summaryrefslogtreecommitdiffstats
path: root/Documentation/process/coding-style.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/process/coding-style.rst
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--Documentation/process/coding-style.rst1158
1 files changed, 1158 insertions, 0 deletions
diff --git a/Documentation/process/coding-style.rst b/Documentation/process/coding-style.rst
new file mode 100644
index 000000000..98227226c
--- /dev/null
+++ b/Documentation/process/coding-style.rst
@@ -0,0 +1,1158 @@
+.. _codingstyle:
+
+Linux kernel coding style
+=========================
+
+This is a short document describing the preferred coding style for the
+linux kernel. Coding style is very personal, and I won't **force** my
+views on anybody, but this is what goes for anything that I have to be
+able to maintain, and I'd prefer it for most other things too. Please
+at least consider the points made here.
+
+First off, I'd suggest printing out a copy of the GNU coding standards,
+and NOT read it. Burn them, it's a great symbolic gesture.
+
+Anyway, here goes:
+
+
+1) Indentation
+--------------
+
+Tabs are 8 characters, and thus indentations are also 8 characters.
+There are heretic movements that try to make indentations 4 (or even 2!)
+characters deep, and that is akin to trying to define the value of PI to
+be 3.
+
+Rationale: The whole idea behind indentation is to clearly define where
+a block of control starts and ends. Especially when you've been looking
+at your screen for 20 straight hours, you'll find it a lot easier to see
+how the indentation works if you have large indentations.
+
+Now, some people will claim that having 8-character indentations makes
+the code move too far to the right, and makes it hard to read on a
+80-character terminal screen. The answer to that is that if you need
+more than 3 levels of indentation, you're screwed anyway, and should fix
+your program.
+
+In short, 8-char indents make things easier to read, and have the added
+benefit of warning you when you're nesting your functions too deep.
+Heed that warning.
+
+The preferred way to ease multiple indentation levels in a switch statement is
+to align the ``switch`` and its subordinate ``case`` labels in the same column
+instead of ``double-indenting`` the ``case`` labels. E.g.:
+
+.. code-block:: c
+
+ switch (suffix) {
+ case 'G':
+ case 'g':
+ mem <<= 30;
+ break;
+ case 'M':
+ case 'm':
+ mem <<= 20;
+ break;
+ case 'K':
+ case 'k':
+ mem <<= 10;
+ fallthrough;
+ default:
+ break;
+ }
+
+Don't put multiple statements on a single line unless you have
+something to hide:
+
+.. code-block:: c
+
+ if (condition) do_this;
+ do_something_everytime;
+
+Don't put multiple assignments on a single line either. Kernel coding style
+is super simple. Avoid tricky expressions.
+
+Outside of comments, documentation and except in Kconfig, spaces are never
+used for indentation, and the above example is deliberately broken.
+
+Get a decent editor and don't leave whitespace at the end of lines.
+
+
+2) Breaking long lines and strings
+----------------------------------
+
+Coding style is all about readability and maintainability using commonly
+available tools.
+
+The preferred limit on the length of a single line is 80 columns.
+
+Statements longer than 80 columns should be broken into sensible chunks,
+unless exceeding 80 columns significantly increases readability and does
+not hide information.
+
+Descendants are always substantially shorter than the parent and
+are placed substantially to the right. A very commonly used style
+is to align descendants to a function open parenthesis.
+
+These same rules are applied to function headers with a long argument list.
+
+However, never break user-visible strings such as printk messages because
+that breaks the ability to grep for them.
+
+
+3) Placing Braces and Spaces
+----------------------------
+
+The other issue that always comes up in C styling is the placement of
+braces. Unlike the indent size, there are few technical reasons to
+choose one placement strategy over the other, but the preferred way, as
+shown to us by the prophets Kernighan and Ritchie, is to put the opening
+brace last on the line, and put the closing brace first, thusly:
+
+.. code-block:: c
+
+ if (x is true) {
+ we do y
+ }
+
+This applies to all non-function statement blocks (if, switch, for,
+while, do). E.g.:
+
+.. code-block:: c
+
+ switch (action) {
+ case KOBJ_ADD:
+ return "add";
+ case KOBJ_REMOVE:
+ return "remove";
+ case KOBJ_CHANGE:
+ return "change";
+ default:
+ return NULL;
+ }
+
+However, there is one special case, namely functions: they have the
+opening brace at the beginning of the next line, thus:
+
+.. code-block:: c
+
+ int function(int x)
+ {
+ body of function
+ }
+
+Heretic people all over the world have claimed that this inconsistency
+is ... well ... inconsistent, but all right-thinking people know that
+(a) K&R are **right** and (b) K&R are right. Besides, functions are
+special anyway (you can't nest them in C).
