diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/networking/snmp_counter.rst | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/networking/snmp_counter.rst')
-rw-r--r-- | Documentation/networking/snmp_counter.rst | 1793 |
1 files changed, 1793 insertions, 0 deletions
diff --git a/Documentation/networking/snmp_counter.rst b/Documentation/networking/snmp_counter.rst new file mode 100644 index 000000000..4edd0d387 --- /dev/null +++ b/Documentation/networking/snmp_counter.rst @@ -0,0 +1,1793 @@ +============ +SNMP counter +============ + +This document explains the meaning of SNMP counters. + +General IPv4 counters +===================== +All layer 4 packets and ICMP packets will change these counters, but +these counters won't be changed by layer 2 packets (such as STP) or +ARP packets. + +* IpInReceives + +Defined in `RFC1213 ipInReceives`_ + +.. _RFC1213 ipInReceives: https://tools.ietf.org/html/rfc1213#page-26 + +The number of packets received by the IP layer. It gets increasing at the +beginning of ip_rcv function, always be updated together with +IpExtInOctets. It will be increased even if the packet is dropped +later (e.g. due to the IP header is invalid or the checksum is wrong +and so on). It indicates the number of aggregated segments after +GRO/LRO. + +* IpInDelivers + +Defined in `RFC1213 ipInDelivers`_ + +.. _RFC1213 ipInDelivers: https://tools.ietf.org/html/rfc1213#page-28 + +The number of packets delivers to the upper layer protocols. E.g. TCP, UDP, +ICMP and so on. If no one listens on a raw socket, only kernel +supported protocols will be delivered, if someone listens on the raw +socket, all valid IP packets will be delivered. + +* IpOutRequests + +Defined in `RFC1213 ipOutRequests`_ + +.. _RFC1213 ipOutRequests: https://tools.ietf.org/html/rfc1213#page-28 + +The number of packets sent via IP layer, for both single cast and +multicast packets, and would always be updated together with +IpExtOutOctets. + +* IpExtInOctets and IpExtOutOctets + +They are Linux kernel extensions, no RFC definitions. Please note, +RFC1213 indeed defines ifInOctets and ifOutOctets, but they +are different things. The ifInOctets and ifOutOctets include the MAC +layer header size but IpExtInOctets and IpExtOutOctets don't, they +only include the IP layer header and the IP layer data. + +* IpExtInNoECTPkts, IpExtInECT1Pkts, IpExtInECT0Pkts, IpExtInCEPkts + +They indicate the number of four kinds of ECN IP packets, please refer +`Explicit Congestion Notification`_ for more details. + +.. _Explicit Congestion Notification: https://tools.ietf.org/html/rfc3168#page-6 + +These 4 counters calculate how many packets received per ECN +status. They count the real frame number regardless the LRO/GRO. So +for the same packet, you might find that IpInReceives count 1, but +IpExtInNoECTPkts counts 2 or more. + +* IpInHdrErrors + +Defined in `RFC1213 ipInHdrErrors`_. It indicates the packet is +dropped due to the IP header error. It might happen in both IP input +and IP forward paths. + +.. _RFC1213 ipInHdrErrors: https://tools.ietf.org/html/rfc1213#page-27 + +* IpInAddrErrors + +Defined in `RFC1213 ipInAddrErrors`_. It will be increased in two +scenarios: (1) The IP address is invalid. (2) The destination IP +address is not a local address and IP forwarding is not enabled + +.. _RFC1213 ipInAddrErrors: https://tools.ietf.org/html/rfc1213#page-27 + +* IpExtInNoRoutes + +This counter means the packet is dropped when the IP stack receives a +packet and can't find a route for it from the route table. It might +happen when IP forwarding is enabled and the destination IP address is +not a local address and there is no route for the destination IP +address. + +* IpInUnknownProtos + +Defined in `RFC1213 ipInUnknownProtos`_. It will be increased if the +layer 4 protocol is unsupported by kernel. If an application is using +raw socket, kernel will always deliver the packet to the raw socket +and this counter won't be increased. + +.. _RFC1213 ipInUnknownProtos: https://tools.ietf.org/html/rfc1213#page-27 + +* IpExtInTruncatedPkts + +For IPv4 packet, it means the actual data size is smaller than the +"Total Length" field in the IPv4 header. + +* IpInDiscards + +Defined in `RFC1213 ipInDiscards`_. It indicates the packet is dropped +in the IP receiving path and due to kernel internal reasons (e.g. no +enough memory). + +.. _RFC1213 ipInDiscards: https://tools.ietf.org/html/rfc1213#page-28 + +* IpOutDiscards + +Defined in `RFC1213 ipOutDiscards`_. It indicates the packet is +dropped in the IP sending path and due to kernel internal reasons. + +.. _RFC1213 ipOutDiscards: https://tools.ietf.org/html/rfc1213#page-28 + +* IpOutNoRoutes + +Defined in `RFC1213 ipOutNoRoutes`_. It indicates the packet is +dropped in the IP sending path and no route is found for it. + +.. _RFC1213 ipOutNoRoutes: https://tools.ietf.org/html/rfc1213#page-29 + +ICMP counters +============= +* IcmpInMsgs and IcmpOutMsgs + +Defined by `RFC1213 icmpInMsgs`_ and `RFC1213 icmpOutMsgs`_ + +.. _RFC1213 icmpInMsgs: https://tools.ietf.org/html/rfc1213#page-41 +.. _RFC1213 icmpOutMsgs: https://tools.ietf.org/html/rfc1213#page-43 + +As mentioned in the RFC1213, these two counters include errors, they +would be increased even if the ICMP packet has an invalid type. The +ICMP output path will check the header of a raw socket, so the +IcmpOutMsgs would still be updated if the IP header is constructed by +a userspace program. + +* ICMP named types + +| These counters include most of common ICMP types, they are: +| IcmpInDestUnreachs: `RFC1213 icmpInDestUnreachs`_ +| IcmpInTimeExcds: `RFC1213 icmpInTimeExcds`_ +| IcmpInParmProbs: `RFC1213 icmpInParmProbs`_ +| IcmpInSrcQuenchs: `RFC1213 icmpInSrcQuenchs`_ +| IcmpInRedirects: `RFC1213 icmpInRedirects`_ +| IcmpInEchos: `RFC1213 icmpInEchos`_ +| IcmpInEchoReps: `RFC1213 icmpInEchoReps`_ +| IcmpInTimestamps: `RFC1213 icmpInTimestamps`_ +| IcmpInTimestampReps: `RFC1213 icmpInTimestampReps`_ +| IcmpInAddrMasks: `RFC1213 icmpInAddrMasks`_ +| IcmpInAddrMaskReps: `RFC1213 icmpInAddrMaskReps`_ +| IcmpOutDestUnreachs: `RFC1213 icmpOutDestUnreachs`_ +| IcmpOutTimeExcds: `RFC1213 icmpOutTimeExcds`_ +| IcmpOutParmProbs: `RFC1213 icmpOutParmProbs`_ +| IcmpOutSrcQuenchs: `RFC1213 icmpOutSrcQuenchs`_ +| IcmpOutRedirects: `RFC1213 icmpOutRedirects`_ +| IcmpOutEchos: `RFC1213 icmpOutEchos`_ +| IcmpOutEchoReps: `RFC1213 icmpOutEchoReps`_ +| IcmpOutTimestamps: `RFC1213 icmpOutTimestamps`_ +| IcmpOutTimestampReps: `RFC1213 icmpOutTimestampReps`_ +| IcmpOutAddrMasks: `RFC1213 icmpOutAddrMasks`_ +| IcmpOutAddrMaskReps: `RFC1213 icmpOutAddrMaskReps`_ + +.. _RFC1213 icmpInDestUnreachs: https://tools.ietf.org/html/rfc1213#page-41 +.. _RFC1213 icmpInTimeExcds: https://tools.ietf.org/html/rfc1213#page-41 +.. _RFC1213 icmpInParmProbs: https://tools.ietf.org/html/rfc1213#page-42 +.. _RFC1213 icmpInSrcQuenchs: https://tools.ietf.org/html/rfc1213#page-42 +.. _RFC1213 icmpInRedirects: https://tools.ietf.org/html/rfc1213#page-42 +.. _RFC1213 icmpInEchos: https://tools.ietf.org/html/rfc1213#page-42 +.. _RFC1213 icmpInEchoReps: https://tools.ietf.org/html/rfc1213#page-42 +.. _RFC1213 icmpInTimestamps: https://tools.ietf.org/html/rfc1213#page-42 +.. _RFC1213 icmpInTimestampReps: https://tools.ietf.org/html/rfc1213#page-43 +.. _RFC1213 icmpInAddrMasks: https://tools.ietf.org/html/rfc1213#page-43 +.. _RFC1213 icmpInAddrMaskReps: https://tools.ietf.org/html/rfc1213#page-43 + +.. _RFC1213 icmpOutDestUnreachs: https://tools.ietf.org/html/rfc1213#page-44 +.. _RFC1213 icmpOutTimeExcds: https://tools.ietf.org/html/rfc1213#page-44 +.. _RFC1213 icmpOutParmProbs: https://tools.ietf.org/html/rfc1213#page-44 +.. _RFC1213 icmpOutSrcQuenchs: https://tools.ietf.org/html/rfc1213#page-44 +.. _RFC1213 icmpOutRedirects: https://tools.ietf.org/html/rfc1213#page-44 +.. _RFC1213 icmpOutEchos: https://tools.ietf.org/html/rfc1213#page-45 +.. _RFC1213 icmpOutEchoReps: https://tools.ietf.org/html/rfc1213#page-45 +.. _RFC1213 icmpOutTimestamps: https://tools.ietf.org/html/rfc1213#page-45 +.. _RFC1213 icmpOutTimestampReps: https://tools.ietf.org/html/rfc1213#page-45 +.. _RFC1213 icmpOutAddrMasks: https://tools.ietf.org/html/rfc1213#page-45 +.. _RFC1213 icmpOutAddrMaskReps: https://tools.ietf.org/html/rfc1213#page-46 + +Every ICMP type has two counters: 'In' and 'Out'. E.g., for the ICMP +Echo packet, they are IcmpInEchos and IcmpOutEchos. Their meanings are +straightforward. The 'In' counter means kernel receives such a packet +and the 'Out' counter means kernel sends such a packet. + +* ICMP numeric types + +They are IcmpMsgInType[N] and IcmpMsgOutType[N], the [N] indicates the +ICMP type number. These counters track all kinds of ICMP packets. The +ICMP type number definition could be found in the `ICMP parameters`_ +document. + +.. _ICMP parameters: https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml + +For example, if the Linux kernel sends an ICMP Echo packet, the +IcmpMsgOutType8 would increase 1. And if kernel gets an ICMP Echo Reply +packet, IcmpMsgInType0 would increase 1. + +* IcmpInCsumErrors + +This counter indicates the checksum of the ICMP packet is +wrong. Kernel verifies the checksum after updating the IcmpInMsgs and +before updating IcmpMsgInType[N]. If a packet has bad checksum, the +IcmpInMsgs would be updated but none of IcmpMsgInType[N] would be updated. + +* IcmpInErrors and IcmpOutErrors + +Defined by `RFC1213 icmpInErrors`_ and `RFC1213 icmpOutErrors`_ + +.. _RFC1213 icmpInErrors: https://tools.ietf.org/html/rfc1213#page-41 +.. _RFC1213 icmpOutErrors: https://tools.ietf.org/html/rfc1213#page-43 + +When an error occurs in the ICMP packet handler path, these two +counters would be updated. The receiving packet path use IcmpInErrors +and the sending packet path use IcmpOutErrors. When IcmpInCsumErrors +is increased, IcmpInErrors would always be increased too. + +relationship of the ICMP counters +--------------------------------- +The sum of IcmpMsgOutType[N] is always equal to IcmpOutMsgs, as they +are updated at the same time. The sum of IcmpMsgInType[N] plus +IcmpInErrors should be equal or larger than IcmpInMsgs. When kernel +receives an ICMP packet, kernel follows below logic: + +1. increase IcmpInMsgs +2. if has any error, update IcmpInErrors and finish the process +3. update IcmpMsgOutType[N] +4. handle the packet depending on the type, if has any error, update + IcmpInErrors and finish the process + +So if all errors occur in step (2), IcmpInMsgs should be equal to the +sum of IcmpMsgOutType[N] plus IcmpInErrors. If all errors occur in +step (4), IcmpInMsgs should be equal to the sum of +IcmpMsgOutType[N]. If the errors occur in both step (2) and step (4), +IcmpInMsgs should be less than the sum of IcmpMsgOutType[N] plus +IcmpInErrors. + +General TCP counters +==================== +* TcpInSegs + +Defined in `RFC1213 tcpInSegs`_ + +.. _RFC1213 tcpInSegs: https://tools.ietf.org/html/rfc1213#page-48 + +The number of packets received by the TCP layer. As mentioned in +RFC1213, it includes the packets received in error, such as checksum +error, invalid TCP header and so on. Only one error won't be included: +if the layer 2 destination address is not the NIC's layer 2 +address. It might happen if the packet is a multicast or broadcast +packet, or the NIC is in promiscuous mode. In these situations, the +packets would be delivered to the TCP layer, but the TCP layer will discard +these packets before increasing TcpInSegs. The TcpInSegs counter +isn't aware of GRO. So if two packets are merged by GRO, the TcpInSegs +counter would only increase 1. + +* TcpOutSegs + +Defined in `RFC1213 tcpOutSegs`_ + +.. _RFC1213 tcpOutSegs: https://tools.ietf.org/html/rfc1213#page-48 + +The number of packets sent by the TCP layer. As mentioned in RFC1213, +it excludes the retransmitted packets. But it includes the SYN, ACK +and RST packets. Doesn't like TcpInSegs, the TcpOutSegs is aware of +GSO, so if a packet would be split to 2 by GSO, TcpOutSegs will +increase 2. + +* TcpActiveOpens + +Defined in `RFC1213 tcpActiveOpens`_ + +.. _RFC1213 tcpActiveOpens: https://tools.ietf.org/html/rfc1213#page-47 + +It means the TCP layer sends a SYN, and come into the SYN-SENT +state. Every time TcpActiveOpens increases 1, TcpOutSegs should always +increase 1. + +* TcpPassiveOpens + +Defined in `RFC1213 tcpPassiveOpens`_ + +.. _RFC1213 tcpPassiveOpens: https://tools.ietf.org/html/rfc1213#page-47 + +It means the TCP layer receives a SYN, replies a SYN+ACK, come into +the SYN-RCVD state. + +* TcpExtTCPRcvCoalesce + +When packets are received by the TCP layer and are not be read by the +application, the TCP layer will try to merge them. This counter +indicate how many packets are merged in such situation. If GRO is +enabled, lots of packets would be merged by GRO, these packets +wouldn't be counted to TcpExtTCPRcvCoalesce. + +* TcpExtTCPAutoCorking + +When sending packets, the TCP layer will try to merge small packets to +a bigger one. This counter increase 1 for every packet merged in such +situation. Please refer to the LWN article for more details: +https://lwn.net/Articles/576263/ + +* TcpExtTCPOrigDataSent + +This counter is explained by `kernel commit f19c29e3e391`_, I pasted the +explaination below:: + + TCPOrigDataSent: number of outgoing packets with original data (excluding + retransmission but including data-in-SYN). This counter is different from + TcpOutSegs because TcpOutSegs also tracks pure ACKs. TCPOrigDataSent is + more useful to track the TCP retransmission rate. + +* TCPSynRetrans + +This counter is explained by `kernel commit f19c29e3e391`_, I pasted the +explaination below:: + + TCPSynRetrans: number of SYN and SYN/ACK retransmits to break down + retransmissions into SYN, fast-retransmits, timeout retransmits, etc. + +* TCPFastOpenActiveFail + +This counter is explained by `kernel commit f19c29e3e391`_, I pasted the +explaination below:: + + TCPFastOpenActiveFail: Fast Open attempts (SYN/data) failed because + the remote does not accept it or the attempts timed out. + +.. _kernel commit f19c29e3e391: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f19c29e3e391a66a273e9afebaf01917245148cd + +* TcpExtListenOverflows and TcpExtListenDrops + +When kernel receives a SYN from a client, and if the TCP accept queue +is full, kernel will drop the SYN and add 1 to TcpExtListenOverflows. +At the same time kernel will also add 1 to TcpExtListenDrops. When a +TCP socket is in LISTEN state, and kernel need to drop a packet, +kernel would always add 1 to TcpExtListenDrops. So increase +TcpExtListenOverflows would let TcpExtListenDrops increasing at the +same time, but TcpExtListenDrops would also increase without +TcpExtListenOverflows increasing, e.g. a memory allocation fail would +also let TcpExtListenDrops increase. + +Note: The above explanation is based on kernel 4.10 or above version, on +an old kernel, the TCP stack has different behavior when TCP accept +queue is full. On the old kernel, TCP stack won't drop the SYN, it +would complete the 3-way handshake. As the accept queue is full, TCP +stack will keep the socket in the TCP half-open queue. As it is in the +half open queue, TCP stack will send SYN+ACK on an exponential backoff +timer, after client replies ACK, TCP stack checks whether the accept +queue is still full, if it is not full, moves the socket to the accept +queue, if it is full, keeps the socket in the half-open queue, at next +time client replies ACK, this socket will get another chance to move +to the accept queue. + + +TCP Fast Open +============= +* TcpEstabResets + +Defined in `RFC1213 tcpEstabResets`_. + +.. _RFC1213 tcpEstabResets: https://tools.ietf.org/html/rfc1213#page-48 + +* TcpAttemptFails + +Defined in `RFC1213 tcpAttemptFails`_. + +.. _RFC1213 tcpAttemptFails: https://tools.ietf.org/html/rfc1213#page-48 + +* TcpOutRsts + +Defined in `RFC1213 tcpOutRsts`_. The RFC says this counter indicates +the 'segments sent containing the RST flag', but in linux kernel, this +couner indicates the segments kerenl tried to send. The sending +process might be failed due to some errors (e.g. memory alloc failed). + +.. _RFC1213 tcpOutRsts: https://tools.ietf.org/html/rfc1213#page-52 + +* TcpExtTCPSpuriousRtxHostQueues + +When the TCP stack wants to retransmit a