diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/translations/ko_KR/memory-barriers.txt | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | Documentation/translations/ko_KR/memory-barriers.txt | 2931 |
1 files changed, 2931 insertions, 0 deletions
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt new file mode 100644 index 000000000..64d932f5d --- /dev/null +++ b/Documentation/translations/ko_KR/memory-barriers.txt @@ -0,0 +1,2931 @@ +NOTE: +This is a version of Documentation/memory-barriers.txt translated into Korean. +This document is maintained by SeongJae Park <sj38.park@gmail.com>. +If you find any difference between this document and the original file or +a problem with the translation, please contact the maintainer of this file. + +Please also note that the purpose of this file is to be easier to +read for non English (read: Korean) speakers and is not intended as +a fork. So if you have any comments or updates for this file please +update the original English file first. The English version is +definitive, and readers should look there if they have any doubt. + +=================================== +이 문서는 +Documentation/memory-barriers.txt +의 한글 번역입니다. + +역자: 박성재 <sj38.park@gmail.com> +=================================== + + + ========================= + 리눅스 커널 메모리 배리어 + ========================= + +저자: David Howells <dhowells@redhat.com> + Paul E. McKenney <paulmck@linux.ibm.com> + Will Deacon <will.deacon@arm.com> + Peter Zijlstra <peterz@infradead.org> + +======== +면책조항 +======== + +이 문서는 명세서가 아닙니다; 이 문서는 완벽하지 않은데, 간결성을 위해 의도된 +부분도 있고, 의도하진 않았지만 사람에 의해 쓰였다보니 불완전한 부분도 있습니다. +이 문서는 리눅스에서 제공하는 다양한 메모리 배리어들을 사용하기 위한 +안내서입니다만, 뭔가 이상하다 싶으면 (그런게 많을 겁니다) 질문을 부탁드립니다. +일부 이상한 점들은 공식적인 메모리 일관성 모델과 tools/memory-model/ 에 있는 +관련 문서를 참고해서 해결될 수 있을 겁니다. 그러나, 이 메모리 모델조차도 그 +관리자들의 의견의 집합으로 봐야지, 절대 옳은 예언자로 신봉해선 안될 겁니다. + +다시 말하지만, 이 문서는 리눅스가 하드웨어에 기대하는 사항에 대한 명세서가 +아닙니다. + +이 문서의 목적은 두가지입니다: + + (1) 어떤 특정 배리어에 대해 기대할 수 있는 최소한의 기능을 명세하기 위해서, + 그리고 + + (2) 사용 가능한 배리어들에 대해 어떻게 사용해야 하는지에 대한 안내를 제공하기 + 위해서. + +어떤 아키텍쳐는 특정한 배리어들에 대해서는 여기서 이야기하는 최소한의 +요구사항들보다 많은 기능을 제공할 수도 있습니다만, 여기서 이야기하는 +요구사항들을 충족하지 않는 아키텍쳐가 있다면 그 아키텍쳐가 잘못된 것이란 점을 +알아두시기 바랍니다. + +또한, 특정 아키텍쳐에서 일부 배리어는 해당 아키텍쳐의 특수한 동작 방식으로 인해 +해당 배리어의 명시적 사용이 불필요해서 no-op 이 될수도 있음을 알아두시기 +바랍니다. + +역자: 본 번역 역시 완벽하지 않은데, 이 역시 부분적으로는 의도된 것이기도 +합니다. 여타 기술 문서들이 그렇듯 완벽한 이해를 위해서는 번역문과 원문을 함께 +읽으시되 번역문을 하나의 가이드로 활용하시길 추천드리며, 발견되는 오역 등에 +대해서는 언제든 의견을 부탁드립니다. 과한 번역으로 인한 오해를 최소화하기 위해 +애매한 부분이 있을 경우에는 어색함이 있더라도 원래의 용어를 차용합니다. + + +===== +목차: +===== + + (*) 추상 메모리 액세스 모델. + + - 디바이스 오퍼레이션. + - 보장사항. + + (*) 메모리 배리어란 무엇인가? + + - 메모리 배리어의 종류. + - 메모리 배리어에 대해 가정해선 안될 것. + - 데이터 의존성 배리어 (역사적). + - 컨트롤 의존성. + - SMP 배리어 짝맞추기. + - 메모리 배리어 시퀀스의 예. + - 읽기 메모리 배리어 vs 로드 예측. + - Multicopy 원자성. + + (*) 명시적 커널 배리어. + + - 컴파일러 배리어. + - CPU 메모리 배리어. + + (*) 암묵적 커널 메모리 배리어. + + - 락 Acquisition 함수. + - 인터럽트 비활성화 함수. + - 슬립과 웨이크업 함수. + - 그외의 함수들. + + (*) CPU 간 ACQUIRING 배리어의 효과. + + - Acquire vs 메모리 액세스. + + (*) 메모리 배리어가 필요한 곳 + + - 프로세서간 상호 작용. + - 어토믹 오퍼레이션. + - 디바이스 액세스. + - 인터럽트. + + (*) 커널 I/O 배리어의 효과. + + (*) 가정되는 가장 완화된 실행 순서 모델. + + (*) CPU 캐시의 영향. + + - 캐시 일관성. + - 캐시 일관성 vs DMA. + - 캐시 일관성 vs MMIO. + + (*) CPU 들이 저지르는 일들. + + - 그리고, Alpha 가 있다. + - 가상 머신 게스트. + + (*) 사용 예. + + - 순환식 버퍼. + + (*) 참고 문헌. + + +======================= +추상 메모리 액세스 모델 +======================= + +다음과 같이 추상화된 시스템 모델을 생각해 봅시다: + + : : + : : + : : + +-------+ : +--------+ : +-------+ + | | : | | : | | + | | : | | : | | + | CPU 1 |<----->| Memory |<----->| CPU 2 | + | | : | | : | | + | | : | | : | | + +-------+ : +--------+ : +-------+ + ^ : ^ : ^ + | : | : | + | : | : | + | : v : | + | : +--------+ : | + | : | | : | + | : | | : | + +---------->| Device |<----------+ + : | | : + : | | : + : +--------+ : + : : + +프로그램은 여러 메모리 액세스 오퍼레이션을 발생시키고, 각각의 CPU 는 그런 +프로그램들을 실행합니다. 추상화된 CPU 모델에서 메모리 오퍼레이션들의 순서는 +매우 완화되어 있고, CPU 는 프로그램이 인과관계를 어기지 않는 상태로 관리된다고 +보일 수만 있다면 메모리 오퍼레이션을 자신이 원하는 어떤 순서대로든 재배치해 +동작시킬 수 있습니다. 비슷하게, 컴파일러 또한 프로그램의 정상적 동작을 해치지 +않는 한도 내에서는 어떤 순서로든 자신이 원하는 대로 인스트럭션을 재배치 할 수 +있습니다. + +따라서 위의 다이어그램에서 한 CPU가 동작시키는 메모리 오퍼레이션이 만들어내는 +변화는 해당 오퍼레이션이 CPU 와 시스템의 다른 부분들 사이의 인터페이스(점선)를 +지나가면서 시스템의 나머지 부분들에 인지됩니다. + + +예를 들어, 다음의 일련의 이벤트들을 생각해 봅시다: + + CPU 1 CPU 2 + =============== =============== + { A == 1; B == 2 } + A = 3; x = B; + B = 4; y = A; + +다이어그램의 가운데에 위치한 메모리 시스템에 보여지게 되는 액세스들은 다음의 총 +24개의 조합으로 재구성될 수 있습니다: + + STORE A=3, STORE B=4, y=LOAD A->3, x=LOAD B->4 + STORE A=3, STORE B=4, x=LOAD B->4, y=LOAD A->3 + STORE A=3, y=LOAD A->3, STORE B=4, x=LOAD B->4 + STORE A=3, y=LOAD A->3, x=LOAD B->2, STORE B=4 + STORE A=3, x=LOAD B->2, STORE B=4, y=LOAD A->3 + STORE A=3, x=LOAD B->2, y=LOAD A->3, STORE B=4 + STORE B=4, STORE A=3, y=LOAD A->3, x=LOAD B->4 + STORE B=4, ... + ... + +따라서 다음의 네가지 조합의 값들이 나올 수 있습니다: + + x == 2, y == 1 + x == 2, y == 3 + x == 4, y == 1 + x == 4, y == 3 + + +한발 더 나아가서, 한 CPU 가 메모리 시스템에 반영한 스토어 오퍼레이션들의 결과는 +다른 CPU 에서의 로드 오퍼레이션을 통해 인지되는데, 이 때 스토어가 반영된 순서와 +다른 순서로 인지될 수도 있습니다. + + +예로, 아래의 일련의 이벤트들을 생각해 봅시다: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C == 3, P == &A, Q == &C } + B = 4; Q = P; + P = &B D = *Q; + +D 로 읽혀지는 값은 CPU 2 에서 P 로부터 읽혀진 주소값에 의존적이기 때문에 여기엔 +분명한 데이터 의존성이 있습니다. 