+
+Note that the closing brace is empty on a line of its own, **except** in
+the cases where it is followed by a continuation of the same statement,
+ie a ``while`` in a do-statement or an ``else`` in an if-statement, like
+this:
+
+.. code-block:: c
+
+ do {
+ body of do-loop
+ } while (condition);
+
+and
+
+.. code-block:: c
+
+ if (x == y) {
+ ..
+ } else if (x > y) {
+ ...
+ } else {
+ ....
+ }
+
+Rationale: K&R.
+
+Also, note that this brace-placement also minimizes the number of empty
+(or almost empty) lines, without any loss of readability. Thus, as the
+supply of new-lines on your screen is not a renewable resource (think
+25-line terminal screens here), you have more empty lines to put
+comments on.
+
+Do not unnecessarily use braces where a single statement will do.
+
+.. code-block:: c
+
+ if (condition)
+ action();
+
+and
+
+.. code-block:: none
+
+ if (condition)
+ do_this();
+ else
+ do_that();
+
+This does not apply if only one branch of a conditional statement is a single
+statement; in the latter case use braces in both branches:
+
+.. code-block:: c
+
+ if (condition) {
+ do_this();
+ do_that();
+ } else {
+ otherwise();
+ }
+
+Also, use braces when a loop contains more than a single simple statement:
+
+.. code-block:: c
+
+ while (condition) {
+ if (test)
+ do_something();
+ }
+
+3.1) Spaces
+***********
+
+Linux kernel style for use of spaces depends (mostly) on
+function-versus-keyword usage. Use a space after (most) keywords. The
+notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
+somewhat like functions (and are usually used with parentheses in Linux,
+although they are not required in the language, as in: ``sizeof info`` after
+``struct fileinfo info;`` is declared).
+
+So use a space after these keywords::
+
+ if, switch, case, for, do, while
+
+but not with sizeof, typeof, alignof, or __attribute__. E.g.,
+
+.. code-block:: c
+
+
+ s = sizeof(struct file);
+
+Do not add spaces around (inside) parenthesized expressions. This example is
+**bad**:
+
+.. code-block:: c
+
+
+ s = sizeof( struct file );
+
+When declaring pointer data or a function that returns a pointer type, the
+preferred use of ``*`` is adjacent to the data name or function name and not
+adjacent to the type name. Examples:
+
+.. code-block:: c
+
+
+ char *linux_banner;
+ unsigned long long memparse(char *ptr, char **retptr);
+ char *match_strdup(substring_t *s);
+
+Use one space around (on each side of) most binary and ternary operators,
+such as any of these::
+
+ = + - < > * / % | & ^ <= >= == != ? :
+
+but no space after unary operators::
+
+ & * + - ~ ! sizeof typeof alignof __attribute__ defined
+
+no space before the postfix increment & decrement unary operators::
+
+ ++ --
+
+no space after the prefix increment & decrement unary operators::
+
+ ++ --
+
+and no space around the ``.`` and ``->`` structure member operators.
+
+Do not leave trailing whitespace at the ends of lines. Some editors with
+``smart`` indentation will insert whitespace at the beginning of new lines as
+appropriate, so you can start typing the next line of code right away.
+However, some such editors do not remove the whitespace if you end up not
+putting a line of code there, such as if you leave a blank line. As a result,
+you end up with lines containing trailing whitespace.
+
+Git will warn you about patches that introduce trailing whitespace, and can
+optionally strip the trailing whitespace for you; however, if applying a series
+of patches, this may make later patches in the series fail by changing their
+context lines.
+
+
+4) Naming
+---------
+
+C is a Spartan language, and your naming conventions should follow suit.
+Unlike Modula-2 and Pascal programmers, C programmers do not use cute
+names like ThisVariableIsATemporaryCounter. A C programmer would call that
+variable ``tmp``, which is much easier to write, and not the least more
+difficult to understand.
+
+HOWEVER, while mixed-case names are frowned upon, descriptive names for
+global variables are a must. To call a global function ``foo`` is a
+shooting offense.
+
+GLOBAL variables (to be used only if you **really** need them) need to
+have descriptive names, as do global functions. If you have a function
+that counts the number of active users, you should call that
+``count_active_users()`` or similar, you should **not** call it ``cntusr()``.
+
+Encoding the type of a function into the name (so-called Hungarian
+notation) is asinine - the compiler knows the types anyway and can check
+those, and it only confuses the programmer. No wonder Microsoft makes buggy
+programs.
+
+LOCAL variable names should be short, and to the point. If you have
+some random integer loop counter, it should probably be called ``i``.
+Calling it ``loop_counter`` is non-productive, if there is no chance of it
+being mis-understood. Similarly, ``tmp`` can be just about any type of
+variable that is used to hold a temporary value.
+
+If you are afraid to mix up your local variable names, you have another
+problem, which is called the function-growth-hormone-imbalance syndrome.