packet, and finds that packet +is not lost in the network, but the packet is not sent yet, the TCP +stack would give up the retransmission and update this counter. It +might happen if a packet stays too long time in a qdisc or driver +queue. + +* TcpEstabResets + +The socket receives a RST packet in Establish or CloseWait state. + +* TcpExtTCPKeepAlive + +This counter indicates many keepalive packets were sent. The keepalive +won't be enabled by default. A userspace program could enable it by +setting the SO_KEEPALIVE socket option. + +* TcpExtTCPSpuriousRTOs + +The spurious retransmission timeout detected by the `F-RTO`_ +algorithm. + +.. _F-RTO: https://tools.ietf.org/html/rfc5682 + +TCP Fast Path +============= +When kernel receives a TCP packet, it has two paths to handler the +packet, one is fast path, another is slow path. The comment in kernel +code provides a good explanation of them, I pasted them below:: + + It is split into a fast path and a slow path. The fast path is + disabled when: + + - A zero window was announced from us + - zero window probing + is only handled properly on the slow path. + - Out of order segments arrived. + - Urgent data is expected. + - There is no buffer space left + - Unexpected TCP flags/window values/header lengths are received + (detected by checking the TCP header against pred_flags) + - Data is sent in both directions. The fast path only supports pure senders + or pure receivers (this means either the sequence number or the ack + value must stay constant) + - Unexpected TCP option. + +Kernel will try to use fast path unless any of the above conditions +are satisfied. If the packets are out of order, kernel will handle +them in slow path, which means the performance might be not very +good. Kernel would also come into slow path if the "Delayed ack" is +used, because when using "Delayed ack", the data is sent in both +directions. When the TCP window scale option is not used, kernel will +try to enable fast path immediately when the connection comes into the +established state, but if the TCP window scale option is used, kernel +will disable the fast path at first, and try to enable it after kernel +receives packets. + +* TcpExtTCPPureAcks and TcpExtTCPHPAcks + +If a packet set ACK flag and has no data, it is a pure ACK packet, if +kernel handles it in the fast path, TcpExtTCPHPAcks will increase 1, +if kernel handles it in the slow path, TcpExtTCPPureAcks will +increase 1. + +* TcpExtTCPHPHits + +If a TCP packet has data (which means it is not a pure ACK packet), +and this packet is handled in the fast path, TcpExtTCPHPHits will +increase 1. + + +TCP abort +========= +* TcpExtTCPAbortOnData + +It means TCP layer has data in flight, but need to close the +connection. So TCP layer sends a RST to the other side, indicate the +connection is not closed very graceful. An easy way to increase this +counter is using the SO_LINGER option. Please refer to the SO_LINGER +section of the `socket man page`_: + +.. _socket man page: http://man7.org/linux/man-pages/man7/socket.7.html + +By default, when an application closes a connection, the close function +will return immediately and kernel will try to send the in-flight data +async. If you use the SO_LINGER option, set l_onoff to 1, and l_linger +to a positive number, the close function won't return immediately, but +wait for the in-flight data are acked by the other side, the max wait +time is l_linger seconds. If set l_onoff to 1 and set l_linger to 0, +when the application closes a connection, kernel will send a RST +immediately and increase the TcpExtTCPAbortOnData counter. + +* TcpExtTCPAbortOnClose + +This counter means the application has unread data in the TCP layer when +the application wants to close the TCP connection. In such a situation, +kernel will send a RST to the other side of the TCP connection. + +* TcpExtTCPAbortOnMemory + +When an application closes a TCP connection, kernel still need to track +the connection, let it complete the TCP disconnect process. E.g. an +app calls the close method of a socket, kernel sends fin to the other +side of the connection, then the app has no relationship with the +socket any more, but kernel need to keep the socket, this socket +becomes an orphan socket, kernel waits for the reply of the other side, +and would come to the TIME_WAIT state finally. When kernel has no +enough memory to keep the orphan socket, kernel would send an RST to +the other side, and delete the socket, in such situation, kernel will +increase 1 to the TcpExtTCPAbortOnMemory. Two conditions would trigger +TcpExtTCPAbortOnMemory: + +1. the memory used by the TCP protocol is higher than the third value of +the tcp_mem. Please refer the tcp_mem section in the `TCP man page`_: + +.. _TCP man page: http://man7.org/linux/man-pages/man7/tcp.7.html + +2. the orphan socket count is higher than net.ipv4.tcp_max_orphans + + +* TcpExtTCPAbortOnTimeout + +This counter will increase when any of the TCP timers expire. In such +situation, kernel won't send RST, just give up the connection. + +* TcpExtTCPAbortOnLinger + +When a TCP connection comes into FIN_WAIT_2 state, instead of waiting +for the fin packet from the other side, kernel could send a RST and +delete the socket immediately. This is not the default behavior of +Linux kernel TCP stack. By configuring the TCP_LINGER2 socket option, +you could let kernel follow this behavior. + +* TcpExtTCPAbortFailed + +The kernel TCP layer will send RST if the `RFC2525 2.17 section`_ is +satisfied. If an internal error occurs during this process, +TcpExtTCPAbortFailed will be increased. + +.. _RFC2525 2.17 section: https://tools.ietf.org/html/rfc2525#page-50 + +TCP Hybrid Slow Start +===================== +The Hybrid Slow Start algorithm is an enhancement of the traditional +TCP congestion window Slow Start algorithm. It uses two pieces of +information to detect whether the max bandwidth of the TCP path is +approached. The two pieces of information are ACK train length and +increase in packet delay. For detail information, please refer the +`Hybrid Slow Start paper`_. Either ACK train length or packet delay +hits a specific threshold, the congestion control algorithm will come +into the Congestion Avoidance state. Until v4.20, two congestion +control algorithms are using Hybrid Slow Start, they are cubic (the +default congestion control algorithm) and cdg. Four snmp counters +relate with the Hybrid Slow Start algorithm. + +.. _Hybrid Slow Start paper: https://pdfs.semanticscholar.org/25e9/ef3f03315782c7f1cbcd31b587857adae7d1.pdf + +* TcpExtTCPHystartTrainDetect + +How many times the ACK train length threshold is detected + +* TcpExtTCPHystartTrainCwnd + +The sum of CWND detected by ACK train length. Dividing this value by +TcpExtTCPHystartTrainDetect is the average CWND which detected by the +ACK train length. + +* TcpExtTCPHystartDelayDetect + +How many times the packet delay threshold is detected. + +* TcpExtTCPHystartDelayCwnd + +The sum of CWND detected by packet delay. Dividing this value by +TcpExtTCPHystartDelayDetect is the average CWND which detected by the +packet delay. + +TCP retransmission and congestion control +========================================= +The TCP protocol has two retransmission mechanisms: SACK and fast +recovery. They are exclusive with each other. When SACK is enabled, +the kernel TCP stack would use SACK, or kernel would use fast +recovery. The SACK is a TCP option, which is defined in `RFC2018`_, +the fast recovery is defined in `RFC6582`_, which is also called +'Reno'. + +The TCP congestion control is a big and complex topic. To understand +the related snmp counter, we need to know the states of the congestion +control state machine. There are 5 states: Open, Disorder, CWR, +Recovery and Loss. For details about these states, please refer page 5 +and page 6 of this document: +https://pdfs.semanticscholar.org/0e9c/968d09ab2e53e24c4dca5b2d67c7f7140f8e.pdf + +.. _RFC2018: https://tools.ietf.org/html/rfc2018 +.. _RFC6582: https://tools.ietf.org/html/rfc6582 + +* TcpExtTCPRenoRecovery and TcpExtTCPSackRecovery + +When the congestion control comes