하지만 이 이벤트들의 실행 결과로는 아래의 +결과들이 모두 나타날 수 있습니다: + + (Q == &A) and (D == 1) + (Q == &B) and (D == 2) + (Q == &B) and (D == 4) + +CPU 2 는 *Q 의 로드를 요청하기 전에 P 를 Q 에 넣기 때문에 D 에 C 를 집어넣는 +일은 없음을 알아두세요. + + +디바이스 오퍼레이션 +------------------- + +일부 디바이스는 자신의 컨트롤 인터페이스를 메모리의 특정 영역으로 매핑해서 +제공하는데(Memory mapped I/O), 해당 컨트롤 레지스터에 접근하는 순서는 매우 +중요합니다. 예를 들어, 어드레스 포트 레지스터 (A) 와 데이터 포트 레지스터 (D) +를 통해 접근되는 내부 레지스터 집합을 갖는 이더넷 카드를 생각해 봅시다. 내부의 +5번 레지스터를 읽기 위해 다음의 코드가 사용될 수 있습니다: + + *A = 5; + x = *D; + +하지만, 이건 다음의 두 조합 중 하나로 만들어질 수 있습니다: + + STORE *A = 5, x = LOAD *D + x = LOAD *D, STORE *A = 5 + +두번째 조합은 데이터를 읽어온 _후에_ 주소를 설정하므로, 오동작을 일으킬 겁니다. + + +보장사항 +-------- + +CPU 에게 기대할 수 있는 최소한의 보장사항 몇가지가 있습니다: + + (*) 어떤 CPU 든, 의존성이 존재하는 메모리 액세스들은 해당 CPU 자신에게 + 있어서는 순서대로 메모리 시스템에 수행 요청됩니다. 즉, 다음에 대해서: + + Q = READ_ONCE(P); D = READ_ONCE(*Q); + + CPU 는 다음과 같은 메모리 오퍼레이션 시퀀스를 수행 요청합니다: + + Q = LOAD P, D = LOAD *Q + + 그리고 그 시퀀스 내에서의 순서는 항상 지켜집니다. 하지만, DEC Alpha 에서 + READ_ONCE() 는 메모리 배리어 명령도 내게 되어 있어서, DEC Alpha CPU 는 + 다음과 같은 메모리 오퍼레이션들을 내놓게 됩니다: + + Q = LOAD P, MEMORY_BARRIER, D = LOAD *Q, MEMORY_BARRIER + + DEC Alpha 에서 수행되든 아니든, READ_ONCE() 는 컴파일러로부터의 악영향 + 또한 제거합니다. + + (*) 특정 CPU 내에서 겹치는 영역의 메모리에 행해지는 로드와 스토어 들은 해당 + CPU 안에서는 순서가 바뀌지 않은 것으로 보여집니다. 즉, 다음에 대해서: + + a = READ_ONCE(*X); WRITE_ONCE(*X, b); + + CPU 는 다음의 메모리 오퍼레이션 시퀀스만을 메모리에 요청할 겁니다: + + a = LOAD *X, STORE *X = b + + 그리고 다음에 대해서는: + + WRITE_ONCE(*X, c); d = READ_ONCE(*X); + + CPU 는 다음의 수행 요청만을 만들어 냅니다: + + STORE *X = c, d = LOAD *X + + (로드 오퍼레이션과 스토어 오퍼레이션이 겹치는 메모리 영역에 대해 + 수행된다면 해당 오퍼레이션들은 겹친다고 표현됩니다). + +그리고 _반드시_ 또는 _절대로_ 가정하거나 가정하지 말아야 하는 것들이 있습니다: + + (*) 컴파일러가 READ_ONCE() 나 WRITE_ONCE() 로 보호되지 않은 메모리 액세스를 + 당신이 원하는 대로 할 것이라는 가정은 _절대로_ 해선 안됩니다. 그것들이 + 없다면, 컴파일러는 컴파일러 배리어 섹션에서 다루게 될, 모든 "창의적인" + 변경들을 만들어낼 권한을 갖게 됩니다. + + (*) 개별적인 로드와 스토어들이 주어진 순서대로 요청될 것이라는 가정은 _절대로_ + 하지 말아야 합니다. 이 말은 곧: + + X = *A; Y = *B; *D = Z; + + 는 다음의 것들 중 어느 것으로든 만들어질 수 있다는 의미입니다: + + X = LOAD *A, Y = LOAD *B, STORE *D = Z + X = LOAD *A, STORE *D = Z, Y = LOAD *B + Y = LOAD *B, X = LOAD *A, STORE *D = Z + Y = LOAD *B, STORE *D = Z, X = LOAD *A + STORE *D = Z, X = LOAD *A, Y = LOAD *B + STORE *D = Z, Y = LOAD *B, X = LOAD *A + + (*) 겹치는 메모리 액세스들은 합쳐지거나 버려질 수 있음을 _반드시_ 가정해야 + 합니다. 다음의 코드는: + + X = *A; Y = *(A + 4); + + 다음의 것들 중 뭐든 될 수 있습니다: + + X = LOAD *A; Y = LOAD *(A + 4); + Y = LOAD *(A + 4); X = LOAD *A; + {X, Y} = LOAD {*A, *(A + 4) }; + + 그리고: + + *A = X; *(A + 4) = Y; + + 는 다음 중 뭐든 될 수 있습니다: + + STORE *A = X; STORE *(A + 4) = Y; + STORE *(A + 4) = Y; STORE *A = X; + STORE {*A, *(A + 4) } = {X, Y}; + +그리고 보장사항에 반대되는 것들(anti-guarantees)이 있습니다: + + (*) 이 보장사항들은 bitfield 에는 적용되지 않는데, 컴파일러들은 bitfield 를 + 수정하는 코드를 생성할 때 원자성 없는(non-atomic) 읽고-수정하고-쓰는 + 인스트럭션들의 조합을 만드는 경우가 많기 때문입니다. 병렬 알고리즘의 + 동기화에 bitfield 를 사용하려 하지 마십시오. + + (*) bitfield 들이 여러 락으로 보호되는 경우라 하더라도, 하나의 bitfield 의 + 모든 필드들은 하나의 락으로 보호되어야 합니다. 만약 한 bitfield 의 두 + 필드가 서로 다른 락으로 보호된다면, 컴파일러의 원자성 없는 + 읽고-수정하고-쓰는 인스트럭션 조합은 한 필드에의 업데이트가 근처의 + 필드에도 영향을 끼치게 할 수 있습니다. + + (*) 이 보장사항들은 적절하게 정렬되고 크기가 잡힌 스칼라 변수들에 대해서만 + 적용됩니다. "적절하게 크기가 잡힌" 이라함은 현재로써는 "char", "short", + "int" 그리고 "long" 과 같은 크기의 변수들을 의미합니다. "적절하게 정렬된" + 은 자연스런 정렬을 의미하는데, 따라서 "char" 에 대해서는 아무 제약이 없고, + "short" 에 대해서는 2바이트 정렬을, "int" 에는 4바이트 정렬을, 그리고 + "long" 에 대해서는 32-bit 시스템인지 64-bit 시스템인지에 따라 4바이트 또는 + 8바이트 정렬을 의미합니다. 이 보장사항들은 C11 표준에서 소개되었으므로, + C11 전의 오래된 컴파일러(예를 들어, gcc 4.6) 를 사용할 때엔 주의하시기 + 바랍니다. 표준에 이 보장사항들은 "memory location" 을 정의하는 3.14 + 섹션에 다음과 같이 설명되어 있습니다: + (역자: 인용문이므로 번역하지 않습니다) + + memory location + either an object of scalar type, or a maximal sequence + of adjacent bit-fields all having nonzero width + + NOTE 1: Two threads of execution can update and access + separate memory locations without interfering with + each other. + + NOTE 2: A bit-field and an adjacent non-bit-field member + are in separate memory locations. The same applies + to two bit-fields, if one is declared inside a nested + structure declaration and the other is not, or if the two + are separated by a zero-length bit-field declaration, + or if they are separated by a non-bit-field member + declaration. It is not safe to concurrently update two + bit-fields in the same structure if all members declared + between them are also bit-fields, no matter what the + sizes of those intervening bit-fields happen to be. + + +========================= +메모리 배리어란 무엇인가? +========================= + +앞에서 봤듯이, 상호간 의존성이 없는 메모리 오퍼레이션들은 실제로는 무작위적 +순서로 수행될 수 있으며, 이는 CPU 와 CPU 간의 상호작용이나 I/O 에 문제가 될 수 +있습니다. 따라서 컴파일러와 CPU 가 순서를 바꾸는데 제약을 걸 수 있도록 개입할 +수 있는 어떤 방법이 필요합니다. + +메모리 배리어는 그런 개입 수단입니다. 메모리 배리어는 배리어를 사이에 둔 앞과 +뒤 양측의 메모리 오퍼레이션들 간에 부분적 순서가 존재하도록 하는 효과를 줍니다. + +시스템의 CPU 들과 여러 디바이스들은 성능을 올리기 위해 명령어 재배치, 실행 +유예, 메모리 오퍼레이션들의 조합, 예측적 로드(speculative load), 브랜치 +예측(speculative branch prediction), 다양한 종류의 캐싱(caching) 등의 다양한 +트릭을 사용할 수 있기 때문에 이런 강제력은 중요합니다. 