+See chapter 6 (Functions).
+
+For symbol names and documentation, avoid introducing new usage of
+'master / slave' (or 'slave' independent of 'master') and 'blacklist /
+whitelist'.
+
+Recommended replacements for 'master / slave' are:
+ '{primary,main} / {secondary,replica,subordinate}'
+ '{initiator,requester} / {target,responder}'
+ '{controller,host} / {device,worker,proxy}'
+ 'leader / follower'
+ 'director / performer'
+
+Recommended replacements for 'blacklist/whitelist' are:
+ 'denylist / allowlist'
+ 'blocklist / passlist'
+
+Exceptions for introducing new usage is to maintain a userspace ABI/API,
+or when updating code for an existing (as of 2020) hardware or protocol
+specification that mandates those terms. For new specifications
+translate specification usage of the terminology to the kernel coding
+standard where possible.
+
+5) Typedefs
+-----------
+
+Please don't use things like ``vps_t``.
+It's a **mistake** to use typedef for structures and pointers. When you see a
+
+.. code-block:: c
+
+
+ vps_t a;
+
+in the source, what does it mean?
+In contrast, if it says
+
+.. code-block:: c
+
+ struct virtual_container *a;
+
+you can actually tell what ``a`` is.
+
+Lots of people think that typedefs ``help readability``. Not so. They are
+useful only for:
+
+ (a) totally opaque objects (where the typedef is actively used to **hide**
+ what the object is).
+
+ Example: ``pte_t`` etc. opaque objects that you can only access using
+ the proper accessor functions.
+
+ .. note::
+
+ Opaqueness and ``accessor functions`` are not good in themselves.
+ The reason we have them for things like pte_t etc. is that there
+ really is absolutely **zero** portably accessible information there.
+
+ (b) Clear integer types, where the abstraction **helps** avoid confusion
+ whether it is ``int`` or ``long``.
+
+ u8/u16/u32 are perfectly fine typedefs, although they fit into
+ category (d) better than here.
+
+ .. note::
+
+ Again - there needs to be a **reason** for this. If something is
+ ``unsigned long``, then there's no reason to do
+
+ typedef unsigned long myflags_t;
+
+ but if there is a clear reason for why it under certain circumstances
+ might be an ``unsigned int`` and under other configurations might be
+ ``unsigned long``, then by all means go ahead and use a typedef.
+
+ (c) when you use sparse to literally create a **new** type for
+ type-checking.
+
+ (d) New types which are identical to standard C99 types, in certain
+ exceptional circumstances.
+
+ Although it would only take a short amount of time for the eyes and
+ brain to become accustomed to the standard types like ``uint32_t``,
+ some people object to their use anyway.
+
+ Therefore, the Linux-specific ``u8/u16/u32/u64`` types and their
+ signed equivalents which are identical to standard types are
+ permitted -- although they are not mandatory in new code of your
+ own.
+
+ When editing existing code which already uses one or the other set
+ of types, you should conform to the existing choices in that code.
+
+ (e) Types safe for use in userspace.
+
+ In certain structures which are visible to userspace, we cannot
+ require C99 types and cannot use the ``u32`` form above. Thus, we
+ use __u32 and similar types in all structures which are shared
+ with userspace.
+
+Maybe there are other cases too, but the rule should basically be to NEVER
+EVER use a typedef unless you can clearly match one of those rules.
+
+In general, a pointer, or a struct that has elements that can reasonably
+be directly accessed should **never** be a typedef.
+
+
+6) Functions
+------------
+
+Functions should be short and sweet, and do just one thing. They should
+fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24,
+as we all know), and do one thing and do that well.
+
+The maximum length of a function is inversely proportional to the
+complexity and indentation level of that function. So, if you have a
+conceptually simple function that is just one long (but simple)
+case-statement, where you have to do lots of small things for a lot of
+different cases, it's OK to have a longer function.
+
+However, if you have a complex function, and you suspect that a
+less-than-gifted first-year high-school student might not even
+understand what the function is all about, you should adhere to the
+maximum limits all the more closely. Use helper functions with
+descriptive names (you can ask the compiler to in-line them if you think
+it's performance-critical, and it will probably do a better job of it
+than you would have done).
+
+Another measure of the function is the number of local variables. They
+shouldn't exceed 5-10, or you're doing something wrong. Re-think the
+function, and split it into smaller pieces. A human brain can
+generally easily keep track of about 7 different things, anything more
+and it gets confused. You know you're brilliant, but maybe you'd like
+to understand what you did 2 weeks from now.
+
+In source files, separate functions with one blank line. If the function is
+exported, the **EXPORT** macro for it should follow immediately after the
+closing function brace line. E.g.:
+
+.. code-block:: c
+
+ int system_is_up(void)
+ {
+ return system_state == SYSTEM_RUNNING;
+ }
+ EXPORT_SYMBOL(system_is_up);
+
+In function prototypes, include parameter names with their data types.
