanism defined by the RMII spec.
+So when the SJA1105 port is put in PHY role to avoid having 2 drivers on the
+clock signal, inevitably an RMII PHY-to-PHY connection is created. The SJA1105
+emulates a PHY interface fully and generates the /J/ and /K/ symbols prior to
+frame preambles, which the real PHY is not expected to understand. So the PHY
+simply encodes the extra symbols received from the SJA1105-as-PHY onto the
+100Base-Tx wire.
+On the other side of the wire, some link partners might discard these extra
+symbols, while others might choke on them and discard the entire Ethernet
+frames that follow along. This looks like packet loss with some link partners
+but not with others.
+The take-away is that in RMII mode, the SJA1105 must be let to drive the
+reference clock if connected to a PHY.
+
+RGMII fixed-link and internal delays
+------------------------------------
+
+As mentioned in the bindings document, the second generation of devices has
+tunable delay lines as part of the MAC, which can be used to establish the
+correct RGMII timing budget.
+When powered up, these can shift the Rx and Tx clocks with a phase difference
+between 73.8 and 101.7 degrees.
+The catch is that the delay lines need to lock onto a clock signal with a
+stable frequency. This means that there must be at least 2 microseconds of
+silence between the clock at the old vs at the new frequency. Otherwise the
+lock is lost and the delay lines must be reset (powered down and back up).
+In RGMII the clock frequency changes with link speed (125 MHz at 1000 Mbps, 25
+MHz at 100 Mbps and 2.5 MHz at 10 Mbps), and link speed might change during the
+AN process.
+In the situation where the switch port is connected through an RGMII fixed-link
+to a link partner whose link state life cycle is outside the control of Linux
+(such as a different SoC), then the delay lines would remain unlocked (and
+inactive) until there is manual intervention (ifdown/ifup on the switch port).
+The take-away is that in RGMII mode, the switch's internal delays are only
+reliable if the link partner never changes link speeds, or if it does, it does
+so in a way that is coordinated with the switch port (practically, both ends of
+the fixed-link are under control of the same Linux system).
+As to why would a fixed-link interface ever change link speeds: there are
+Ethernet controllers out there which come out of reset in 100 Mbps mode, and
+their driver inevitably needs to change the speed and clock frequency if it's
+required to work at gigabit.
+
+MDIO bus and PHY management
+---------------------------
+
+The SJA1105 does not have an MDIO bus and does not perform in-band AN either.
+Therefore there is no link state notification coming from the switch device.
+A board would need to hook up the PHYs connected to the switch to any other
+MDIO bus available to Linux within the system (e.g. to the DSA master's MDIO
+bus). Link state management then works by the driver manually keeping in sync
+(over SPI commands) the MAC link speed with the settings negotiated by the PHY.