메모리 배리어들은 이런 +트릭들을 무효로 하거나 억제하는 목적으로 사용되어져서 코드가 여러 CPU 와 +디바이스들 간의 상호작용을 정상적으로 제어할 수 있게 해줍니다. + + +메모리 배리어의 종류 +-------------------- + +메모리 배리어는 네개의 기본 타입으로 분류됩니다: + + (1) 쓰기 (또는 스토어) 메모리 배리어. + + 쓰기 메모리 배리어는 시스템의 다른 컴포넌트들에 해당 배리어보다 앞서 + 명시된 모든 STORE 오퍼레이션들이 해당 배리어 뒤에 명시된 모든 STORE + 오퍼레이션들보다 먼저 수행된 것으로 보일 것을 보장합니다. + + 쓰기 배리어는 스토어 오퍼레이션들에 대한 부분적 순서 세우기입니다; 로드 + 오퍼레이션들에 대해서는 어떤 영향도 끼치지 않습니다. + + CPU 는 시간의 흐름에 따라 메모리 시스템에 일련의 스토어 오퍼레이션들을 + 하나씩 요청해 집어넣습니다. 쓰기 배리어 앞의 모든 스토어 오퍼레이션들은 + 쓰기 배리어 뒤의 모든 스토어 오퍼레이션들보다 _앞서_ 수행될 겁니다. + + [!] 쓰기 배리어들은 읽기 또는 데이터 의존성 배리어와 함께 짝을 맞춰 + 사용되어야만 함을 알아두세요; "SMP 배리어 짝맞추기" 서브섹션을 참고하세요. + + + (2) 데이터 의존성 배리어. + + 데이터 의존성 배리어는 읽기 배리어의 보다 완화된 형태입니다. 두개의 로드 + 오퍼레이션이 있고 두번째 것이 첫번째 것의 결과에 의존하고 있을 때(예: + 두번째 로드가 참조할 주소를 첫번째 로드가 읽는 경우), 두번째 로드가 읽어올 + 데이터는 첫번째 로드에 의해 그 주소가 얻어진 뒤에 업데이트 됨을 보장하기 + 위해서 데이터 의존성 배리어가 필요할 수 있습니다. + + 데이터 의존성 배리어는 상호 의존적인 로드 오퍼레이션들 사이의 부분적 순서 + 세우기입니다; 스토어 오퍼레이션들이나 독립적인 로드들, 또는 중복되는 + 로드들에 대해서는 어떤 영향도 끼치지 않습니다. + + (1) 에서 언급했듯이, 시스템의 CPU 들은 메모리 시스템에 일련의 스토어 + 오퍼레이션들을 던져 넣고 있으며, 거기에 관심이 있는 다른 CPU 는 그 + 오퍼레이션들을 메모리 시스템이 실행한 결과를 인지할 수 있습니다. 이처럼 + 다른 CPU 의 스토어 오퍼레이션의 결과에 관심을 두고 있는 CPU 가 수행 요청한 + 데이터 의존성 배리어는, 배리어 앞의 어떤 로드 오퍼레이션이 다른 CPU 에서 + 던져 넣은 스토어 오퍼레이션과 같은 영역을 향했다면, 그런 스토어 + 오퍼레이션들이 만들어내는 결과가 데이터 의존성 배리어 뒤의 로드 + 오퍼레이션들에게는 보일 것을 보장합니다. + + 이 순서 세우기 제약에 대한 그림을 보기 위해선 "메모리 배리어 시퀀스의 예" + 서브섹션을 참고하시기 바랍니다. + + [!] 첫번째 로드는 반드시 _데이터_ 의존성을 가져야지 컨트롤 의존성을 가져야 + 하는게 아님을 알아두십시오. 만약 두번째 로드를 위한 주소가 첫번째 로드에 + 의존적이지만 그 의존성은 조건적이지 그 주소 자체를 가져오는게 아니라면, + 그것은 _컨트롤_ 의존성이고, 이 경우에는 읽기 배리어나 그보다 강력한 + 무언가가 필요합니다. 더 자세한 내용을 위해서는 "컨트롤 의존성" 서브섹션을 + 참고하시기 바랍니다. + + [!] 데이터 의존성 배리어는 보통 쓰기 배리어들과 함께 짝을 맞춰 사용되어야 + 합니다; "SMP 배리어 짝맞추기" 서브섹션을 참고하세요. + + + (3) 읽기 (또는 로드) 메모리 배리어. + + 읽기 배리어는 데이터 의존성 배리어 기능의 보장사항에 더해서 배리어보다 + 앞서 명시된 모든 LOAD 오퍼레이션들이 배리어 뒤에 명시되는 모든 LOAD + 오퍼레이션들보다 먼저 행해진 것으로 시스템의 다른 컴포넌트들에 보여질 것을 + 보장합니다. + + 읽기 배리어는 로드 오퍼레이션에 행해지는 부분적 순서 세우기입니다; 스토어 + 오퍼레이션에 대해서는 어떤 영향도 끼치지 않습니다. + + 읽기 메모리 배리어는 데이터 의존성 배리어를 내장하므로 데이터 의존성 + 배리어를 대신할 수 있습니다. + + [!] 읽기 배리어는 일반적으로 쓰기 배리어들과 함께 짝을 맞춰 사용되어야 + 합니다; "SMP 배리어 짝맞추기" 서브섹션을 참고하세요. + + + (4) 범용 메모리 배리어. + + 범용(general) 메모리 배리어는 배리어보다 앞서 명시된 모든 LOAD 와 STORE + 오퍼레이션들이 배리어 뒤에 명시된 모든 LOAD 와 STORE 오퍼레이션들보다 + 먼저 수행된 것으로 시스템의 나머지 컴포넌트들에 보이게 됨을 보장합니다. + + 범용 메모리 배리어는 로드와 스토어 모두에 대한 부분적 순서 세우기입니다. + + 범용 메모리 배리어는 읽기 메모리 배리어, 쓰기 메모리 배리어 모두를 + 내장하므로, 두 배리어를 모두 대신할 수 있습니다. + + +그리고 두개의 명시적이지 않은 타입이 있습니다: + + (5) ACQUIRE 오퍼레이션. + + 이 타입의 오퍼레이션은 단방향의 투과성 배리어처럼 동작합니다. ACQUIRE + 오퍼레이션 뒤의 모든 메모리 오퍼레이션들이 ACQUIRE 오퍼레이션 후에 + 일어난 것으로 시스템의 나머지 컴포넌트들에 보이게 될 것이 보장됩니다. + LOCK 오퍼레이션과 smp_load_acquire(), smp_cond_load_acquire() 오퍼레이션도 + ACQUIRE 오퍼레이션에 포함됩니다. + + ACQUIRE 오퍼레이션 앞의 메모리 오퍼레이션들은 ACQUIRE 오퍼레이션 완료 후에 + 수행된 것처럼 보일 수 있습니다. + + ACQUIRE 오퍼레이션은 거의 항상 RELEASE 오퍼레이션과 짝을 지어 사용되어야 + 합니다. + + + (6) RELEASE 오퍼레이션. + + 이 타입의 오퍼레이션들도 단방향 투과성 배리어처럼 동작합니다. RELEASE + 오퍼레이션 앞의 모든 메모리 오퍼레이션들은 RELEASE 오퍼레이션 전에 완료된 + 것으로 시스템의 다른 컴포넌트들에 보여질 것이 보장됩니다. UNLOCK 류의 + 오퍼레이션들과 smp_store_release() 오퍼레이션도 RELEASE 오퍼레이션의 + 일종입니다. + + RELEASE 오퍼레이션 뒤의 메모리 오퍼레이션들은 RELEASE 오퍼레이션이 + 완료되기 전에 행해진 것처럼 보일 수 있습니다. + + ACQUIRE 와 RELEASE 오퍼레이션의 사용은 일반적으로 다른 메모리 배리어의 + 필요성을 없앱니다. 또한, RELEASE+ACQUIRE 조합은 범용 메모리 배리어처럼 + 동작할 것을 보장하지 -않습니다-. 하지만, 어떤 변수에 대한 RELEASE + 오퍼레이션을 앞서는 메모리 액세스들의 수행 결과는 이 RELEASE 오퍼레이션을 + 뒤이어 같은 변수에 대해 수행된 ACQUIRE 오퍼레이션을 뒤따르는 메모리 + 액세스에는 보여질 것이 보장됩니다. 다르게 말하자면, 주어진 변수의 + 크리티컬 섹션에서는, 해당 변수에 대한 앞의 크리티컬 섹션에서의 모든 + 액세스들이 완료되었을 것을 보장합니다. + + 즉, ACQUIRE 는 최소한의 "취득" 동작처럼, 그리고 RELEASE 는 최소한의 "공개" + 처럼 동작한다는 의미입니다. + +atomic_t.txt 에 설명된 어토믹 오퍼레이션들 중 일부는 완전히 순서잡힌 것들과 +(배리어를 사용하지 않는) 완화된 순서의 것들 외에 ACQUIRE 와 RELEASE 부류의 +것들도 존재합니다. 로드와 스토어를 모두 수행하는 조합된 어토믹 오퍼레이션에서, +ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE 는 해당 +오퍼레이션의 스토어 부분에만 적용됩니다. + +메모리 배리어들은 두 CPU 간, 또는 CPU 와 디바이스 간에 상호작용의 가능성이 있을 +때에만 필요합니다. 만약 어떤 코드에 그런 상호작용이 없을 것이 보장된다면, 해당 +코드에서는 메모리 배리어를 사용할 필요가 없습니다. + + +이것들은 _최소한의_ 보장사항들임을 알아두세요. 다른 아키텍쳐에서는 더 강력한 +보장사항을 제공할 수도 있습니다만, 그런 보장사항은 아키텍쳐 종속적 코드 이외의 +부분에서는 신뢰되지 _않을_ 겁니다. + + +메모리 배리어에 대해 가정해선 안될 것 +------------------------------------- + +리눅스 커널 메모리 배리어들이 보장하지 않는 것들이 있습니다: + + (*) 메모리 배리어 앞에서 명시된 어떤 메모리 액세스도 메모리 배리어 명령의 수행 + 완료 시점까지 _완료_ 될 것이란 보장은 없습니다; 배리어가 하는 일은 CPU 의 + 액세스 큐에 특정 타입의 액세스들은 넘을 수 없는 선을 긋는 것으로 생각될 수 + 있습니다. + + (*) 한 CPU 에서 메모리 배리어를 수행하는게 시스템의 다른 CPU 나 하드웨어에 + 어떤 직접적인 영향을 끼친다는 보장은 존재하지 않습니다. 배리어 수행이 + 만드는 간접적 영향은 두번째 CPU 가 첫번째 CPU 의 액세스들의 결과를 + 바라보는 순서가 됩니다만, 다음 항목을 보세요: + + (*) 첫번째 CPU 가 두번째 CPU 의 메모리 액세스들의 결과를 바라볼 때, _설령_ + 두번째 CPU 가 메모리 배리어를 사용한다 해도, 첫번째 CPU _또한_ 그에 맞는 + 메모리 배리어를 사용하지 않는다면 ("SMP 배리어 짝맞추기" 서브섹션을 + 참고하세요) 그 결과가 올바른 순서로 보여진다는 보장은 없습니다. + + (*) CPU 바깥의 하드웨어[*] 가 메모리 액세스들의 순서를 바꾸지 않는다는 보장은 + 존재하지 않습니다. CPU 캐시 일관성 메커니즘은 메모리 배리어의 간접적 + 영향을 CPU 사이에 전파하긴 하지만, 순서대로 전파하지는 않을 수 있습니다. + + [*] 버스 마스터링 DMA 와 일관성에 대해서는 다음을 참고하시기 바랍니다: + + Documentation/driver-api/pci/pci.rst + Documentation/core-api/dma-api-howto.rst + Documentation/core-api/dma-api.rst + + +데이터 의존성 배리어 (역사적) +----------------------------- + +리눅스 커널 v4.15 기준으로, smp_mb() 가 DEC Alpha 용 READ_ONCE() 코드에 +추가되었는데, 이는 이 섹션에 주의를 기울여야 하는 사람들은 DEC Alpha 아키텍쳐 +전용 코드를 만드는 사람들과 READ_ONCE() 자체를 만드는 사람들 뿐임을 의미합니다. +그런 분들을 위해, 그리고 역사에 관심 있는 분들을 위해, 여기 데이터 의존성 +배리어에 대한 이야기를 적습니다. + +데이터 의존성 배리어의 사용에 있어 지켜야 하는 사항들은 약간 미묘하고, 데이터 +의존성 배리어가 사용되어야 하는 상황도 항상 명백하지는 않습니다. 