+Although this is not required by the C language, it is preferred in Linux
+because it is a simple way to add valuable information for the reader.
+
+Do not use the ``extern`` keyword with function prototypes as this makes
+lines longer and isn't strictly necessary.
+
+
+7) Centralized exiting of functions
+-----------------------------------
+
+Albeit deprecated by some people, the equivalent of the goto statement is
+used frequently by compilers in form of the unconditional jump instruction.
+
+The goto statement comes in handy when a function exits from multiple
+locations and some common work such as cleanup has to be done. If there is no
+cleanup needed then just return directly.
+
+Choose label names which say what the goto does or why the goto exists. An
+example of a good name could be ``out_free_buffer:`` if the goto frees ``buffer``.
+Avoid using GW-BASIC names like ``err1:`` and ``err2:``, as you would have to
+renumber them if you ever add or remove exit paths, and they make correctness
+difficult to verify anyway.
+
+The rationale for using gotos is:
+
+- unconditional statements are easier to understand and follow
+- nesting is reduced
+- errors by not updating individual exit points when making
+ modifications are prevented
+- saves the compiler work to optimize redundant code away ;)
+
+.. code-block:: c
+
+ int fun(int a)
+ {
+ int result = 0;
+ char *buffer;
+
+ buffer = kmalloc(SIZE, GFP_KERNEL);
+ if (!buffer)
+ return -ENOMEM;
+
+ if (condition1) {
+ while (loop1) {
+ ...
+ }
+ result = 1;
+ goto out_free_buffer;
+ }
+ ...
+ out_free_buffer:
+ kfree(buffer);
+ return result;
+ }
+
+A common type of bug to be aware of is ``one err bugs`` which look like this:
+
+.. code-block:: c
+
+ err:
+ kfree(foo->bar);
+ kfree(foo);
+ return ret;
+
+The bug in this code is that on some exit paths ``foo`` is NULL. Normally the
+fix for this is to split it up into two error labels ``err_free_bar:`` and
+``err_free_foo:``:
+
+.. code-block:: c
+
+ err_free_bar:
+ kfree(foo->bar);
+ err_free_foo:
+ kfree(foo);
+ return ret;
+
+Ideally you should simulate errors to test all exit paths.
+
+
+8) Commenting
+-------------
+
+Comments are good, but there is also a danger of over-commenting. NEVER
+try to explain HOW your code works in a comment: it's much better to
+write the code so that the **working** is obvious, and it's a waste of
+time to explain badly written code.
+
+Generally, you want your comments to tell WHAT your code does, not HOW.
+Also, try to avoid putting comments inside a function body: if the
+function is so complex that you need to separately comment parts of it,
+you should probably go back to chapter 6 for a while. You can make
+small comments to note or warn about something particularly clever (or
+ugly), but try to avoid excess. Instead, put the comments at the head
+of the function, telling people what it does, and possibly WHY it does
+it.
+
+When commenting the kernel API functions, please use the kernel-doc format.
+See the files at :ref:`Documentation/doc-guide/ <doc_guide>` and
+``scripts/kernel-doc`` for details.
+
+The preferred style for long (multi-line) comments is:
+
+.. code-block:: c
+
+ /*
+ * This is the preferred style for multi-line
+ * comments in the Linux kernel source code.
+ * Please use it consistently.
+ *
+ * Description: A column of asterisks on the left side,
+ * with beginning and ending almost-blank lines.
+ */
+
+For files in net/ and drivers/net/ the preferred style for long (multi-line)
+comments is a little different.
+
+.. code-block:: c
+
+ /* The preferred comment style for files in net/ and drivers/net
+ * looks like this.
+ *
+ * It is nearly the same as the generally preferred comment style,
+ * but there is no initial almost-blank line.
+ */
+
+It's also important to comment data, whether they are basic types or derived
+types. To this end, use just one data declaration per line (no commas for
+multiple data declarations). This leaves you room for a small comment on each
+item, explaining its use.
+
+
+9) You've made a mess of it
+---------------------------
+
+That's OK, we all do. You've probably been told by your long-time Unix
+user helper that ``GNU emacs`` automatically formats the C sources for
+you, and you've noticed that yes, it does do that, but the defaults it
+uses are less than desirable (in fact, they are worse than random
+typing - an infinite number of monkeys typing into GNU emacs would never
+make a good program).
