diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/power/freezing-of-tasks.rst | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/power/freezing-of-tasks.rst')
-rw-r--r-- | Documentation/power/freezing-of-tasks.rst | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/Documentation/power/freezing-of-tasks.rst b/Documentation/power/freezing-of-tasks.rst new file mode 100644 index 000000000..8bd693399 --- /dev/null +++ b/Documentation/power/freezing-of-tasks.rst @@ -0,0 +1,245 @@ +================= +Freezing of tasks +================= + +(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL + +I. What is the freezing of tasks? +================================= + +The freezing of tasks is a mechanism by which user space processes and some +kernel threads are controlled during hibernation or system-wide suspend (on some +architectures). + +II. How does it work? +===================== + +There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN +and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have +PF_NOFREEZE unset (all user space processes and some kernel threads) are +regarded as 'freezable' and treated in a special way before the system enters a +suspend state as well as before a hibernation image is created (in what follows +we only consider hibernation, but the description also applies to suspend). + +Namely, as the first step of the hibernation procedure the function +freeze_processes() (defined in kernel/power/process.c) is called. A system-wide +variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate +whether the system is to undergo a freezing operation. And freeze_processes() +sets this variable. After this, it executes try_to_freeze_tasks() that sends a +fake signal to all user space processes, and wakes up all the kernel threads. +All freezable tasks must react to that by calling try_to_freeze(), which +results in a call to __refrigerator() (defined in kernel/freezer.c), which sets +the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes +it loop until PF_FROZEN is cleared for it. Then, we say that the task is +'frozen' and therefore the set of functions handling this mechanism is referred +to as 'the freezer' (these functions are defined in kernel/power/process.c, +kernel/freezer.c & include/linux/freezer.h). User space processes are generally +frozen before kernel threads. + +__refrigerator() must not be called directly. Instead, use the +try_to_freeze() function (defined in include/linux/freezer.h), that checks +if the task is to be frozen and makes the task enter __refrigerator(). + +For user space processes try_to_freeze() is called automatically from the +signal-handling code, but the freezable kernel threads need to call it +explicitly in suitable places or use the wait_event_freezable() or +wait_event_freezable_timeout() macros (defined in include/linux/freezer.h) +that combine interruptible sleep with checking if the task is to be frozen and +calling try_to_freeze(). The main loop of a freezable kernel thread may look +like the following one:: + + set_freezable(); + do { + hub_events(); + wait_event_freezable(khubd_wait, + !list_empty(&hub_event_list) || + kthread_should_stop()); + } while (!kthread_should_stop() || !list_empty(&hub_event_list)); + +(from drivers/usb/core/hub.c::hub_thread()). + +If a freezable kernel thread fails to call try_to_freeze() after the freezer has +initiated a freezing operation, the freezing of tasks will fail and the entire +hibernation operation will be cancelled. For this reason, freezable kernel +threads must call try_to_freeze() somewhere or use one of the +wait_event_freezable() and wait_event_freezable_timeout() macros. + +After the system memory state has been restored from a hibernation image and +devices have been reinitialized, the function thaw_processes() is called in +order to clear the PF_FROZEN flag for each frozen task. Then, the tasks that +have been frozen leave __refrigerator() and continue running. + + +Rationale behind the functions dealing with freezing and thawing of tasks +------------------------------------------------------------------------- + +freeze_processes(): + - freezes only userspace tasks + +freeze_kernel_threads(): + - freezes all tasks (including kernel threads) because we can't freeze + kernel threads without freezing userspace tasks + +thaw_kernel_threads(): + - thaws only kernel threads; this is particularly useful if we need to do + anything special in between thawing of kernel threads and thawing of + userspace tasks, or if we want to postpone the thawing of userspace tasks + +thaw_processes(): + - thaws all tasks (including kernel threads) because we can't thaw userspace + tasks without thawing kernel threads + + +III. Which kernel threads are freezable? +======================================== + +Kernel threads are not freezable by default. However, a kernel thread may clear +PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE +directly is not allowed). From this point it is regarded as freezable +and must call try_to_freeze() in a suitable place. + +IV. Why do we do that? +====================== + +Generally speaking, there is a couple of reasons to use the freezing of tasks: + +1. The principal reason is to prevent filesystems from being damaged after + hibernation. At the moment we have no simple means of checkpointing + filesystems, so if there are any modifications made to filesystem data and/or + metadata on disks, we cannot bring them back to the state from before the + modifications. At the same time each hibernation image contains some + filesystem-related information that must be consistent with the state of the + on-disk data and metadata after the system memory state has been restored + from the image (otherwise the filesystems will be damaged in a nasty way, + usually making them almost impossible to repair). We therefore freeze + tasks that might cause the on-disk filesystems' data and metadata to be + modified after the hibernation image has been created and before the + system is finally powered off. The majority of these are user space + processes, but if any of the kernel threads may cause something like this + to happen, they have to be freezable. + +2. Next, to create the hibernation image we need to free a sufficient amount of + memory (approximately 50% of available RAM) and we need to do that before + devices are deactivated, because we generally need them for swapping out. + Then, after the memory for the image has been freed, we don't want tasks + to allocate additional memory and we prevent them from doing that by + freezing them earlier. [Of