설명을 위해 +다음의 이벤트 시퀀스를 생각해 봅시다: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C == 3, P == &A, Q == &C } + B = 4; + <쓰기 배리어> + WRITE_ONCE(P, &B) + Q = READ_ONCE(P); + D = *Q; + +여기엔 분명한 데이터 의존성이 존재하므로, 이 시퀀스가 끝났을 때 Q 는 &A 또는 &B +일 것이고, 따라서: + + (Q == &A) 는 (D == 1) 를, + (Q == &B) 는 (D == 4) 를 의미합니다. + +하지만! CPU 2 는 B 의 업데이트를 인식하기 전에 P 의 업데이트를 인식할 수 있고, +따라서 다음의 결과가 가능합니다: + + (Q == &B) and (D == 2) ???? + +이런 결과는 일관성이나 인과 관계 유지가 실패한 것처럼 보일 수도 있겠지만, +그렇지 않습니다, 그리고 이 현상은 (DEC Alpha 와 같은) 여러 CPU 에서 실제로 +발견될 수 있습니다. + +이 문제 상황을 제대로 해결하기 위해, 데이터 의존성 배리어나 그보다 강화된 +무언가가 주소를 읽어올 때와 데이터를 읽어올 때 사이에 추가되어야만 합니다: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C == 3, P == &A, Q == &C } + B = 4; + <쓰기 배리어> + WRITE_ONCE(P, &B); + Q = READ_ONCE(P); + <데이터 의존성 배리어> + D = *Q; + +이 변경은 앞의 처음 두가지 결과 중 하나만이 발생할 수 있고, 세번째의 결과는 +발생할 수 없도록 합니다. + + +[!] 이 상당히 반직관적인 상황은 분리된 캐시를 가지는 기계들에서 가장 잘 +발생하는데, 예를 들면 한 캐시 뱅크는 짝수 번호의 캐시 라인들을 처리하고, 다른 +뱅크는 홀수 번호의 캐시 라인들을 처리하는 경우임을 알아두시기 바랍니다. 포인터 +P 는 짝수 번호 캐시 라인에 저장되어 있고, 변수 B 는 홀수 번호 캐시 라인에 +저장되어 있을 수 있습니다. 여기서 값을 읽어오는 CPU 의 캐시의 홀수 번호 처리 +뱅크는 열심히 일감을 처리중인 반면 홀수 번호 처리 뱅크는 할 일 없이 한가한 +중이라면 포인터 P (&B) 의 새로운 값과 변수 B 의 기존 값 (2) 를 볼 수 있습니다. + + +의존적 쓰기들의 순서를 맞추는데에는 데이터 의존성 배리어가 필요치 않은데, 이는 +리눅스 커널이 지원하는 CPU 들은 (1) 쓰기가 정말로 일어날지, (2) 쓰기가 어디에 +이루어질지, 그리고 (3) 쓰여질 값을 확실히 알기 전까지는 쓰기를 수행하지 않기 +때문입니다. 하지만 "컨트롤 의존성" 섹션과 +Documentation/RCU/rcu_dereference.rst 파일을 주의 깊게 읽어 주시기 바랍니다: +컴파일러는 매우 창의적인 많은 방법으로 종속성을 깰 수 있습니다. + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C = 3, P == &A, Q == &C } + B = 4; + <쓰기 배리어> + WRITE_ONCE(P, &B); + Q = READ_ONCE(P); + WRITE_ONCE(*Q, 5); + +따라서, Q 로의 읽기와 *Q 로의 쓰기 사이에는 데이터 종속성 배리어가 필요치 +않습니다. 달리 말하면, 데이터 종속성 배리어가 없더라도 다음 결과는 생기지 +않습니다: + + (Q == &B) && (B == 4) + +이런 패턴은 드물게 사용되어야 함을 알아 두시기 바랍니다. 무엇보다도, 의존성 +순서 규칙의 의도는 쓰기 작업을 -예방- 해서 그로 인해 발생하는 비싼 캐시 미스도 +없애려는 것입니다. 이 패턴은 드물게 발생하는 에러 조건 같은것들을 기록하는데 +사용될 수 있으며, CPU의 자연적인 순서 보장이 그런 기록들을 사라지지 않게 +해줍니다. + + +데이터 의존성에 의해 제공되는 이 순서규칙은 이를 포함하고 있는 CPU 에 +지역적임을 알아두시기 바랍니다. 더 많은 정보를 위해선 "Multicopy 원자성" +섹션을 참고하세요. + + +데이터 의존성 배리어는 매우 중요한데, 예를 들어 RCU 시스템에서 그렇습니다. +include/linux/rcupdate.h 의 rcu_assign_pointer() 와 rcu_dereference() 를 +참고하세요. 여기서 데이터 의존성 배리어는 RCU 로 관리되는 포인터의 타겟을 현재 +타겟에서 수정된 새로운 타겟으로 바꾸는 작업에서 새로 수정된 타겟이 초기화가 +완료되지 않은 채로 보여지는 일이 일어나지 않게 해줍니다. + +더 많은 예를 위해선 "캐시 일관성" 서브섹션을 참고하세요. + + +컨트롤 의존성 +------------- + +현재의 컴파일러들은 컨트롤 의존성을 이해하고 있지 않기 때문에 컨트롤 의존성은 +약간 다루기 어려울 수 있습니다. 이 섹션의 목적은 여러분이 컴파일러의 무시로 +인해 여러분의 코드가 망가지는 걸 막을 수 있도록 돕는겁니다. + +로드-로드 컨트롤 의존성은 데이터 의존성 배리어만으로는 정확히 동작할 수가 +없어서 읽기 메모리 배리어를 필요로 합니다. 아래의 코드를 봅시다: + + q = READ_ONCE(a); + if (q) { + <데이터 의존성 배리어> /* BUG: No data dependency!!! */ + p = READ_ONCE(b); + } + +이 코드는 원하는 대로의 효과를 내지 못할 수 있는데, 이 코드에는 데이터 의존성이 +아니라 컨트롤 의존성이 존재하기 때문으로, 이런 상황에서 CPU 는 실행 속도를 더 +빠르게 하기 위해 분기 조건의 결과를 예측하고 코드를 재배치 할 수 있어서 다른 +CPU 는 b 로부터의 로드 오퍼레이션이 a 로부터의 로드 오퍼레이션보다 먼저 발생한 +걸로 인식할 수 있습니다. 여기에 정말로 필요했던 건 다음과 같습니다: + + q = READ_ONCE(a); + if (q) { + <읽기 배리어> + p = READ_ONCE(b); + } + +하지만, 스토어 오퍼레이션은 예측적으로 수행되지 않습니다. 즉, 다음 예에서와 +같이 로드-스토어 컨트롤 의존성이 존재하는 경우에는 순서가 -지켜진다-는 +의미입니다. + + q = READ_ONCE(a); + if (q) { + WRITE_ONCE(b, 1); + } + +컨트롤 의존성은 보통 다른 타입의 배리어들과 짝을 맞춰 사용됩니다. 그렇다곤 +하나, READ_ONCE() 도 WRITE_ONCE() 도 선택사항이 아니라 필수사항임을 부디 +명심하세요! READ_ONCE() 가 없다면, 컴파일러는 'a' 로부터의 로드를 'a' 로부터의 +또다른 로드와 조합할 수 있습니다. WRITE_ONCE() 가 없다면, 컴파일러는 'b' 로의 +스토어를 'b' 로의 또라느 스토어들과 조합할 수 있습니다. 두 경우 모두 순서에 +있어 상당히 비직관적인 결과를 초래할 수 있습니다. + +이걸로 끝이 아닌게, 컴파일러가 변수 'a' 의 값이 항상 0이 아니라고 증명할 수 +있다면, 앞의 예에서 "if" 문을 없애서 다음과 같이 최적화 할 수도 있습니다: + + q = a; + b = 1; /* BUG: Compiler and CPU can both reorder!!! */ + +그러니 READ_ONCE() 를 반드시 사용하세요. + +다음과 같이 "if" 문의 양갈래 브랜치에 모두 존재하는 동일한 스토어에 대해 순서를 +강제하고 싶은 경우가 있을 수 있습니다: + + q = READ_ONCE(a); + if (q) { + barrier(); + WRITE_ONCE(b, 1); + do_something(); + } else { + barrier(); + WRITE_ONCE(b, 1); + do_something_else(); + } + +안타깝게도, 현재의 컴파일러들은 높은 최적화 레벨에서는 이걸 다음과 같이 +바꿔버립니다: + + q = READ_ONCE(a); + barrier(); + WRITE_ONCE(b, 1); /* BUG: No ordering vs. load from a!!! */ + if (q) { + /* WRITE_ONCE(b, 1); -- moved up, BUG!!! */ + do_something(); + } else { + /* WRITE_ONCE(b, 1); -- moved up, BUG!!! */ + do_something_else(); + } + +이제 'a' 에서의 로드와 'b' 로의 스토어 사이에는 조건적 관계가 없기 때문에 CPU +는 이들의 순서를 바꿀 수 있게 됩니다: 이런 경우에 조건적 관계는 반드시 +필요한데, 모든 컴파일러 최적화가 이루어지고 난 후의 어셈블리 코드에서도 +마찬가지입니다. 따라서, 이 예에서 순서를 지키기 위해서는 smp_store_release() +와 같은 명시적 메모리 배리어가 필요합니다: + + q = READ_ONCE(a); + if (q) { + smp_store_release(&b, 1); + do_something(); + } else { + smp_store_release(&b, 1); + do_something_else(); + } + +반면에 명시적 메모리 배리어가 없다면, 이런 경우의 순서는 스토어 오퍼레이션들이 +서로 다를 때에만 보장되는데, 예를 들면 다음과 같은 경우입니다: + + q = READ_ONCE(a); + if (q) { + WRITE_ONCE(b, 1); + do_something(); + } else { + WRITE_ONCE(b, 2); + do_something_else(); + } + +처음의 READ_ONCE() 는 컴파일러가 'a' 의 값을 증명해내는 것을 막기 위해 여전히 +필요합니다. + +또한, 로컬 변수 'q' 를 가지고 하는 일에 대해 주의해야 하는데, 그러지 않으면 +컴파일러는 그 값을 추측하고 또다시 필요한 조건관계를 없애버릴 수 있습니다. +예를 들면: + + q = READ_ONCE(a); + if (q % MAX) { + WRITE_ONCE(b, 1); + do_something(); + } else { + WRITE_ONCE(b, 2); + do_something_else(); + } + +만약 MAX 가 1 로 정의된 상수라면, 컴파일러는 (q % MAX) 는 0이란 것을 알아채고, +위의 코드를 아래와 같이 바꿔버릴 수 있습니다: + + q = READ_ONCE(a); + WRITE_ONCE(b, 2); + do_something_else(); + +이렇게 되면, CPU 는 변수 'a' 로부터의 로드와 변수 'b' 로의 스토어 사이의 순서를 +지켜줄 필요가 없어집니다. barrier() 를 추가해 해결해 보고 싶겠지만, 그건 +도움이 안됩니다. 