+
+So, you can either get rid of GNU emacs, or change it to use saner
+values. To do the latter, you can stick the following in your .emacs file:
+
+.. code-block:: none
+
+ (defun c-lineup-arglist-tabs-only (ignored)
+ "Line up argument lists by tabs, not spaces"
+ (let* ((anchor (c-langelem-pos c-syntactic-element))
+ (column (c-langelem-2nd-pos c-syntactic-element))
+ (offset (- (1+ column) anchor))
+ (steps (floor offset c-basic-offset)))
+ (* (max steps 1)
+ c-basic-offset)))
+
+ (dir-locals-set-class-variables
+ 'linux-kernel
+ '((c-mode . (
+ (c-basic-offset . 8)
+ (c-label-minimum-indentation . 0)
+ (c-offsets-alist . (
+ (arglist-close . c-lineup-arglist-tabs-only)
+ (arglist-cont-nonempty .
+ (c-lineup-gcc-asm-reg c-lineup-arglist-tabs-only))
+ (arglist-intro . +)
+ (brace-list-intro . +)
+ (c . c-lineup-C-comments)
+ (case-label . 0)
+ (comment-intro . c-lineup-comment)
+ (cpp-define-intro . +)
+ (cpp-macro . -1000)
+ (cpp-macro-cont . +)
+ (defun-block-intro . +)
+ (else-clause . 0)
+ (func-decl-cont . +)
+ (inclass . +)
+ (inher-cont . c-lineup-multi-inher)
+ (knr-argdecl-intro . 0)
+ (label . -1000)
+ (statement . 0)
+ (statement-block-intro . +)
+ (statement-case-intro . +)
+ (statement-cont . +)
+ (substatement . +)
+ ))
+ (indent-tabs-mode . t)
+ (show-trailing-whitespace . t)
+ ))))
+
+ (dir-locals-set-directory-class
+ (expand-file-name "~/src/linux-trees")
+ 'linux-kernel)
+
+This will make emacs go better with the kernel coding style for C
+files below ``~/src/linux-trees``.
+
+But even if you fail in getting emacs to do sane formatting, not
+everything is lost: use ``indent``.
+
+Now, again, GNU indent has the same brain-dead settings that GNU emacs
+has, which is why you need to give it a few command line options.
+However, that's not too bad, because even the makers of GNU indent
+recognize the authority of K&R (the GNU people aren't evil, they are
+just severely misguided in this matter), so you just give indent the
+options ``-kr -i8`` (stands for ``K&R, 8 character indents``), or use
+``scripts/Lindent``, which indents in the latest style.
+
+``indent`` has a lot of options, and especially when it comes to comment
+re-formatting you may want to take a look at the man page. But
+remember: ``indent`` is not a fix for bad programming.
+
+Note that you can also use the ``clang-format`` tool to help you with
+these rules, to quickly re-format parts of your code automatically,
+and to review full files in order to spot coding style mistakes,
+typos and possible improvements. It is also handy for sorting ``#includes``,
+for aligning variables/macros, for reflowing text and other similar tasks.
+See the file :ref:`Documentation/process/clang-format.rst <clangformat>`
+for more details.
+
+
+10) Kconfig configuration files
+-------------------------------
+
+For all of the Kconfig* configuration files throughout the source tree,
+the indentation is somewhat different. Lines under a ``config`` definition
+are indented with one tab, while help text is indented an additional two
+spaces. Example::
+
+ config AUDIT
+ bool "Auditing support"
+ depends on NET
+ help
+ Enable auditing infrastructure that can be used with another
+ kernel subsystem, such as SELinux (which requires this for
+ logging of avc messages output). Does not do system-call
+ auditing without CONFIG_AUDITSYSCALL.
+
+Seriously dangerous features (such as write support for certain
+filesystems) should advertise this prominently in their prompt string::
+
+ config ADFS_FS_RW
+ bool "ADFS write support (DANGEROUS)"
+ depends on ADFS_FS
+ ...
+
+For full documentation on the configuration files, see the file
+Documentation/kbuild/kconfig-language.rst.
+
+
+11) Data structures
+-------------------
+
+Data structures that have visibility outside the single-threaded
+environment they are created and destroyed in should always have
+reference counts. In the kernel, garbage collection doesn't exist (and
+outside the kernel garbage collection is slow and inefficient), which
+means that you absolutely **have** to reference count all your uses.
+
+Reference counting means that you can avoid locking, and allows multiple
+users to have access to the data structure in parallel - and not having
+to worry about the structure suddenly going away from under them just
+because they slept or did something else for a while.
+
+Note that locking is **not** a replacement for reference counting.
+Locking is used to keep data structures coherent, while reference
+counting is a memory management technique. Usually both are needed, and
+they are not to be confused with each other.
+
+Many data structures can indeed have two levels of reference counting,
+when there are users of different ``classes``. The subclass count counts
+the number of subclass users, and decrements the global count just once
+when the subclass count goes to zero.