into Recovery state, if sack is +used, TcpExtTCPSackRecovery increases 1, if sack is not used, +TcpExtTCPRenoRecovery increases 1. These two counters mean the TCP +stack begins to retransmit the lost packets. + +* TcpExtTCPSACKReneging + +A packet was acknowledged by SACK, but the receiver has dropped this +packet, so the sender needs to retransmit this packet. In this +situation, the sender adds 1 to TcpExtTCPSACKReneging. A receiver +could drop a packet which has been acknowledged by SACK, although it is +unusual, it is allowed by the TCP protocol. The sender doesn't really +know what happened on the receiver side. The sender just waits until +the RTO expires for this packet, then the sender assumes this packet +has been dropped by the receiver. + +* TcpExtTCPRenoReorder + +The reorder packet is detected by fast recovery. It would only be used +if SACK is disabled. The fast recovery algorithm detects recorder by +the duplicate ACK number. E.g., if retransmission is triggered, and +the original retransmitted packet is not lost, it is just out of +order, the receiver would acknowledge multiple times, one for the +retransmitted packet, another for the arriving of the original out of +order packet. Thus the sender would find more ACks than its +expectation, and the sender knows out of order occurs. + +* TcpExtTCPTSReorder + +The reorder packet is detected when a hole is filled. E.g., assume the +sender sends packet 1,2,3,4,5, and the receiving order is +1,2,4,5,3. When the sender receives the ACK of packet 3 (which will +fill the hole), two conditions will let TcpExtTCPTSReorder increase +1: (1) if the packet 3 is not re-retransmitted yet. (2) if the packet +3 is retransmitted but the timestamp of the packet 3's ACK is earlier +than the retransmission timestamp. + +* TcpExtTCPSACKReorder + +The reorder packet detected by SACK. The SACK has two methods to +detect reorder: (1) DSACK is received by the sender. It means the +sender sends the same packet more than one times. And the only reason +is the sender believes an out of order packet is lost so it sends the +packet again. (2) Assume packet 1,2,3,4,5 are sent by the sender, and +the sender has received SACKs for packet 2 and 5, now the sender +receives SACK for packet 4 and the sender doesn't retransmit the +packet yet, the sender would know packet 4 is out of order. The TCP +stack of kernel will increase TcpExtTCPSACKReorder for both of the +above scenarios. + +* TcpExtTCPSlowStartRetrans + +The TCP stack wants to retransmit a packet and the congestion control +state is 'Loss'. + +* TcpExtTCPFastRetrans + +The TCP stack wants to retransmit a packet and the congestion control +state is not 'Loss'. + +* TcpExtTCPLostRetransmit + +A SACK points out that a retransmission packet is lost again. + +* TcpExtTCPRetransFail + +The TCP stack tries to deliver a retransmission packet to lower layers +but the lower layers return an error. + +* TcpExtTCPSynRetrans + +The TCP stack retransmits a SYN packet. + +DSACK +===== +The DSACK is defined in `RFC2883`_. The receiver uses DSACK to report +duplicate packets to the sender. There are two kinds of +duplications: (1) a packet which has been acknowledged is +duplicate. (2) an out of order packet is duplicate. The TCP stack +counts these two kinds of duplications on both receiver side and +sender side. + +.. _RFC2883 : https://tools.ietf.org/html/rfc2883 + +* TcpExtTCPDSACKOldSent + +The TCP stack receives a duplicate packet which has been acked, so it +sends a DSACK to the sender. + +* TcpExtTCPDSACKOfoSent + +The TCP stack receives an out of order duplicate packet, so it sends a +DSACK to the sender. + +* TcpExtTCPDSACKRecv + +The TCP stack receives a DSACK, which indicates an acknowledged +duplicate packet is received. + +* TcpExtTCPDSACKOfoRecv + +The TCP stack receives a DSACK, which indicate an out of order +duplicate packet is received. + +invalid SACK and DSACK +====================== +When a SACK (or DSACK) block is invalid, a corresponding counter would +be updated. The validation method is base on the start/end sequence +number of the SACK block. For more details, please refer the comment +of the function tcp_is_sackblock_valid in the kernel source code. A +SACK option could have up to 4 blocks, they are checked +individually. E.g., if 3 blocks of a SACk is invalid, the +corresponding counter would be updated 3 times. The comment of the +`Add counters for discarded SACK blocks`_ patch has additional +explaination: + +.. _Add counters for discarded SACK blocks: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18f02545a9a16c9a89778b91a162ad16d510bb32 + +* TcpExtTCPSACKDiscard + +This counter indicates how many SACK blocks are invalid. If the invalid +SACK block is caused by ACK recording, the TCP stack will only ignore +it and won't update this counter. + +* TcpExtTCPDSACKIgnoredOld and TcpExtTCPDSACKIgnoredNoUndo + +When a DSACK block is invalid, one of these two counters would be +updated. Which counter will be updated depends on the undo_marker flag +of the TCP socket. If the undo_marker is not set, the TCP stack isn't +likely to re-transmit any packets, and we still receive an invalid +DSACK block, the reason might be that the packet is duplicated in the +middle of the network. In such scenario, TcpExtTCPDSACKIgnoredNoUndo +will be updated. If the undo_marker is set, TcpExtTCPDSACKIgnoredOld +will be updated. As implied in its name, it might be an old packet. + +SACK shift +========== +The linux networking stack stores data in sk_buff struct (skb for +short). If a SACK block acrosses multiple skb, the TCP stack will try +to re-arrange data in these skb. E.g. if a SACK block acknowledges seq +10 to 15, skb1 has seq 10 to 13, skb2 has seq 14 to 20. The seq 14 and +15 in skb2 would be moved to skb1. This operation is 'shift'. If a +SACK block acknowledges seq 10 to 20, skb1 has seq 10 to 13, skb2 has +seq 14 to 20. All data in skb2 will be moved to skb1, and skb2 will be +discard, this operation is 'merge'. + +* TcpExtTCPSackShifted + +A skb is shifted + +* TcpExtTCPSackMerged + +A skb is merged + +* TcpExtTCPSackShiftFallback + +A skb should be shifted or merged, but the TCP stack doesn't do it for +some reasons. + +TCP out of order +================ +* TcpExtTCPOFOQueue + +The TCP layer receives an out of order packet and has enough memory +to queue it. + +* TcpExtTCPOFODrop + +The TCP layer receives an out of order packet but doesn't have enough +memory, so drops it. Such packets won't be counted into +TcpExtTCPOFOQueue. + +* TcpExtTCPOFOMerge + +The received out of order packet has an overlay with the previous +packet. the overlay part will be dropped. All of TcpExtTCPOFOMerge +packets will also be counted into TcpExtTCPOFOQueue. + +TCP PAWS +======== +PAWS (Protection Against Wrapped Sequence numbers) is an algorithm +which is used to drop old packets. It depends on the TCP +timestamps. For detail information, please refer the `timestamp wiki`_ +and the `RFC of PAWS`_. + +.. _RFC of PAWS: https://tools.ietf.org/html/rfc1323#page-17 +.. _timestamp wiki: https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_timestamps + +* TcpExtPAWSActive + +Packets are dropped by PAWS in Syn-Sent status. + +* TcpExtPAWSEstab + +Packets are dropped by PAWS in any status other than Syn-Sent. + +TCP ACK skip +============ +In some scenarios, kernel would avoid sending duplicate ACKs too +frequently. Please find more details in the tcp_invalid_ratelimit +section of the `sysctl document`_. When kernel decides to skip an ACK +due to tcp_invalid_ratelimit, kernel would update one of below +counters to indicate the ACK is skipped in which scenario. The ACK +would only be skipped if the received packet is either a SYN packet or +it has no data. + +.. _sysctl document: https://www.kernel.org/doc/Documentation/networking/ip-sysctl.rst + +* TcpExtTCPACKSkippedSynRecv + +The ACK is skipped in Syn-Recv status. The Syn-Recv status means the +TCP stack receives a SYN and replies SYN+ACK. Now the TCP stack is +waiting for an ACK. Generally, the TCP stack doesn't need to send ACK +in the Syn-Recv status. But in several scenarios, the