조건 관계는 사라졌고, barrier() 는 이를 되돌리지 못합니다. +따라서, 이 순서를 지켜야 한다면, MAX 가 1 보다 크다는 것을, 다음과 같은 방법을 +사용해 분명히 해야 합니다: + + q = READ_ONCE(a); + BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */ + if (q % MAX) { + WRITE_ONCE(b, 1); + do_something(); + } else { + WRITE_ONCE(b, 2); + do_something_else(); + } + +'b' 로의 스토어들은 여전히 서로 다름을 알아두세요. 만약 그것들이 동일하면, +앞에서 이야기했듯, 컴파일러가 그 스토어 오퍼레이션들을 'if' 문 바깥으로 +끄집어낼 수 있습니다. + +또한 이진 조건문 평가에 너무 의존하지 않도록 조심해야 합니다. 다음의 예를 +봅시다: + + q = READ_ONCE(a); + if (q || 1 > 0) + WRITE_ONCE(b, 1); + +첫번째 조건만으로는 브랜치 조건 전체를 거짓으로 만들 수 없고 두번째 조건은 항상 +참이기 때문에, 컴파일러는 이 예를 다음과 같이 바꿔서 컨트롤 의존성을 없애버릴 +수 있습니다: + + q = READ_ONCE(a); + WRITE_ONCE(b, 1); + +이 예는 컴파일러가 코드를 추측으로 수정할 수 없도록 분명히 해야 한다는 점을 +강조합니다. 조금 더 일반적으로 말해서, READ_ONCE() 는 컴파일러에게 주어진 로드 +오퍼레이션을 위한 코드를 정말로 만들도록 하지만, 컴파일러가 그렇게 만들어진 +코드의 수행 결과를 사용하도록 강제하지는 않습니다. + +또한, 컨트롤 의존성은 if 문의 then 절과 else 절에 대해서만 적용됩니다. 상세히 +말해서, 컨트롤 의존성은 if 문을 뒤따르는 코드에는 적용되지 않습니다: + + q = READ_ONCE(a); + if (q) { + WRITE_ONCE(b, 1); + } else { + WRITE_ONCE(b, 2); + } + WRITE_ONCE(c, 1); /* BUG: No ordering against the read from 'a'. */ + +컴파일러는 volatile 타입에 대한 액세스를 재배치 할 수 없고 이 조건 하의 'b' +로의 쓰기를 재배치 할 수 없기 때문에 여기에 순서 규칙이 존재한다고 주장하고 +싶을 겁니다. 불행히도 이 경우에, 컴파일러는 다음의 가상의 pseudo-assembly 언어 +코드처럼 'b' 로의 두개의 쓰기 오퍼레이션을 conditional-move 인스트럭션으로 +번역할 수 있습니다: + + ld r1,a + cmp r1,$0 + cmov,ne r4,$1 + cmov,eq r4,$2 + st r4,b + st $1,c + +완화된 순서 규칙의 CPU 는 'a' 로부터의 로드와 'c' 로의 스토어 사이에 어떤 +종류의 의존성도 갖지 않을 겁니다. 이 컨트롤 의존성은 두개의 cmov 인스트럭션과 +거기에 의존하는 스토어 에게만 적용될 겁니다. 짧게 말하자면, 컨트롤 의존성은 +주어진 if 문의 then 절과 else 절에게만 (그리고 이 두 절 내에서 호출되는 +함수들에게까지) 적용되지, 이 if 문을 뒤따르는 코드에는 적용되지 않습니다. + + +컨트롤 의존성에 의해 제공되는 이 순서규칙은 이를 포함하고 있는 CPU 에 +지역적입니다. 더 많은 정보를 위해선 "Multicopy 원자성" 섹션을 참고하세요. + + +요약하자면: + + (*) 컨트롤 의존성은 앞의 로드들을 뒤의 스토어들에 대해 순서를 맞춰줍니다. + 하지만, 그 외의 어떤 순서도 보장하지 -않습니다-: 앞의 로드와 뒤의 로드들 + 사이에도, 앞의 스토어와 뒤의 스토어들 사이에도요. 이런 다른 형태의 + 순서가 필요하다면 smp_rmb() 나 smp_wmb()를, 또는, 앞의 스토어들과 뒤의 + 로드들 사이의 순서를 위해서는 smp_mb() 를 사용하세요. + + (*) "if" 문의 양갈래 브랜치가 같은 변수에의 동일한 스토어로 시작한다면, 그 + 스토어들은 각 스토어 앞에 smp_mb() 를 넣거나 smp_store_release() 를 + 사용해서 스토어를 하는 식으로 순서를 맞춰줘야 합니다. 이 문제를 해결하기 + 위해 "if" 문의 양갈래 브랜치의 시작 지점에 barrier() 를 넣는 것만으로는 + 충분한 해결이 되지 않는데, 이는 앞의 예에서 본것과 같이, 컴파일러의 + 최적화는 barrier() 가 의미하는 바를 지키면서도 컨트롤 의존성을 손상시킬 + 수 있기 때문이라는 점을 부디 알아두시기 바랍니다. + + (*) 컨트롤 의존성은 앞의 로드와 뒤의 스토어 사이에 최소 하나의, 실행 + 시점에서의 조건관계를 필요로 하며, 이 조건관계는 앞의 로드와 관계되어야 + 합니다. 만약 컴파일러가 조건 관계를 최적화로 없앨수 있다면, 순서도 + 최적화로 없애버렸을 겁니다. READ_ONCE() 와 WRITE_ONCE() 의 주의 깊은 + 사용은 주어진 조건 관계를 유지하는데 도움이 될 수 있습니다. + + (*) 컨트롤 의존성을 위해선 컴파일러가 조건관계를 없애버리는 것을 막아야 + 합니다. 주의 깊은 READ_ONCE() 나 atomic{,64}_read() 의 사용이 컨트롤 + 의존성이 사라지지 않게 하는데 도움을 줄 수 있습니다. 더 많은 정보를 + 위해선 "컴파일러 배리어" 섹션을 참고하시기 바랍니다. + + (*) 컨트롤 의존성은 컨트롤 의존성을 갖는 if 문의 then 절과 else 절과 이 두 절 + 내에서 호출되는 함수들에만 적용됩니다. 컨트롤 의존성은 컨트롤 의존성을 + 갖는 if 문을 뒤따르는 코드에는 적용되지 -않습니다-. + + (*) 컨트롤 의존성은 보통 다른 타입의 배리어들과 짝을 맞춰 사용됩니다. + + (*) 컨트롤 의존성은 multicopy 원자성을 제공하지 -않습니다-. 모든 CPU 들이 + 특정 스토어를 동시에 보길 원한다면, smp_mb() 를 사용하세요. + + (*) 컴파일러는 컨트롤 의존성을 이해하고 있지 않습니다. 따라서 컴파일러가 + 여러분의 코드를 망가뜨리지 않도록 하는건 여러분이 해야 하는 일입니다. + + +SMP 배리어 짝맞추기 +-------------------- + +CPU 간 상호작용을 다룰 때에 일부 타입의 메모리 배리어는 항상 짝을 맞춰 +사용되어야 합니다. 적절하게 짝을 맞추지 않은 코드는 사실상 에러에 가깝습니다. + +범용 배리어들은 범용 배리어끼리도 짝을 맞추지만 multicopy 원자성이 없는 +대부분의 다른 타입의 배리어들과도 짝을 맞춥니다. ACQUIRE 배리어는 RELEASE +배리어와 짝을 맞춥니다만, 둘 다 범용 배리어를 포함해 다른 배리어들과도 짝을 +맞출 수 있습니다. 쓰기 배리어는 데이터 의존성 배리어나 컨트롤 의존성, ACQUIRE +배리어, RELEASE 배리어, 읽기 배리어, 또는 범용 배리어와 짝을 맞춥니다. +비슷하게 읽기 배리어나 컨트롤 의존성, 또는 데이터 의존성 배리어는 쓰기 배리어나 +ACQUIRE 배리어, RELEASE 배리어, 또는 범용 배리어와 짝을 맞추는데, 다음과 +같습니다: + + CPU 1 CPU 2 + =============== =============== + WRITE_ONCE(a, 1); + <쓰기 배리어> + WRITE_ONCE(b, 2); x = READ_ONCE(b); + <읽기 배리어> + y = READ_ONCE(a); + +또는: + + CPU 1 CPU 2 + =============== =============================== + a = 1; + <쓰기 배리어> + WRITE_ONCE(b, &a); x = READ_ONCE(b); + <데이터 의존성 배리어> + y = *x; + +또는: + + CPU 1 CPU 2 + =============== =============================== + r1 = READ_ONCE(y); + <범용 배리어> + WRITE_ONCE(x, 1); if (r2 = READ_ONCE(x)) { + <묵시적 컨트롤 의존성> + WRITE_ONCE(y, 1); + } + + assert(r1 == 0 || r2 == 0); + +기본적으로, 여기서의 읽기 배리어는 "더 완화된" 타입일 순 있어도 항상 존재해야 +합니다. + +[!] 쓰기 배리어 앞의 스토어 오퍼레이션은 일반적으로 읽기 배리어나 데이터 +의존성 배리어 뒤의 로드 오퍼레이션과 매치될 것이고, 반대도 마찬가지입니다: + + CPU 1 CPU 2 + =================== =================== + WRITE_ONCE(a, 1); }---- --->{ v = READ_ONCE(c); + WRITE_ONCE(b, 2); } \ / { w = READ_ONCE(d); + <쓰기 배리어> \ <읽기 배리어> + WRITE_ONCE(c, 3); } / \ { x = READ_ONCE(a); + WRITE_ONCE(d, 4); }---- --->{ y = READ_ONCE(b); + + +메모리 배리어 시퀀스의 예 +------------------------- + +첫째, 쓰기 배리어는 스토어 오퍼레이션들의 부분적 순서 세우기로 동작합니다. +아래의 이벤트 시퀀스를 보세요: + + CPU 1 + ======================= + STORE A = 1 + STORE B = 2 + STORE C = 3 + <쓰기 배리어> + STORE D = 4 + STORE E = 5 + +이 이벤트 시퀀스는 메모리 일관성 시스템에 원소끼리의 순서가 존재하지 않는 집합 +{ STORE A, STORE B, STORE C } 가 역시 원소끼리의 순서가 존재하지 않는 집합 +{ STORE D, STORE E } 보다 먼저 일어난 것으로 시스템의 나머지 요소들에 보이도록 +전달됩니다: + + +-------+ : : + | | +------+ + | |------>| C=3 | } /\ + | | : +------+ }----- \ -----> 시스템의 나머지 요소에 + | | : | A=1 | } \/ 보여질 수 있는 이벤트들 + | | : +------+ } + | CPU 1 | : | B=2 | } + | | +------+ } + | | wwwwwwwwwwwwwwww } <--- 여기서 쓰기 배리어는 배리어 앞의 + | | +------+ } 모든 스토어가 배리어 뒤의 스토어 + | | : | E=5 | } 전에 메모리 시스템에 전달되도록 + | | : +------+ } 합니다 + | |------>| D=4 | } + | | +------+ + +-------+ : : + | + | CPU 1 에 의해 메모리 시스템에 전달되는 + | 일련의 스토어 오퍼레이션들 + V + + +둘째, 데이터 의존성 배리어는 데이터 의존적 로드 오퍼레이션들의 부분적 순서 +세우기로 동작합니다. 