+
+Examples of this kind of ``multi-level-reference-counting`` can be found in
+memory management (``struct mm_struct``: mm_users and mm_count), and in
+filesystem code (``struct super_block``: s_count and s_active).
+
+Remember: if another thread can find your data structure, and you don't
+have a reference count on it, you almost certainly have a bug.
+
+
+12) Macros, Enums and RTL
+-------------------------
+
+Names of macros defining constants and labels in enums are capitalized.
+
+.. code-block:: c
+
+ #define CONSTANT 0x12345
+
+Enums are preferred when defining several related constants.
+
+CAPITALIZED macro names are appreciated but macros resembling functions
+may be named in lower case.
+
+Generally, inline functions are preferable to macros resembling functions.
+
+Macros with multiple statements should be enclosed in a do - while block:
+
+.. code-block:: c
+
+ #define macrofun(a, b, c) \
+ do { \
+ if (a == 5) \
+ do_this(b, c); \
+ } while (0)
+
+Things to avoid when using macros:
+
+1) macros that affect control flow:
+
+.. code-block:: c
+
+ #define FOO(x) \
+ do { \
+ if (blah(x) < 0) \
+ return -EBUGGERED; \
+ } while (0)
+
+is a **very** bad idea. It looks like a function call but exits the ``calling``
+function; don't break the internal parsers of those who will read the code.
+
+2) macros that depend on having a local variable with a magic name:
+
+.. code-block:: c
+
+ #define FOO(val) bar(index, val)
+
+might look like a good thing, but it's confusing as hell when one reads the
+code and it's prone to breakage from seemingly innocent changes.
+
+3) macros with arguments that are used as l-values: FOO(x) = y; will
+bite you if somebody e.g. turns FOO into an inline function.
+
+4) forgetting about precedence: macros defining constants using expressions
+must enclose the expression in parentheses. Beware of similar issues with
+macros using parameters.
+
+.. code-block:: c
+
+ #define CONSTANT 0x4000
+ #define CONSTEXP (CONSTANT | 3)
+
+5) namespace collisions when defining local variables in macros resembling
+functions:
+
+.. code-block:: c
+
+ #define FOO(x) \
+ ({ \
+ typeof(x) ret; \
+ ret = calc_ret(x); \
+ (ret); \
+ })
+
+ret is a common name for a local variable - __foo_ret is less likely
+to collide with an existing variable.
+
+The cpp manual deals with macros exhaustively. The gcc internals manual also
+covers RTL which is used frequently with assembly language in the kernel.
+
+
+13) Printing kernel messages
+----------------------------
+
+Kernel developers like to be seen as literate. Do mind the spelling
+of kernel messages to make a good impression. Do not use incorrect
+contractions like ``dont``; use ``do not`` or ``don't`` instead. Make the
+messages concise, clear, and unambiguous.
+
+Kernel messages do not have to be terminated with a period.
+
+Printing numbers in parentheses (%d) adds no value and should be avoided.
+
+There are a number of driver model diagnostic macros in <linux/device.h>
+which you should use to make sure messages are matched to the right device
+and driver, and are tagged with the right level: dev_err(), dev_warn(),
+dev_info(), and so forth. For messages that aren't associated with a
+particular device, <linux/printk.h> defines pr_notice(), pr_info(),
+pr_warn(), pr_err(), etc.
+
+Coming up with good debugging messages can be quite a challenge; and once
+you have them, they can be a huge help for remote troubleshooting. However
+debug message printing is handled differently than printing other non-debug
+messages. While the other pr_XXX() functions print unconditionally,
+pr_debug() does not; it is compiled out by default, unless either DEBUG is
+defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also,
+and a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to
+the ones already enabled by DEBUG.
+
+Many subsystems have Kconfig debug options to turn on -DDEBUG in the
+corresponding Makefile; in other cases specific files #define DEBUG. And
+when a debug message should be unconditionally printed, such as if it is
+already inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be
+used.
+
+
+14) Allocating memory
+---------------------
+
+The kernel provides the following general purpose memory allocators:
+kmalloc(), kzalloc(), kmalloc_array(), kcalloc(), vmalloc(), and
+vzalloc(). Please refer to the API documentation for further information
+about them. :ref:`Documentation/core-api/memory-allocation.rst
+<memory_allocation>`
+
+The preferred form for passing a size of a struct is the following:
+
+.. code-block:: c
+
+ p = kmalloc(sizeof(*p), ...);
+
+The alternative form where struct name is spelled out hurts readability and
+introduces an opportunity for a bug when the pointer variable type is changed
+but the corresponding sizeof that is passed to a memory allocator is not.
+
+Casting the return value which is a void pointer is redundant. The conversion
+from void pointer to any other pointer type is guaranteed by the C programming
+language.