TCP stack need +to send an ACK. E.g., the TCP stack receives the same SYN packet +repeately, the received packet does not pass the PAWS check, or the +received packet sequence number is out of window. In these scenarios, +the TCP stack needs to send ACK. If the ACk sending frequency is higher than +tcp_invalid_ratelimit allows, the TCP stack will skip sending ACK and +increase TcpExtTCPACKSkippedSynRecv. + + +* TcpExtTCPACKSkippedPAWS + +The ACK is skipped due to PAWS (Protect Against Wrapped Sequence +numbers) check fails. If the PAWS check fails in Syn-Recv, Fin-Wait-2 +or Time-Wait statuses, the skipped ACK would be counted to +TcpExtTCPACKSkippedSynRecv, TcpExtTCPACKSkippedFinWait2 or +TcpExtTCPACKSkippedTimeWait. In all other statuses, the skipped ACK +would be counted to TcpExtTCPACKSkippedPAWS. + +* TcpExtTCPACKSkippedSeq + +The sequence number is out of window and the timestamp passes the PAWS +check and the TCP status is not Syn-Recv, Fin-Wait-2, and Time-Wait. + +* TcpExtTCPACKSkippedFinWait2 + +The ACK is skipped in Fin-Wait-2 status, the reason would be either +PAWS check fails or the received sequence number is out of window. + +* TcpExtTCPACKSkippedTimeWait + +Tha ACK is skipped in Time-Wait status, the reason would be either +PAWS check failed or the received sequence number is out of window. + +* TcpExtTCPACKSkippedChallenge + +The ACK is skipped if the ACK is a challenge ACK. The RFC 5961 defines +3 kind of challenge ACK, please refer `RFC 5961 section 3.2`_, +`RFC 5961 section 4.2`_ and `RFC 5961 section 5.2`_. Besides these +three scenarios, In some TCP status, the linux TCP stack would also +send challenge ACKs if the ACK number is before the first +unacknowledged number (more strict than `RFC 5961 section 5.2`_). + +.. _RFC 5961 section 3.2: https://tools.ietf.org/html/rfc5961#page-7 +.. _RFC 5961 section 4.2: https://tools.ietf.org/html/rfc5961#page-9 +.. _RFC 5961 section 5.2: https://tools.ietf.org/html/rfc5961#page-11 + +TCP receive window +================== +* TcpExtTCPWantZeroWindowAdv + +Depending on current memory usage, the TCP stack tries to set receive +window to zero. But the receive window might still be a no-zero +value. For example, if the previous window size is 10, and the TCP +stack receives 3 bytes, the current window size would be 7 even if the +window size calculated by the memory usage is zero. + +* TcpExtTCPToZeroWindowAdv + +The TCP receive window is set to zero from a no-zero value. + +* TcpExtTCPFromZeroWindowAdv + +The TCP receive window is set to no-zero value from zero. + + +Delayed ACK +=========== +The TCP Delayed ACK is a technique which is used for reducing the +packet count in the network. For more details, please refer the +`Delayed ACK wiki`_ + +.. _Delayed ACK wiki: https://en.wikipedia.org/wiki/TCP_delayed_acknowledgment + +* TcpExtDelayedACKs + +A delayed ACK timer expires. The TCP stack will send a pure ACK packet +and exit the delayed ACK mode. + +* TcpExtDelayedACKLocked + +A delayed ACK timer expires, but the TCP stack can't send an ACK +immediately due to the socket is locked by a userspace program. The +TCP stack will send a pure ACK later (after the userspace program +unlock the socket). When the TCP stack sends the pure ACK later, the +TCP stack will also update TcpExtDelayedACKs and exit the delayed ACK +mode. + +* TcpExtDelayedACKLost + +It will be updated when the TCP stack receives a packet which has been +ACKed. A Delayed ACK loss might cause this issue, but it would also be +triggered by other reasons, such as a packet is duplicated in the +network. + +Tail Loss Probe (TLP) +===================== +TLP is an algorithm which is used to detect TCP packet loss. For more +details, please refer the `TLP paper`_. + +.. _TLP paper: https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 + +* TcpExtTCPLossProbes + +A TLP probe packet is sent. + +* TcpExtTCPLossProbeRecovery + +A packet loss is detected and recovered by TLP. + +TCP Fast Open description +========================= +TCP Fast Open is a technology which allows data transfer before the +3-way handshake complete. Please refer the `TCP Fast Open wiki`_ for a +general description. + +.. _TCP Fast Open wiki: https://en.wikipedia.org/wiki/TCP_Fast_Open + +* TcpExtTCPFastOpenActive + +When the TCP stack receives an ACK packet in the SYN-SENT status, and +the ACK packet acknowledges the data in the SYN packet, the TCP stack +understand the TFO cookie is accepted by the other side, then it +updates this counter. + +* TcpExtTCPFastOpenActiveFail + +This counter indicates that the TCP stack initiated a TCP Fast Open, +but it failed. This counter would be updated in three scenarios: (1) +the other side doesn't acknowledge the data in the SYN packet. (2) The +SYN packet which has the TFO cookie is timeout at least once. (3) +after the 3-way handshake, the retransmission timeout happens +net.ipv4.tcp_retries1 times, because some middle-boxes may black-hole +fast open after the handshake. + +* TcpExtTCPFastOpenPassive + +This counter indicates how many times the TCP stack accepts the fast +open request. + +* TcpExtTCPFastOpenPassiveFail + +This counter indicates how many times the TCP stack rejects the fast +open request. It is caused by either the TFO cookie is invalid or the +TCP stack finds an error during the socket creating process. + +* TcpExtTCPFastOpenListenOverflow + +When the pending fast open request number is larger than +fastopenq->max_qlen, the TCP stack will reject the fast open request +and update this counter. When this counter is updated, the TCP stack +won't update TcpExtTCPFastOpenPassive or +TcpExtTCPFastOpenPassiveFail. The fastopenq->max_qlen is set by the +TCP_FASTOPEN socket operation and it could not be larger than +net.core.somaxconn. For example: + +setsockopt(sfd, SOL_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen)); + +* TcpExtTCPFastOpenCookieReqd + +This counter indicates how many times a client wants to request a TFO +cookie. + +SYN cookies +=========== +SYN cookies are used to mitigate SYN flood, for details, please refer +the `SYN cookies wiki`_. + +.. _SYN cookies wiki: https://en.wikipedia.org/wiki/SYN_cookies + +* TcpExtSyncookiesSent + +It indicates how many SYN cookies are sent. + +* TcpExtSyncookiesRecv + +How many reply packets of the SYN cookies the TCP stack receives. + +* TcpExtSyncookiesFailed + +The MSS decoded from the SYN cookie is invalid. When this counter is +updated, the received packet won't be treated as a SYN cookie and the +TcpExtSyncookiesRecv counter wont be updated. + +Challenge ACK +============= +For details of challenge ACK, please refer the explaination of +TcpExtTCPACKSkippedChallenge. + +* TcpExtTCPChallengeACK + +The number of challenge acks sent. + +* TcpExtTCPSYNChallenge + +The number of challenge acks sent in response to SYN packets. After +updates this counter, the TCP stack might send a challenge ACK and +update the TcpExtTCPChallengeACK counter, or it might also skip to +send the challenge and update the TcpExtTCPACKSkippedChallenge. + +prune +===== +When a socket is under memory pressure, the TCP stack will try to +reclaim memory from the receiving queue and out of order queue. One of +the reclaiming method is 'collapse', which means allocate a big sbk, +copy the contiguous skbs to the single big skb, and free these +contiguous skbs. + +* TcpExtPruneCalled + +The TCP stack tries to reclaim memory for a socket. After updates this +counter, the TCP stack will try to collapse the out of order queue and +the receiving queue. If the memory is still not enough, the TCP stack +will try to discard packets from the out of order queue (and update the +TcpExtOfoPruned counter) + +* TcpExtOfoPruned + +The TCP stack tries to discard packet on the out of order queue. + +* TcpExtRcvPruned + +After 'collapse' and discard packets from the out of order queue, if +the actually used memory is still larger than the max allowed memory, +this counter will be updated. It means the 'prune' fails. + +* TcpExtTCPRcvCollapsed + +This counter indicates how many skbs are freed during 'collapse'. + +examples +======== + +ping test +--------- +Run the ping command against the public dns server 8.8.8.8:: + + nstatuser@nstat-a:~$ ping 8.8.8.8 -c 1 + PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. + 64 bytes from 8.8.8.8: icmp_seq=1 ttl=119 time=17.8 ms + + --- 8.8.8.8 ping statistics --- + 1 packets transmitted, 1 received, 0% packet loss, time 0ms + rtt min/avg/max/mdev = 17.875/17.875/17.875/0.000 ms + +The nstayt result:: + + nstatuser@nstat-a:~$ nstat + #kernel + IpInReceives 1 0.0 + IpInDelivers 1 0.0 + IpOutRequests 1 0.0 + IcmpInMsgs 1 0.0 + IcmpInEchoReps 1 0.0 + IcmpOutMsgs 1 0.0 + IcmpOutEchos 1 0.0 + IcmpMsgInType0 1 0.0 + IcmpMsgOutType8 1 0.0 + IpExtInOctets 84 0.0 + IpExtOutOctets 84 0.0 + IpExtInNoECTPkts 1 0.0 + +The Linux server sent an ICMP Echo packet, so IpOutRequests, +IcmpOutMsgs, IcmpOutEchos and IcmpMsgOutType8 were increased 1. The +server got ICMP Echo Reply from 8.8.8.8, so IpInReceives, IcmpInMsgs, +IcmpInEchoReps and IcmpMsgInType0 were increased 1. The ICMP Echo Reply +was passed to the ICMP layer via IP layer, so IpInDelivers was +increased 1. The default ping data size is 48, so an ICMP Echo packet +and its corresponding Echo Reply packet are constructed by: + +* 14 bytes MAC header +* 20 bytes IP header +* 16 bytes ICMP header +* 48 bytes data (default value of the ping command) + +So the IpExtInOctets and IpExtOutOctets are 20+16+48=84. + +tcp 3-way handshake +------------------- +On server side, we run:: + + nstatuser@nstat-b:~$ nc -lknv 0.0.0.0 9000 + Listening on [0.0.0.0] (family 0, port 9000) + +On client side, we run:: + + nstatuser@nstat-a:~$ nc -nv 192.168.122.251 9000 + Connection to 192.168.122.251 9000 port [tcp/*] succeeded! + +The server listened on tcp 9000 port, the client connected to it, they +completed the 3-way handshake. + +On server side, we can find below nstat output:: + + nstatuser@nstat-b:~$ nstat | grep -i tcp + TcpPassiveOpens 1 0.0 + TcpInSegs 2 0.0 + TcpOutSegs 1 0.0 + TcpExtTCPPureAcks 1 0.0 + +On client side, we can find below nstat output:: + + nstatuser@nstat-a:~$ nstat | grep -i tcp + TcpActiveOpens 1 0.0 + TcpInSegs 1 0.0 + TcpOutSegs 2 0.0 + +When the server received the first SYN, it replied a SYN+ACK, and came into +SYN-RCVD state, so TcpPassiveOpens increased 1. The server received +SYN, sent SYN+ACK, received ACK, so server sent 1 packet, received 2 +packets, TcpInSegs increased 2, TcpOutSegs increased 1. The last ACK +of the 3-way handshake is a pure ACK without data, so +TcpExtTCPPureAcks increased 1. + +When the client sent SYN, the client came into the SYN-SENT state, so +TcpActiveOpens increased 1, the client sent SYN, received SYN+ACK, sent +ACK, so client sent 2 packets, received 1 packet, TcpInSegs increased +1, TcpOutSegs increased 2. + +TCP normal traffic +------------------ +Run nc on server:: + + nstatuser@nstat-b:~$ nc -lkv 0.0.0.0 9000 + Listening on [0.0.0.0] (family 0, port 9000) + +Run nc on client:: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + Connection to nstat-b 9000 port [tcp/*] succeeded! + +Input a string in the nc client ('hello' in our example):: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + Connection to nstat-b 9000 port [tcp/*] succeeded! + hello + +The client side nstat output:: + + nstatuser@nstat-a:~$ nstat + #kernel + IpInReceives 1 0.0 + IpInDelivers 1 0.0 + IpOutRequests 1 0.0 + TcpInSegs 1 0.0 + TcpOutSegs 1 0.0 + TcpExtTCPPureAcks 1 0.0 + TcpExtTCPOrigDataSent 1 0.0 + IpExtInOctets 52 0.0 + IpExtOutOctets 58 0.0 + IpExtInNoECTPkts 1 0.0 + +The server side nstat output:: + + nstatuser@nstat-b:~$ nstat + #kernel + IpInReceives 1 0.0 + IpInDelivers 1 0.0 + IpOutRequests 1 0.0 + TcpInSegs 1 0.0 + TcpOutSegs 1 0.0 + IpExtInOctets 58 0.0 + IpExtOutOctets 52 0.0 + IpExtInNoECTPkts 1 0.0 + +Input a string in nc client side again ('world' in our exmaple):: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + Connection to nstat-b 9000 port [tcp/*] succeeded! + hello + world + +Client side nstat output:: + + nstatuser@nstat-a:~$ nstat + #kernel + IpInReceives 1 0.0 + IpInDelivers 1 0.0 + IpOutRequests 1 0.0 + TcpInSegs 1 0.0 + TcpOutSegs 1 0.0 + TcpExtTCPHPAcks 1 0.0 + TcpExtTCPOrigDataSent 1 0.0 + IpExtInOctets 52 0.0 + IpExtOutOctets 58 0.0 + IpExtInNoECTPkts 1 0.0 + + +Server side nstat output:: + + nstatuser@nstat-b:~$ nstat + #kernel + IpInReceives 1 0.0 + IpInDelivers 1 0.0 + IpOutRequests 1 0.0 + TcpInSegs 1 0.0 + TcpOutSegs 1 0.0 + TcpExtTCPHPHits 1 0.0 + IpExtInOctets 58 0.0 + IpExtOutOctets 52 0.0 + IpExtInNoECTPkts 1 0.0 + +Compare the first client-side nstat and the second client-side nstat, +we could find one difference: the first one had a 'TcpExtTCPPureAcks', +but the second one had a 'TcpExtTCPHPAcks'. The first server-side +nstat and the second server-side nstat had a difference too: the +second server-side nstat had a TcpExtTCPHPHits, but the first +server-side nstat didn't have it. The network traffic patterns were +exactly the same: the client sent a packet to the server, the server +replied an ACK. But kernel handled them in different ways. When the +TCP window scale option is not used, kernel will try to enable fast +path immediately when the connection comes into the established state, +but if the TCP window scale option is used, kernel will disable the +fast path at first, and try to enable it after kerenl receives +packets. We could use the 'ss' command to verify whether the window +scale option is used. e.g. run below command on either server or +client:: + + nstatuser@nstat-a:~$ ss -o state established -i '( dport = :9000 or sport = :9000 ) + Netid Recv-Q Send-Q Local Address:Port Peer Address:Port + tcp 0 0 192.168.122.250:40654 192.168.122.251:9000 + ts sack cubic wscale:7,7 rto:204 rtt:0.98/0.49 mss:1448 pmtu:1500 rcvmss:536 advmss:1448 cwnd:10 bytes_acked:1 segs_out:2 segs_in:1 send 118.2Mbps lastsnd:46572 lastrcv:46572 lastack:46572 pacing_rate 236.4Mbps rcv_space:29200 rcv_ssthresh:29200 minrtt:0.98 + +The 'wscale:7,7' means both server and client set the window scale +option to 7. Now we could explain the nstat output in our test: + +In the first nstat output of client side, the client sent a packet, server +reply an ACK, when kernel handled this ACK, the fast path was not +enabled, so the ACK was counted into 'TcpExtTCPPureAcks'. + +In the second nstat output of client side, the client sent a packet again, +and received another ACK from the server, in this time, the fast path is +enabled, and the ACK was qualified for fast path, so it was handled by +the fast path, so this ACK was counted into TcpExtTCPHPAcks. + +In the first nstat output of server side, fast path was not enabled, +so there was no 'TcpExtTCPHPHits'. + +In the second nstat output of server side, the fast path was enabled, +and the packet received from client qualified for fast path, so it +was counted into 'TcpExtTCPHPHits'. + +TcpExtTCPAbortOnClose +--------------------- +On the server side, we run below python script:: + + import socket + import time + + port = 9000 + + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.bind(('0.0.0.0', port)) + s.listen(1) + sock, addr = s.accept() + while True: + time.sleep(9999999) + +This python script listen on 9000 port, but doesn't read anything from +the connection. + +On the client side, we send the string "hello" by nc:: + + nstatuser@nstat-a:~$ echo "hello" | nc nstat-b 9000 + +Then, we come back to the server side, the server has received the "hello" +packet, and the TCP layer has acked this packet, but the application didn't +read it yet. We type Ctrl-C to terminate the server script. Then we +could find TcpExtTCPAbortOnClose increased 1 on the server side:: + + nstatuser@nstat-b:~$ nstat | grep -i abort + TcpExtTCPAbortOnClose 1 0.0 + +If we run tcpdump on the server side, we could find the server sent a +RST after we type Ctrl-C. + +TcpExtTCPAbortOnMemory and TcpExtTCPAbortOnTimeout +--------------------------------------------------- +Below is an example which let the orphan socket count be higher than +net.ipv4.tcp_max_orphans. +Change tcp_max_orphans to a smaller value on client:: + + sudo bash -c "echo 10 > /proc/sys/net/ipv4/tcp_max_orphans" + +Client