다음 일련의 이벤트들을 보세요: + + CPU 1 CPU 2 + ======================= ======================= + { B = 7; X = 9; Y = 8; C = &Y } + STORE A = 1 + STORE B = 2 + <쓰기 배리어> + STORE C = &B LOAD X + STORE D = 4 LOAD C (gets &B) + LOAD *C (reads B) + +여기에 별다른 개입이 없다면, CPU 1 의 쓰기 배리어에도 불구하고 CPU 2 는 CPU 1 +의 이벤트들을 완전히 무작위적 순서로 인지하게 됩니다: + + +-------+ : : : : + | | +------+ +-------+ | CPU 2 에 인지되는 + | |------>| B=2 |----- --->| Y->8 | | 업데이트 이벤트 + | | : +------+ \ +-------+ | 시퀀스 + | CPU 1 | : | A=1 | \ --->| C->&Y | V + | | +------+ | +-------+ + | | wwwwwwwwwwwwwwww | : : + | | +------+ | : : + | | : | C=&B |--- | : : +-------+ + | | : +------+ \ | +-------+ | | + | |------>| D=4 | ----------->| C->&B |------>| | + | | +------+ | +-------+ | | + +-------+ : : | : : | | + | : : | | + | : : | CPU 2 | + | +-------+ | | + 분명히 잘못된 ---> | | B->7 |------>| | + B 의 값 인지 (!) | +-------+ | | + | : : | | + | +-------+ | | + X 의 로드가 B 의 ---> \ | X->9 |------>| | + 일관성 유지를 \ +-------+ | | + 지연시킴 ----->| B->2 | +-------+ + +-------+ + : : + + +앞의 예에서, CPU 2 는 (B 의 값이 될) *C 의 값 읽기가 C 의 LOAD 뒤에 이어짐에도 +B 가 7 이라는 결과를 얻습니다. + +하지만, 만약 데이터 의존성 배리어가 C 의 로드와 *C (즉, B) 의 로드 사이에 +있었다면: + + CPU 1 CPU 2 + ======================= ======================= + { B = 7; X = 9; Y = 8; C = &Y } + STORE A = 1 + STORE B = 2 + <쓰기 배리어> + STORE C = &B LOAD X + STORE D = 4 LOAD C (gets &B) + <데이터 의존성 배리어> + LOAD *C (reads B) + +다음과 같이 됩니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| B=2 |----- --->| Y->8 | + | | : +------+ \ +-------+ + | CPU 1 | : | A=1 | \ --->| C->&Y | + | | +------+ | +-------+ + | | wwwwwwwwwwwwwwww | : : + | | +------+ | : : + | | : | C=&B |--- | : : +-------+ + | | : +------+ \ | +-------+ | | + | |------>| D=4 | ----------->| C->&B |------>| | + | | +------+ | +-------+ | | + +-------+ : : | : : | | + | : : | | + | : : | CPU 2 | + | +-------+ | | + | | X->9 |------>| | + | +-------+ | | + C 로의 스토어 앞의 ---> \ ddddddddddddddddd | | + 모든 이벤트 결과가 \ +-------+ | | + 뒤의 로드에게 ----->| B->2 |------>| | + 보이게 강제한다 +-------+ | | + : : +-------+ + + +셋째, 읽기 배리어는 로드 오퍼레이션들에의 부분적 순서 세우기로 동작합니다. +아래의 일련의 이벤트를 봅시다: + + CPU 1 CPU 2 + ======================= ======================= + { A = 0, B = 9 } + STORE A=1 + <쓰기 배리어> + STORE B=2 + LOAD B + LOAD A + +CPU 1 은 쓰기 배리어를 쳤지만, 별다른 개입이 없다면 CPU 2 는 CPU 1 에서 행해진 +이벤트의 결과를 무작위적 순서로 인지하게 됩니다. + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | | A->0 |------>| | + | +-------+ | | + | : : +-------+ + \ : : + \ +-------+ + ---->| A->1 | + +-------+ + : : + + +하지만, 만약 읽기 배리어가 B 의 로드와 A 의 로드 사이에 존재한다면: + + CPU 1 CPU 2 + ======================= ======================= + { A = 0, B = 9 } + STORE A=1 + <쓰기 배리어> + STORE B=2 + LOAD B + <읽기 배리어> + LOAD A + +CPU 1 에 의해 만들어진 부분적 순서가 CPU 2 에도 그대로 인지됩니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | : : | | + | : : | | + 여기서 읽기 배리어는 ----> \ rrrrrrrrrrrrrrrrr | | + B 로의 스토어 전의 \ +-------+ | | + 모든 결과를 CPU 2 에 ---->| A->1 |------>| | + 보이도록 한다 +-------+ | | + : : +-------+ + + +더 완벽한 설명을 위해, A 의 로드가 읽기 배리어 앞과 뒤에 있으면 어떻게 될지 +생각해 봅시다: + + CPU 1 CPU 2 + ======================= ======================= + { A = 0, B = 9 } + STORE A=1 + <쓰기 배리어> + STORE B=2 + LOAD B + LOAD A [first load of A] + <읽기 배리어> + LOAD A [second load of A] + +A 의 로드 두개가 모두 B 의 로드 뒤에 있지만, 서로 다른 값을 얻어올 수 +있습니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | : : | | + | : : | | + | +-------+ | | + | | A->0 |------>| 1st | + | +-------+ | | + 여기서 읽기 배리어는 ----> \ rrrrrrrrrrrrrrrrr | | + B 로의 스토어 전의 \ +-------+ | | + 모든 결과를 CPU 2 에 ---->| A->1 |------>| 2nd | + 보이도록 한다 +-------+ | | + : : +-------+ + + +하지만 CPU 1 에서의 A 업데이트는 읽기 배리어가 완료되기 전에도 보일 수도 +있긴 합니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | : : | | + \ : : | | + \ +-------+ | | + ---->| A->1 |------>| 1st | + +-------+ | | + rrrrrrrrrrrrrrrrr | | + +-------+ | | + | A->1 |------>| 2nd | + +-------+ | | + : : +-------+ + + +여기서 보장되는 건, 만약 B 의 로드가 B == 2 라는 결과를 봤다면, A 에의 두번째 +로드는 항상 A == 1 을 보게 될 것이라는 겁니다. A 에의 첫번째 로드에는 그런 +보장이 없습니다; A == 0 이거나 A == 1 이거나 둘 중 하나의 결과를 보게 될겁니다. + + +읽기 메모리 배리어 VS 로드 예측 +------------------------------- + +많은 CPU들이 로드를 예측적으로 (speculatively) 합니다: 어떤 데이터를 메모리에서 +로드해야 하게 될지 예측을 했다면, 해당 데이터를 로드하는 인스트럭션을 실제로는 +아직 만나지 않았더라도 다른 로드 작업이 없어 버스 (bus) 가 아무 일도 하고 있지 +않다면, 그 데이터를 로드합니다. 