+
+The preferred form for allocating an array is the following:
+
+.. code-block:: c
+
+ p = kmalloc_array(n, sizeof(...), ...);
+
+The preferred form for allocating a zeroed array is the following:
+
+.. code-block:: c
+
+ p = kcalloc(n, sizeof(...), ...);
+
+Both forms check for overflow on the allocation size n * sizeof(...),
+and return NULL if that occurred.
+
+These generic allocation functions all emit a stack dump on failure when used
+without __GFP_NOWARN so there is no use in emitting an additional failure
+message when NULL is returned.
+
+15) The inline disease
+----------------------
+
+There appears to be a common misperception that gcc has a magic "make me
+faster" speedup option called ``inline``. While the use of inlines can be
+appropriate (for example as a means of replacing macros, see Chapter 12), it
+very often is not. Abundant use of the inline keyword leads to a much bigger
+kernel, which in turn slows the system as a whole down, due to a bigger
+icache footprint for the CPU and simply because there is less memory
+available for the pagecache. Just think about it; a pagecache miss causes a
+disk seek, which easily takes 5 milliseconds. There are a LOT of cpu cycles
+that can go into these 5 milliseconds.
+
+A reasonable rule of thumb is to not put inline at functions that have more
+than 3 lines of code in them. An exception to this rule are the cases where
+a parameter is known to be a compiletime constant, and as a result of this
+constantness you *know* the compiler will be able to optimize most of your
+function away at compile time. For a good example of this later case, see
+the kmalloc() inline function.
+
+Often people argue that adding inline to functions that are static and used
+only once is always a win since there is no space tradeoff. While this is
+technically correct, gcc is capable of inlining these automatically without
+help, and the maintenance issue of removing the inline when a second user
+appears outweighs the potential value of the hint that tells gcc to do
+something it would have done anyway.
+
+
+16) Function return values and names
+------------------------------------
+
+Functions can return values of many different kinds, and one of the
+most common is a value indicating whether the function succeeded or
+failed. Such a value can be represented as an error-code integer
+(-Exxx = failure, 0 = success) or a ``succeeded`` boolean (0 = failure,
+non-zero = success).
+
+Mixing up these two sorts of representations is a fertile source of
+difficult-to-find bugs. If the C language included a strong distinction
+between integers and booleans then the compiler would find these mistakes
+for us... but it doesn't. To help prevent such bugs, always follow this
+convention::
+
+ If the name of a function is an action or an imperative command,
+ the function should return an error-code integer. If the name
+ is a predicate, the function should return a "succeeded" boolean.
+
+For example, ``add work`` is a command, and the add_work() function returns 0
+for success or -EBUSY for failure. In the same way, ``PCI device present`` is
+a predicate, and the pci_dev_present() function returns 1 if it succeeds in
+finding a matching device or 0 if it doesn't.
+
+All EXPORTed functions must respect this convention, and so should all
+public functions. Private (static) functions need not, but it is
+recommended that they do.
+
+Functions whose return value is the actual result of a computation, rather
+than an indication of whether the computation succeeded, are not subject to
+this rule. Generally they indicate failure by returning some out-of-range
+result. Typical examples would be functions that return pointers; they use
+NULL or the ERR_PTR mechanism to report failure.
+
+
+17) Using bool
+--------------
+
+The Linux kernel bool type is an alias for the C99 _Bool type. bool values can
+only evaluate to 0 or 1, and implicit or explicit conversion to bool
+automatically converts the value to true or false. When using bool types the
+!! construction is not needed, which eliminates a class of bugs.
+
+When working with bool values the true and false definitions should be used
+instead of 1 and 0.
+
+bool function return types and stack variables are always fine to use whenever
+appropriate. Use of bool is encouraged to improve readability and is often a
+better option than 'int' for storing boolean values.
+
+Do not use bool if cache line layout or size of the value matters, as its size
+and alignment varies based on the compiled architecture. Structures that are
+optimized for alignment and size should not use bool.
+
+If a structure has many true/false values, consider consolidating them into a
+bitfield with 1 bit members, or using an appropriate fixed width type, such as
+u8.
+
+Similarly for function arguments, many true/false values can be consolidated
+into a single bitwise 'flags' argument and 'flags' can often be a more
+readable alternative if the call-sites have naked true/false constants.
+
+Otherwise limited use of bool in structures and arguments can improve
+readability.
+
+18) Don't re-invent the kernel macros
+-------------------------------------
+
+The header file include/linux/kernel.h contains a number of macros that
+you should use, rather than explicitly coding some variant of them yourself.
+For example, if you need to calculate the length of an array, take advantage
+of the macro
+
+.. code-block:: c
+
+ #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+Similarly, if you need to calculate the size of some structure member, use
+
+.. code-block:: c
+
+ #define sizeof_field(t, f) (sizeof(((t*)0)->f))
+
+There are also min() and max() macros that do strict type checking if you
+need them. Feel free to peruse that header file to see what else is already
+defined that you shouldn't reproduce in your code.