code (create 64 connection to server):: + + nstatuser@nstat-a:~$ cat client_orphan.py + import socket + import time + + server = 'nstat-b' # server address + port = 9000 + + count = 64 + + connection_list = [] + + for i in range(64): + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.connect((server, port)) + connection_list.append(s) + print("connection_count: %d" % len(connection_list)) + + while True: + time.sleep(99999) + +Server code (accept 64 connection from client):: + + nstatuser@nstat-b:~$ cat server_orphan.py + import socket + import time + + port = 9000 + count = 64 + + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.bind(('0.0.0.0', port)) + s.listen(count) + connection_list = [] + while True: + sock, addr = s.accept() + connection_list.append((sock, addr)) + print("connection_count: %d" % len(connection_list)) + +Run the python scripts on server and client. + +On server:: + + python3 server_orphan.py + +On client:: + + python3 client_orphan.py + +Run iptables on server:: + + sudo iptables -A INPUT -i ens3 -p tcp --destination-port 9000 -j DROP + +Type Ctrl-C on client, stop client_orphan.py. + +Check TcpExtTCPAbortOnMemory on client:: + + nstatuser@nstat-a:~$ nstat | grep -i abort + TcpExtTCPAbortOnMemory 54 0.0 + +Check orphane socket count on client:: + + nstatuser@nstat-a:~$ ss -s + Total: 131 (kernel 0) + TCP: 14 (estab 1, closed 0, orphaned 10, synrecv 0, timewait 0/0), ports 0 + + Transport Total IP IPv6 + * 0 - - + RAW 1 0 1 + UDP 1 1 0 + TCP 14 13 1 + INET 16 14 2 + FRAG 0 0 0 + +The explanation of the test: after run server_orphan.py and +client_orphan.py, we set up 64 connections between server and +client. Run the iptables command, the server will drop all packets from +the client, type Ctrl-C on client_orphan.py, the system of the client +would try to close these connections, and before they are closed +gracefully, these connections became orphan sockets. As the iptables +of the server blocked packets from the client, the server won't receive fin +from the client, so all connection on clients would be stuck on FIN_WAIT_1 +stage, so they will keep as orphan sockets until timeout. We have echo +10 to /proc/sys/net/ipv4/tcp_max_orphans, so the client system would +only keep 10 orphan sockets, for all other orphan sockets, the client +system sent RST for them and delete them. We have 64 connections, so +the 'ss -s' command shows the system has 10 orphan sockets, and the +value of TcpExtTCPAbortOnMemory was 54. + +An additional explanation about orphan socket count: You could find the +exactly orphan socket count by the 'ss -s' command, but when kernel +decide whither increases TcpExtTCPAbortOnMemory and sends RST, kernel +doesn't always check the exactly orphan socket count. For increasing +performance, kernel checks an approximate count firstly, if the +approximate count is more than tcp_max_orphans, kernel checks the +exact count again. So if the approximate count is less than +tcp_max_orphans, but exactly count is more than tcp_max_orphans, you +would find TcpExtTCPAbortOnMemory is not increased at all. If +tcp_max_orphans is large enough, it won't occur, but if you decrease +tcp_max_orphans to a small value like our test, you might find this +issue. So in our test, the client set up 64 connections although the +tcp_max_orphans is 10. If the client only set up 11 connections, we +can't find the change of TcpExtTCPAbortOnMemory. + +Continue the previous test, we wait for several minutes. Because of the +iptables on the server blocked the traffic, the server wouldn't receive +fin, and all the client's orphan sockets would timeout on the +FIN_WAIT_1 state finally. So we wait for a few minutes, we could find +10 timeout on the client:: + + nstatuser@nstat-a:~$ nstat | grep -i abort + TcpExtTCPAbortOnTimeout 10 0.0 + +TcpExtTCPAbortOnLinger +---------------------- +The server side code:: + + nstatuser@nstat-b:~$ cat server_linger.py + import socket + import time + + port = 9000 + + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.bind(('0.0.0.0', port)) + s.listen(1) + sock, addr = s.accept() + while True: + time.sleep(9999999) + +The client side code:: + + nstatuser@nstat-a:~$ cat client_linger.py + import socket + import struct + + server = 'nstat-b' # server address + port = 9000 + + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.setsockopt(socket.SOL_SOCKET, socket.SO_LINGER, struct.pack('ii', 1, 10)) + s.setsockopt(socket.SOL_TCP, socket.TCP_LINGER2, struct.pack('i', -1)) + s.connect((server, port)) + s.close() + +Run server_linger.py on server:: + + nstatuser@nstat-b:~$ python3 server_linger.py + +Run client_linger.py on client:: + + nstatuser@nstat-a:~$ python3 client_linger.py + +After run client_linger.py, check the output of nstat:: + + nstatuser@nstat-a:~$ nstat | grep -i abort + TcpExtTCPAbortOnLinger 1 0.0 + +TcpExtTCPRcvCoalesce +-------------------- +On the server, we run a program which listen on TCP port 9000, but +doesn't read any data:: + + import socket + import time + port = 9000 + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.bind(('0.0.0.0', port)) + s.listen(1) + sock, addr = s.accept() + while True: + time.sleep(9999999) + +Save the above code as server_coalesce.py, and run:: + + python3 server_coalesce.py + +On the client, save below code as client_coalesce.py:: + + import socket + server = 'nstat-b' + port = 9000 + s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + s.connect((server, port)) + +Run:: + + nstatuser@nstat-a:~$ python3 -i client_coalesce.py + +We use '-i' to come into the interactive mode, then a packet:: + + >>> s.send(b'foo') + 3 + +Send a packet again:: + + >>> s.send(b'bar') + 3 + +On the server, run nstat:: + + ubuntu@nstat-b:~$ nstat + #kernel + IpInReceives 2 0.0 + IpInDelivers 2 0.0 + IpOutRequests 2 0.0 + TcpInSegs 2 0.0 + TcpOutSegs 2 0.0 + TcpExtTCPRcvCoalesce 1 0.0 + IpExtInOctets 110 0.0 + IpExtOutOctets 104 0.0 + IpExtInNoECTPkts 2 0.0 + +The client sent two packets, server didn't read any data. When +the second packet arrived at server, the first packet was still in +the receiving queue. So the TCP layer merged the two packets, and we +could find the TcpExtTCPRcvCoalesce increased 1. + +TcpExtListenOverflows and TcpExtListenDrops +------------------------------------------- +On server, run the nc command, listen on port 9000:: + + nstatuser@nstat-b:~$ nc -lkv 0.0.0.0 9000 + Listening on [0.0.0.0] (family 0, port 9000) + +On client, run 3 nc commands in different terminals:: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + Connection to nstat-b 9000 port [tcp/*] succeeded! + +The nc command only accepts 1 connection, and the accept queue length +is 1. On current linux implementation, set queue length to n means the +actual queue length is n+1. Now we create 3 connections, 1 is accepted +by nc, 2 in accepted queue, so the accept queue is full. + +Before running the 4th nc, we clean the nstat history on the server:: + + nstatuser@nstat-b:~$ nstat -n + +Run the 4th nc on the client:: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + +If the nc server is running on kernel 4.10 or higher version, you +won't see the "Connection to ... succeeded!" string, because kernel +will drop the SYN if the accept queue is full. If the nc client is running +on an old kernel, you would see that the connection is succeeded, +because kernel would complete the 3 way handshake and keep the socket +on half open queue. I did the test on kernel 4.15. Below is the nstat +on the server:: + + nstatuser@nstat-b:~$ nstat + #kernel + IpInReceives 4 0.0 + IpInDelivers 4 0.0 + TcpInSegs 4 0.0 + TcpExtListenOverflows 4 0.0 + TcpExtListenDrops 4 0.0 + IpExtInOctets 240 0.0 + IpExtInNoECTPkts 4 0.0 + +Both TcpExtListenOverflows and TcpExtListenDrops were 4. If the time +between the 4th nc and the nstat was longer, the value of +TcpExtListenOverflows and TcpExtListenDrops would be larger, because +the SYN of the 4th nc was dropped, the client was retrying. + +IpInAddrErrors, IpExtInNoRoutes and IpOutNoRoutes +------------------------------------------------- +server A IP address: 192.168.122.250 +server B IP address: 192.168.122.251 +Prepare on server A, add a route to server B:: + + $ sudo ip route add 8.8.8.8/32 via 192.168.122.251 + +Prepare on server B, disable send_redirects for all interfaces:: + + $ sudo sysctl -w net.ipv4.conf.all.send_redirects=0 + $ sudo sysctl -w net.ipv4.conf.ens3.send_redirects=0 + $ sudo sysctl -w net.ipv4.conf.lo.send_redirects=0 + $ sudo sysctl -w net.ipv4.conf.default.send_redirects=0 + +We want to let sever A send a packet to 8.8.8.8, and route the packet +to server B. When server B receives such packet, it might send a ICMP +Redirect message to server A, set send_redirects to 0 will disable +this behavior. + +First, generate InAddrErrors. On server B, we disable IP forwarding:: + + $ sudo sysctl -w net.ipv4.conf.all.forwarding=0 + +On server A, we send packets to 8.8.8.8:: + + $ nc -v 8.8.8.8 53 + +On server B, we check the output of nstat:: + + $ nstat + #kernel + IpInReceives 3 0.0 + IpInAddrErrors 3 0.0 + IpExtInOctets 180 0.0 + IpExtInNoECTPkts 3 0.0 + +As we have let server A route 8.8.8.8 to server B, and we disabled IP +forwarding on server B, Server A sent packets to server B, then server B +dropped packets and increased IpInAddrErrors. As the nc command would +re-send the SYN packet if it didn't receive a SYN+ACK, we could find +multiple IpInAddrErrors. + +Second, generate IpExtInNoRoutes. On server B, we enable IP +forwarding:: + + $ sudo sysctl -w net.ipv4.conf.all.forwarding=1 + +Check the route table of server B and remove the default route:: + + $ ip route show + default via 192.168.122.1 dev ens3 proto static + 192.168.122.0/24 dev ens3 proto kernel scope link src 192.168.122.251 + $ sudo ip route delete default via 192.168.122.1 dev ens3 proto static + +On server A, we contact 8.8.8.8 again:: + + $ nc -v 8.8.8.8 53 + nc: connect to 8.8.8.8 port 53 (tcp) failed: Network is unreachable + +On server B, run nstat:: + + $ nstat + #kernel + IpInReceives 1 0.0 + IpOutRequests 1 0.0 + IcmpOutMsgs 1 0.0 + IcmpOutDestUnreachs 1 0.0 + IcmpMsgOutType3 1 0.0 + IpExtInNoRoutes 1 0.0 + IpExtInOctets 60 0.0 + IpExtOutOctets 88 0.0 + IpExtInNoECTPkts 1 0.0 + +We enabled IP forwarding on server B, when server B received a packet +which destination IP address is 8.8.8.8, server B will try to forward +this packet. We have deleted the default route, there was no route for +8.8.8.8, so server B increase IpExtInNoRoutes and sent the "ICMP +Destination Unreachable" message to server A. + +Third, generate IpOutNoRoutes. Run ping command on server B:: + + $ ping -c 1 8.8.8.8 + connect: Network is unreachable + +Run nstat on server B:: + + $ nstat + #kernel + IpOutNoRoutes 1 0.0 + +We have deleted the default route on server B. Server B couldn't find +a route for the 8.8.8.8 IP address, so server B increased +IpOutNoRoutes. + +TcpExtTCPACKSkippedSynRecv +-------------------------- +In this test, we send 3 same SYN packets from client to server. The +first SYN will let server create a socket, set it to Syn-Recv status, +and reply a SYN/ACK. The second SYN will let server reply the SYN/ACK +again, and record the reply time (the duplicate ACK reply time). The +third SYN will let server check the previous duplicate ACK reply time, +and decide to skip the duplicate ACK, then increase the +TcpExtTCPACKSkippedSynRecv counter. + +Run tcpdump to capture a SYN packet:: + + nstatuser@nstat-a:~$ sudo tcpdump -c 1 -w /tmp/syn.pcap port 9000 + tcpdump: listening on ens3, link-type EN10MB (Ethernet), capture size 262144 bytes + +Open another terminal, run nc command:: + + nstatuser@nstat-a:~$ nc nstat-b 9000 + +As the nstat-b didn't listen on port 9000, it should reply a RST, and +the nc command exited immediately. It was enough for the tcpdump +command to capture a SYN packet. A linux server might use hardware +offload for the TCP checksum, so the checksum in the /tmp/syn.pcap +might be not correct. We call tcprewrite to fix it:: + + nstatuser@nstat-a:~$ tcprewrite --infile=/tmp/syn.pcap --outfile=/tmp/syn_fixcsum.pcap --fixcsum + +On nstat-b, we run nc to listen on port 9000:: + + nstatuser@nstat-b:~$ nc -lkv 9000 + Listening on [0.0.0.0] (family 0, port 9000) + +On nstat-a, we blocked the packet from port 9000, or nstat-a would send +RST to nstat-b:: + + nstatuser@nstat-a:~$ sudo iptables -A INPUT -p tcp --sport 9000 -j DROP + +Send 3 SYN repeatly to nstat-b:: + + nstatuser@nstat-a:~$ for i in {1..3}; do sudo tcpreplay -i ens3 /tmp/syn_fixcsum.pcap; done + +Check snmp cunter on nstat-b:: + + nstatuser@nstat-b:~$ nstat | grep -i skip + TcpExtTCPACKSkippedSynRecv 1 0.0 + +As we expected, TcpExtTCPACKSkippedSynRecv is 1. + +TcpExtTCPACKSkippedPAWS +----------------------- +To trigger PAWS, we could send an old SYN. + +On nstat-b, let nc listen on port 9000:: + + nstatuser@nstat-b:~$ nc -lkv 9000 + Listening on [0.0.0.0] (family 0, port 9000) + +On nstat-a, run tcpdump to capture a SYN:: + + nstatuser@nstat-a:~$ sudo tcpdump -w /tmp/paws_pre.pcap -c 1 port 9000 + tcpdump: listening on ens3, link-type EN10MB (Ethernet), capture size 262144 bytes + +On nstat-a, run nc as a client to connect nstat-b:: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + Connection to nstat-b 9000 port [tcp/*] succeeded! + +Now the tcpdump has captured the SYN and exit. We should fix the +checksum:: + + nstatuser@nstat-a:~$ tcprewrite --infile /tmp/paws_pre.pcap --outfile /tmp/paws.pcap --fixcsum + +Send the SYN packet twice:: + + nstatuser@nstat-a:~$ for i in {1..2}; do sudo tcpreplay -i ens3 /tmp/paws.pcap; done + +On nstat-b, check the snmp counter:: + + nstatuser@nstat-b:~$ nstat | grep -i skip + TcpExtTCPACKSkippedPAWS 1 0.0 + +We sent two SYN via tcpreplay, both of them would let PAWS check +failed, the nstat-b replied an ACK for the first SYN, skipped the ACK +for the second SYN, and updated TcpExtTCPACKSkippedPAWS. + +TcpExtTCPACKSkippedSeq +---------------------- +To trigger TcpExtTCPACKSkippedSeq, we send packets which have valid +timestamp (to pass PAWS check) but the sequence number is out of +window. The linux TCP stack would avoid to skip if the packet has +data, so we need a pure ACK packet. To generate such a packet, we +could create two sockets: one on port 9000, another on port 9001. Then +we capture an ACK on port 9001, change the source/destination port +numbers to match the port 9000 socket. Then we could trigger +TcpExtTCPACKSkippedSeq via this packet. + +On nstat-b, open two terminals, run two nc commands to listen on both +port 9000 and port 9001:: + + nstatuser@nstat-b:~$ nc -lkv 9000 + Listening on [0.0.0.0] (family 0, port 9000) + + nstatuser@nstat-b:~$ nc -lkv 9001 + Listening on [0.0.0.0] (family 0, port 9001) + +On nstat-a, run two nc clients:: + + nstatuser@nstat-a:~$ nc -v nstat-b 9000 + Connection to nstat-b 9000 port [tcp/*] succeeded! + + nstatuser@nstat-a:~$ nc -v nstat-b 9001 + Connection to nstat-b 9001 port [tcp/*] succeeded! + +On nstat-a, run tcpdump to capture an ACK:: + + nstatuser@nstat-a:~$ sudo tcpdump -w /tmp/seq_pre.pcap -c 1 dst port 9001 + tcpdump: listening on ens3, link-type EN10MB (Ethernet), capture size 262144 bytes + +On nstat-b, send a packet via the port 9001 socket. E.g. we sent a +string 'foo' in our example:: + + nstatuser@nstat-b:~$ nc -lkv 9001 + Listening on [0.0.0.0] (family 0, port 9001) + Connection from nstat-a 42132 received! + foo + +On nstat-a, the tcpdump should have caputred the ACK. We should check +the source port numbers of the two nc clients:: + + nstatuser@nstat-a:~$ ss -ta '( dport = :9000 || dport = :9001 )' | tee + State Recv-Q Send-Q Local Address:Port Peer Address:Port + ESTAB 0 0 192.168.122.250:50208 192.168.122.251:9000 + ESTAB 0 0 192.168.122.250:42132 192.168.122.251:9001 + +Run tcprewrite, change port 9001 to port 9000, chagne port 42132 to +port 50208:: + + nstatuser@nstat-a:~$ tcprewrite --infile /tmp/seq_pre.pcap --outfile /tmp/seq.pcap -r 9001:9000 -r 42132:50208 --fixcsum + +Now the /tmp/seq.pcap is the packet we need. Send it to nstat-b:: + + nstatuser@nstat-a:~$ for i in {1..2}; do sudo tcpreplay -i ens3 /tmp/seq.pcap; done + +Check TcpExtTCPACKSkippedSeq on nstat-b:: + + nstatuser@nstat-b:~$ nstat | grep -i skip + TcpExtTCPACKSkippedSeq 1 0.0 |