이후에 실제 로드 인스트럭션이 실행되면 CPU 가 +이미 그 값을 가지고 있기 때문에 그 로드 인스트럭션은 즉시 완료됩니다. + +해당 CPU 는 실제로는 그 값이 필요치 않았다는 사실이 나중에 드러날 수도 있는데 - +해당 로드 인스트럭션이 브랜치로 우회되거나 했을 수 있겠죠 - , 그렇게 되면 앞서 +읽어둔 값을 버리거나 나중의 사용을 위해 캐시에 넣어둘 수 있습니다. + +다음을 생각해 봅시다: + + CPU 1 CPU 2 + ======================= ======================= + LOAD B + DIVIDE } 나누기 명령은 일반적으로 + DIVIDE } 긴 시간을 필요로 합니다 + LOAD A + +는 이렇게 될 수 있습니다: + + : : +-------+ + +-------+ | | + --->| B->2 |------>| | + +-------+ | CPU 2 | + : :DIVIDE | | + +-------+ | | + 나누기 하느라 바쁜 ---> --->| A->0 |~~~~ | | + CPU 는 A 의 LOAD 를 +-------+ ~ | | + 예측해서 수행한다 : : ~ | | + : :DIVIDE | | + : : ~ | | + 나누기가 끝나면 ---> ---> : : ~-->| | + CPU 는 해당 LOAD 를 : : | | + 즉각 완료한다 : : +-------+ + + +읽기 배리어나 데이터 의존성 배리어를 두번째 로드 직전에 놓는다면: + + CPU 1 CPU 2 + ======================= ======================= + LOAD B + DIVIDE + DIVIDE + <읽기 배리어> + LOAD A + +예측으로 얻어진 값은 사용된 배리어의 타입에 따라서 해당 값이 옳은지 검토되게 +됩니다. 만약 해당 메모리 영역에 변화가 없었다면, 예측으로 얻어두었던 값이 +사용됩니다: + + : : +-------+ + +-------+ | | + --->| B->2 |------>| | + +-------+ | CPU 2 | + : :DIVIDE | | + +-------+ | | + 나누기 하느라 바쁜 ---> --->| A->0 |~~~~ | | + CPU 는 A 의 LOAD 를 +-------+ ~ | | + 예측한다 : : ~ | | + : :DIVIDE | | + : : ~ | | + : : ~ | | + rrrrrrrrrrrrrrrr~ | | + : : ~ | | + : : ~-->| | + : : | | + : : +-------+ + + +하지만 다른 CPU 에서 업데이트나 무효화가 있었다면, 그 예측은 무효화되고 그 값은 +다시 읽혀집니다: + + : : +-------+ + +-------+ | | + --->| B->2 |------>| | + +-------+ | CPU 2 | + : :DIVIDE | | + +-------+ | | + 나누기 하느라 바쁜 ---> --->| A->0 |~~~~ | | + CPU 는 A 의 LOAD 를 +-------+ ~ | | + 예측한다 : : ~ | | + : :DIVIDE | | + : : ~ | | + : : ~ | | + rrrrrrrrrrrrrrrrr | | + +-------+ | | + 예측성 동작은 무효화 되고 ---> --->| A->1 |------>| | + 업데이트된 값이 다시 읽혀진다 +-------+ | | + : : +-------+ + + +MULTICOPY 원자성 +---------------- + +Multicopy 원자성은 실제의 컴퓨터 시스템에서 항상 제공되지는 않는, 순서 맞추기에 +대한 상당히 직관적인 개념으로, 특정 스토어가 모든 CPU 들에게 동시에 보여지게 +됨을, 달리 말하자면 모든 CPU 들이 모든 스토어들이 보여지는 순서를 동의하게 되는 +것입니다. 하지만, 완전한 multicopy 원자성의 사용은 가치있는 하드웨어 +최적화들을 무능하게 만들어버릴 수 있어서, 보다 완화된 형태의 ``다른 multicopy +원자성'' 라는 이름의, 특정 스토어가 모든 -다른- CPU 들에게는 동시에 보여지게 +하는 보장을 대신 제공합니다. 이 문서의 뒷부분들은 이 완화된 형태에 대해 논하게 +됩니다만, 단순히 ``multicopy 원자성'' 이라고 부르겠습니다. + +다음의 예가 multicopy 원자성을 보입니다: + + CPU 1 CPU 2 CPU 3 + ======================= ======================= ======================= + { X = 0, Y = 0 } + STORE X=1 r1=LOAD X (reads 1) LOAD Y (reads 1) + <범용 배리어> <읽기 배리어> + STORE Y=r1 LOAD X + +CPU 2 의 Y 로의 스토어에 사용되는 X 로드의 결과가 1 이었고 CPU 3 의 Y 로드가 +1을 리턴했다고 해봅시다. 이는 CPU 1 의 X 로의 스토어가 CPU 2 의 X 로부터의 +로드를 앞서고 CPU 2 의 Y 로의 스토어가 CPU 3 의 Y 로부터의 로드를 앞섬을 +의미합니다. 또한, 여기서의 메모리 배리어들은 CPU 2 가 자신의 로드를 자신의 +스토어 전에 수행하고, CPU 3 가 Y 로부터의 로드를 X 로부터의 로드 전에 수행함을 +보장합니다. 그럼 "CPU 3 의 X 로부터의 로드는 0 을 리턴할 수 있을까요?" + +CPU 3 의 X 로드가 CPU 2 의 로드보다 뒤에 이루어졌으므로, CPU 3 의 X 로부터의 +로드는 1 을 리턴한다고 예상하는게 당연합니다. 이런 예상은 multicopy +원자성으로부터 나옵니다: CPU B 에서 수행된 로드가 CPU A 의 같은 변수로부터의 +로드를 뒤따른다면 (그리고 CPU A 가 자신이 읽은 값으로 먼저 해당 변수에 스토어 +하지 않았다면) multicopy 원자성을 제공하는 시스템에서는, CPU B 의 로드가 CPU A +의 로드와 같은 값 또는 그 나중 값을 리턴해야만 합니다. 하지만, 리눅스 커널은 +시스템들이 multicopy 원자성을 제공할 것을 요구하지 않습니다. + +앞의 범용 메모리 배리어의 사용은 모든 multicopy 원자성의 부족을 보상해줍니다. +앞의 예에서, CPU 2 의 X 로부터의 로드가 1 을 리턴했고 CPU 3 의 Y 로부터의 +로드가 1 을 리턴했다면, CPU 3 의 X 로부터의 로드는 1을 리턴해야만 합니다. + +하지만, 의존성, 읽기 배리어, 쓰기 배리어는 항상 non-multicopy 원자성을 보상해 +주지는 않습니다. 예를 들어, CPU 2 의 범용 배리어가 앞의 예에서 사라져서 +아래처럼 데이터 의존성만 남게 되었다고 해봅시다: + + CPU 1 CPU 2 CPU 3 + ======================= ======================= ======================= + { X = 0, Y = 0 } + STORE X=1 r1=LOAD X (reads 1) LOAD Y (reads 1) + <데이터 의존성> <읽기 배리어> + STORE Y=r1 LOAD X (reads 0) + +이 변화는 non-multicopy 원자성이 만연하게 합니다: 이 예에서, CPU 2 의 X +로부터의 로드가 1을 리턴하고, CPU 3 의 Y 로부터의 로드가 1 을 리턴하는데, CPU 3 +의 X 로부터의 로드가 0 을 리턴하는게 완전히 합법적입니다. + +핵심은, CPU 2 의 데이터 의존성이 자신의 로드와 스토어를 순서짓지만, CPU 1 의 +스토어에 대한 순서는 보장하지 않는다는 것입니다. 따라서, 이 예제가 CPU 1 과 +CPU 2 가 스토어 버퍼나 한 수준의 캐시를 공유하는, multicopy 원자성을 제공하지 +않는 시스템에서 수행된다면 CPU 2 는 CPU 1 의 쓰기에 이른 접근을 할 수도 +있습니다. 따라서, 모든 CPU 들이 여러 접근들의 조합된 순서에 대해서 동의하게 +하기 위해서는 범용 배리어가 필요합니다. + +범용 배리어는 non-multicopy 원자성만 보상할 수 있는게 아니라, -모든- CPU 들이 +-모든- 오퍼레이션들의 순서를 동일하게 인식하게 하는 추가적인 순서 보장을 +만들어냅니다. 반대로, release-acquire 짝의 연결은 이런 추가적인 순서는 +제공하지 않는데, 해당 연결에 들어있는 CPU 들만이 메모리 접근의 조합된 순서에 +대해 동의할 것으로 보장됨을 의미합니다. 예를 들어, 존경스런 Herman Hollerith +의 코드를 C 코드로 변환하면: + + int u, v, x, y, z; + + void cpu0(void) + { + r0 = smp_load_acquire(&x); + WRITE_ONCE(u, 1); + smp_store_release(&y, 1); + } + + void cpu1(void) + { + r1 = smp_load_acquire(&y); + r4 = READ_ONCE(v); + r5 = READ_ONCE(u); + smp_store_release(&z, 1); + } + + void cpu2(void) + { + r2 = smp_load_acquire(&z); + smp_store_release(&x, 1); + } + + void cpu3(void) + { + WRITE_ONCE(v, 1); + smp_mb(); + r3 = READ_ONCE(u); + } + +cpu0(), cpu1(), 그리고 cpu2() 는 smp_store_release()/smp_load_acquire() 쌍의 +연결에 참여되어 있으므로, 다음과 같은 결과는 나오지 않을 겁니다: + + r0 == 1 && r1 == 1 && r2 == 1 + +더 나아가서, cpu0() 와 cpu1() 사이의 release-acquire 관계로 인해, cpu1() 은 +cpu0() 의 쓰기를 봐야만 하므로, 다음과 같은 결과도 없을 겁니다: + + r1 == 1 && r5 == 0 + +하지만, release-acquire 에 의해 제공되는 순서는 해당 연결에 동참한 CPU 들에만 +적용되므로 cpu3() 에, 적어도 스토어들 외에는 적용되지 않습니다. 따라서, 다음과 +같은 결과가 가능합니다: + + r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 + +비슷하게, 다음과 같은 결과도 가능합니다: + + r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1 + +cpu0(), cpu1(), 그리고 cpu2() 는 그들의 읽기와 쓰기를 순서대로 보게 되지만, +release-acquire 체인에 관여되지 않은 CPU 들은 그 순서에 이견을 가질 수 +있습니다. 이런 이견은 smp_load_acquire() 와 smp_store_release() 의 구현에 +사용되는 완화된 메모리 배리어 인스트럭션들은 항상 배리어 앞의 스토어들을 뒤의 +로드들에 앞세울 필요는 없다는 사실에서 기인합니다. 