+
+
+19) Editor modelines and other cruft
+------------------------------------
+
+Some editors can interpret configuration information embedded in source files,
+indicated with special markers. For example, emacs interprets lines marked
+like this:
+
+.. code-block:: c
+
+ -*- mode: c -*-
+
+Or like this:
+
+.. code-block:: c
+
+ /*
+ Local Variables:
+ compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
+ End:
+ */
+
+Vim interprets markers that look like this:
+
+.. code-block:: c
+
+ /* vim:set sw=8 noet */
+
+Do not include any of these in source files. People have their own personal
+editor configurations, and your source files should not override them. This
+includes markers for indentation and mode configuration. People may use their
+own custom mode, or may have some other magic method for making indentation
+work correctly.
+
+
+20) Inline assembly
+-------------------
+
+In architecture-specific code, you may need to use inline assembly to interface
+with CPU or platform functionality. Don't hesitate to do so when necessary.
+However, don't use inline assembly gratuitously when C can do the job. You can
+and should poke hardware from C when possible.
+
+Consider writing simple helper functions that wrap common bits of inline
+assembly, rather than repeatedly writing them with slight variations. Remember
+that inline assembly can use C parameters.
+
+Large, non-trivial assembly functions should go in .S files, with corresponding
+C prototypes defined in C header files. The C prototypes for assembly
+functions should use ``asmlinkage``.
+
+You may need to mark your asm statement as volatile, to prevent GCC from
+removing it if GCC doesn't notice any side effects. You don't always need to
+do so, though, and doing so unnecessarily can limit optimization.
+
+When writing a single inline assembly statement containing multiple
+instructions, put each instruction on a separate line in a separate quoted
+string, and end each string except the last with ``\n\t`` to properly indent
+the next instruction in the assembly output:
+
+.. code-block:: c
+
+ asm ("magic %reg1, #42\n\t"
+ "more_magic %reg2, %reg3"
+ : /* outputs */ : /* inputs */ : /* clobbers */);
+
+
+21) Conditional Compilation
+---------------------------
+
+Wherever possible, don't use preprocessor conditionals (#if, #ifdef) in .c
+files; doing so makes code harder to read and logic harder to follow. Instead,
+use such conditionals in a header file defining functions for use in those .c
+files, providing no-op stub versions in the #else case, and then call those
+functions unconditionally from .c files. The compiler will avoid generating
+any code for the stub calls, producing identical results, but the logic will
+remain easy to follow.
+
+Prefer to compile out entire functions, rather than portions of functions or
+portions of expressions. Rather than putting an ifdef in an expression, factor
+out part or all of the expression into a separate helper function and apply the
+conditional to that function.
+
+If you have a function or variable which may potentially go unused in a
+particular configuration, and the compiler would warn about its definition
+going unused, mark the definition as __maybe_unused rather than wrapping it in
+a preprocessor conditional. (However, if a function or variable *always* goes
+unused, delete it.)
+
+Within code, where possible, use the IS_ENABLED macro to convert a Kconfig
+symbol into a C boolean expression, and use it in a normal C conditional:
+
+.. code-block:: c
+
+ if (IS_ENABLED(CONFIG_SOMETHING)) {
+ ...
+ }
+
+The compiler will constant-fold the conditional away, and include or exclude
+the block of code just as with an #ifdef, so this will not add any runtime
+overhead. However, this approach still allows the C compiler to see the code
+inside the block, and check it for correctness (syntax, types, symbol
+references, etc). Thus, you still have to use an #ifdef if the code inside the
+block references symbols that will not exist if the condition is not met.
+
+At the end of any non-trivial #if or #ifdef block (more than a few lines),
+place a comment after the #endif on the same line, noting the conditional
+expression used. For instance:
+
+.. code-block:: c
+
+ #ifdef CONFIG_SOMETHING
+ ...
+ #endif /* CONFIG_SOMETHING */
+
+
+Appendix I) References
+----------------------
+
+The C Programming Language, Second Edition
+by Brian W. Kernighan and Dennis M. Ritchie.
+Prentice Hall, Inc., 1988.
+ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).
+
+The Practice of Programming
+by Brian W. Kernighan and Rob Pike.
+Addison-Wesley, Inc., 1999.
+ISBN 0-201-61586-X.
+
+GNU manuals - where in compliance with K&R and this text - for cpp, gcc,
+gcc internals and indent, all available from https://www.gnu.org/manual/
+
+WG14 is the international standardization working group for the programming
+language C, URL: http://www.open-std.org/JTC1/SC22/WG14/
+
+Kernel :ref:`process/coding-style.rst <codingstyle>`, by greg@kroah.com at OLS 2002:
+http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/