course, this also means that device drivers + should not allocate substantial amounts of memory from their .suspend() + callbacks before hibernation, but this is a separate issue.] + +3. The third reason is to prevent user space processes and some kernel threads + from interfering with the suspending and resuming of devices. A user space + process running on a second CPU while we are suspending devices may, for + example, be troublesome and without the freezing of tasks we would need some + safeguards against race conditions that might occur in such a case. + +Although Linus Torvalds doesn't like the freezing of tasks, he said this in one +of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608): + +"RJW:> Why we freeze tasks at all or why we freeze kernel threads? + +Linus: In many ways, 'at all'. + +I **do** realize the IO request queue issues, and that we cannot actually do +s2ram with some devices in the middle of a DMA. So we want to be able to +avoid *that*, there's no question about that. And I suspect that stopping +user threads and then waiting for a sync is practically one of the easier +ways to do so. + +So in practice, the 'at all' may become a 'why freeze kernel threads?' and +freezing user threads I don't find really objectionable." + +Still, there are kernel threads that may want to be freezable. For example, if +a kernel thread that belongs to a device driver accesses the device directly, it +in principle needs to know when the device is suspended, so that it doesn't try +to access it at that time. However, if the kernel thread is freezable, it will +be frozen before the driver's .suspend() callback is executed and it will be +thawed after the driver's .resume() callback has run, so it won't be accessing +the device while it's suspended. + +4. Another reason for freezing tasks is to prevent user space processes from + realizing that hibernation (or suspend) operation takes place. Ideally, user + space processes should not notice that such a system-wide operation has + occurred and should continue running without any problems after the restore + (or resume from suspend). Unfortunately, in the most general case this + is quite difficult to achieve without the freezing of tasks. Consider, + for example, a process that depends on all CPUs being online while it's + running. Since we need to disable nonboot CPUs during the hibernation, + if this process is not frozen, it may notice that the number of CPUs has + changed and may start to work incorrectly because of that. + +V. Are there any problems related to the freezing of tasks? +=========================================================== + +Yes, there are. + +First of all, the freezing of kernel threads may be tricky if they depend one +on another. For example, if kernel thread A waits for a completion (in the +TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B +and B is frozen in the meantime, then A will be blocked until B is thawed, which +may be undesirable. That's why kernel threads are not freezable by default. + +Second, there are the following two problems related to the freezing of user +space processes: + +1. Putting processes into an uninterruptible sleep distorts the load average. +2. Now that we have FUSE, plus the framework for doing device drivers in + userspace, it gets even more complicated because some userspace processes are + now doing the sorts of things that kernel threads do + (https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html). + +The problem 1. seems to be fixable, although it hasn't been fixed so far. The +other one is more serious, but it seems that we can work around it by using +hibernation (and suspend) notifiers (in that case, though, we won't be able to +avoid the realization by the user space processes that the hibernation is taking +place). + +There are also problems that the freezing of tasks tends to expose, although +they are not directly related to it. For example, if request_firmware() is +called from a device driver's .resume() routine, it will timeout and eventually +fail, because the user land process that should respond to the request is frozen +at this point. So, seemingly, the failure is due to the freezing of tasks. +Suppose, however, that the firmware file is located on a filesystem accessible +only through another device that hasn't been resumed yet. In that case, +request_firmware() will fail regardless of whether or not the freezing of tasks +is used. Consequently, the problem is not really related to the freezing of +tasks, since it generally exists anyway. + +A driver must have all firmwares it may need in RAM before suspend() is called. +If keeping them is not practical, for example due to their size, they must be +requested early enough using the suspend notifier API described in +Documentation/driver-api/pm/notifiers.rst. + +VI. Are there any precautions to be taken to prevent freezing failures? +======================================================================= + +Yes, there are. + +First of all, grabbing the 'system_transition_mutex' lock to mutually exclude a +piece of code from system-wide sleep such as suspend/hibernation is not +encouraged. If possible, that piece of code must instead hook onto the +suspend/hibernation notifiers to achieve mutual exclusion. Look at the +CPU-Hotplug code (kernel/cpu.c) for an example. + +However, if that is not feasible, and grabbing 'system_transition_mutex' is +deemed necessary, it is strongly discouraged to directly call +mutex_[un]lock(&system_transition_mutex) since that could lead to freezing +failures, because if the suspend/hibernate code successfully acquired the +'system_transition_mutex' lock, and hence that other entity failed to acquire +the lock, then that task would get blocked in TASK_UNINTERRUPTIBLE state. As a +consequence, the freezer would not be able to freeze that task, leading to +freezing failure. + +However, the [un]lock_system_sleep() APIs are safe to use in this scenario, +since they ask the freezer to skip freezing this task, since it is anyway +"frozen enough" as it is blocked on 'system_transition_mutex', which will be +released only after the entire suspend/hibernation sequence is complete. So, to +summarize, use [un]lock_system_sleep() instead of directly using +mutex_[un]lock(&system_transition_mutex). That would prevent freezing failures. + +V. Miscellaneous +================ + +/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze +all user space processes or all freezable kernel threads, in unit of +millisecond. The default value is 20000, with range of unsigned integer. |