이 말은 cpu3() 는 cpu0() 의 +u 로의 스토어를 cpu1() 의 v 로부터의 로드 뒤에 일어난 것으로 볼 수 있다는 +뜻입니다, cpu0() 와 cpu1() 은 이 두 오퍼레이션이 의도된 순서대로 일어났음에 +모두 동의하는데도 말입니다. + +하지만, smp_load_acquire() 는 마술이 아님을 명심하시기 바랍니다. 구체적으로, +이 함수는 단순히 순서 규칙을 지키며 인자로부터의 읽기를 수행합니다. 이것은 +어떤 특정한 값이 읽힐 것인지는 보장하지 -않습니다-. 따라서, 다음과 같은 결과도 +가능합니다: + + r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0 + +이런 결과는 어떤 것도 재배치 되지 않는, 순차적 일관성을 가진 가상의 +시스템에서도 일어날 수 있음을 기억해 두시기 바랍니다. + +다시 말하지만, 당신의 코드가 모든 오퍼레이션들의 완전한 순서를 필요로 한다면, +범용 배리어를 사용하십시오. + + +================== +명시적 커널 배리어 +================== + +리눅스 커널은 서로 다른 단계에서 동작하는 다양한 배리어들을 가지고 있습니다: + + (*) 컴파일러 배리어. + + (*) CPU 메모리 배리어. + + +컴파일러 배리어 +--------------- + +리눅스 커널은 컴파일러가 메모리 액세스를 재배치 하는 것을 막아주는 명시적인 +컴파일러 배리어를 가지고 있습니다: + + barrier(); + +이건 범용 배리어입니다 -- barrier() 의 읽기-읽기 나 쓰기-쓰기 변종은 없습니다. +하지만, READ_ONCE() 와 WRITE_ONCE() 는 특정 액세스들에 대해서만 동작하는 +barrier() 의 완화된 형태로 볼 수 있습니다. + +barrier() 함수는 다음과 같은 효과를 갖습니다: + + (*) 컴파일러가 barrier() 뒤의 액세스들이 barrier() 앞의 액세스보다 앞으로 + 재배치되지 못하게 합니다. 예를 들어, 인터럽트 핸들러 코드와 인터럽트 당한 + 코드 사이의 통신을 신중히 하기 위해 사용될 수 있습니다. + + (*) 루프에서, 컴파일러가 루프 조건에 사용된 변수를 매 이터레이션마다 + 메모리에서 로드하지 않아도 되도록 최적화 하는걸 방지합니다. + +READ_ONCE() 와 WRITE_ONCE() 함수는 싱글 쓰레드 코드에서는 문제 없지만 동시성이 +있는 코드에서는 문제가 될 수 있는 모든 최적화를 막습니다. 이런 류의 최적화에 +대한 예를 몇가지 들어보면 다음과 같습니다: + + (*) 컴파일러는 같은 변수에 대한 로드와 스토어를 재배치 할 수 있고, 어떤 + 경우에는 CPU가 같은 변수로부터의 로드들을 재배치할 수도 있습니다. 이는 + 다음의 코드가: + + a[0] = x; + a[1] = x; + + x 의 예전 값이 a[1] 에, 새 값이 a[0] 에 있게 할 수 있다는 뜻입니다. + 컴파일러와 CPU가 이런 일을 못하게 하려면 다음과 같이 해야 합니다: + + a[0] = READ_ONCE(x); + a[1] = READ_ONCE(x); + + 즉, READ_ONCE() 와 WRITE_ONCE() 는 여러 CPU 에서 하나의 변수에 가해지는 + 액세스들에 캐시 일관성을 제공합니다. + + (*) 컴파일러는 같은 변수에 대한 연속적인 로드들을 병합할 수 있습니다. 그런 + 병합 작업으로 컴파일러는 다음의 코드를: + + while (tmp = a) + do_something_with(tmp); + + 다음과 같이, 싱글 쓰레드 코드에서는 말이 되지만 개발자의 의도와 전혀 맞지 + 않는 방향으로 "최적화" 할 수 있습니다: + + if (tmp = a) + for (;;) + do_something_with(tmp); + + 컴파일러가 이런 짓을 하지 못하게 하려면 READ_ONCE() 를 사용하세요: + + while (tmp = READ_ONCE(a)) + do_something_with(tmp); + + (*) 예컨대 레지스터 사용량이 많아 컴파일러가 모든 데이터를 레지스터에 담을 수 + 없는 경우, 컴파일러는 변수를 다시 로드할 수 있습니다. 따라서 컴파일러는 + 앞의 예에서 변수 'tmp' 사용을 최적화로 없애버릴 수 있습니다: + + while (tmp = a) + do_something_with(tmp); + + 이 코드는 다음과 같이 싱글 쓰레드에서는 완벽하지만 동시성이 존재하는 + 경우엔 치명적인 코드로 바뀔 수 있습니다: + + while (a) + do_something_with(a); + + 예를 들어, 최적화된 이 코드는 변수 a 가 다른 CPU 에 의해 "while" 문과 + do_something_with() 호출 사이에 바뀌어 do_something_with() 에 0을 넘길 + 수도 있습니다. + + 이번에도, 컴파일러가 그런 짓을 하는걸 막기 위해 READ_ONCE() 를 사용하세요: + + while (tmp = READ_ONCE(a)) + do_something_with(tmp); + + 레지스터가 부족한 상황을 겪는 경우, 컴파일러는 tmp 를 스택에 저장해둘 수도 + 있습니다. 컴파일러가 변수를 다시 읽어들이는건 이렇게 저장해두고 후에 다시 + 읽어들이는데 드는 오버헤드 때문입니다. 그렇게 하는게 싱글 쓰레드 + 코드에서는 안전하므로, 안전하지 않은 경우에는 컴파일러에게 직접 알려줘야 + 합니다. + + (*) 컴파일러는 그 값이 무엇일지 알고 있다면 로드를 아예 안할 수도 있습니다. + 예를 들어, 다음의 코드는 변수 'a' 의 값이 항상 0임을 증명할 수 있다면: + + while (tmp = a) + do_something_with(tmp); + + 이렇게 최적화 되어버릴 수 있습니다: + + do { } while (0); + + 이 변환은 싱글 쓰레드 코드에서는 도움이 되는데 로드와 브랜치를 제거했기 + 때문입니다. 문제는 컴파일러가 'a' 의 값을 업데이트 하는건 현재의 CPU 하나 + 뿐이라는 가정 위에서 증명을 했다는데 있습니다. 만약 변수 'a' 가 공유되어 + 있다면, 컴파일러의 증명은 틀린 것이 될겁니다. 컴파일러는 그 자신이 + 생각하는 것만큼 많은 것을 알고 있지 못함을 컴파일러에게 알리기 위해 + READ_ONCE() 를 사용하세요: + + while (tmp = READ_ONCE(a)) + do_something_with(tmp); + + 하지만 컴파일러는 READ_ONCE() 뒤에 나오는 값에 대해서도 눈길을 두고 있음을 + 기억하세요. 예를 들어, 다음의 코드에서 MAX 는 전처리기 매크로로, 1의 값을 + 갖는다고 해봅시다: + + while ((tmp = READ_ONCE(a)) % MAX) + do_something_with(tmp); + + 이렇게 되면 컴파일러는 MAX 를 가지고 수행되는 "%" 오퍼레이터의 결과가 항상 + 0이라는 것을 알게 되고, 컴파일러가 코드를 실질적으로는 존재하지 않는 + 것처럼 최적화 하는 것이 허용되어 버립니다. ('a' 변수의 로드는 여전히 + 행해질 겁니다.) + + (*) 비슷하게, 컴파일러는 변수가 저장하려 하는 값을 이미 가지고 있다는 것을 + 알면 스토어 자체를 제거할 수 있습니다. 이번에도, 컴파일러는 현재의 CPU + 만이 그 변수에 값을 쓰는 오로지 하나의 존재라고 생각하여 공유된 변수에 + 대해서는 잘못된 일을 하게 됩니다. 예를 들어, 다음과 같은 경우가 있을 수 + 있습니다: + + a = 0; + ... 변수 a 에 스토어를 하지 않는 코드 ... + a = 0; + + 컴파일러는 변수 'a' 의 값은 이미 0이라는 것을 알고, 따라서 두번째 스토어를 + 삭제할 겁니다. 만약 다른 CPU 가 그 사이 변수 'a' 에 다른 값을 썼다면 + 황당한 결과가 나올 겁니다. + + 컴파일러가 그런 잘못된 추측을 하지 않도록 WRITE_ONCE() 를 사용하세요: + + WRITE_ONCE(a, 0); + ... 변수 a 에 스토어를 하지 않는 코드 ... + WRITE_ONCE(a, 0); + + (*) 컴파일러는 하지 말라고 하지 않으면 메모리 액세스들을 재배치 할 수 + 있습니다. 예를 들어, 다음의 프로세스 레벨 코드와 인터럽트 핸들러 사이의 + 상호작용을 생각해 봅시다: + + void process_level(void) + { + msg = get_message(); + flag = true; + } + + void interrupt_handler(void) + { + if (flag) + process_message(msg); + } + + 이 코드에는 컴파일러가 process_level() 을 다음과 같이 변환하는 것을 막을 + 수단이 없고, 이런 변환은 싱글쓰레드에서라면 실제로 훌륭한 선택일 수 + 있습니다: + + void process_level(void) + { + flag = true; + msg = get_message(); + } + + 이 두개의 문장 사이에 인터럽트가 발생한다면, interrupt_handler() 는 의미를 + 알 수 없는 메세지를 받을 수도 있습니다. 이걸 막기 위해 다음과 같이 + WRITE_ONCE() 를 사용하세요: + + void process_level(void) + { + WRITE_ONCE(msg, get_message()); + WRITE_ONCE(flag, true); + } + + void interrupt_handler(void) + { + if (READ_ONCE(flag)) + process_message(READ_ONCE(msg)); + } + + interrupt_handler() 안에서도 중첩된 인터럽트나 NMI 와 같이 인터럽트 핸들러 + 역시 'flag' 와 'msg' 에 접근하는 또다른 무언가에 인터럽트 될 수 있다면 + READ_ONCE() 와 WRITE_ONCE() 를 사용해야 함을 기억해 두세요. 만약 그런 + 가능성이 없다면, interrupt_handler() 안에서는 문서화 목적이 아니라면 + READ_ONCE() 와 WRITE_ONCE() 는 필요치 않습니다. (근래의 리눅스 커널에서 + 중첩된 인터럽트는 보통 잘 일어나지 않음도 기억해 두세요, 실제로, 어떤 + 인터럽트 핸들러가 인터럽트가 활성화된 채로 리턴하면 WARN_ONCE() 가 + 실행됩니다.) + + 컴파일러는 READ_ONCE() 와 WRITE_ONCE() 뒤의 READ_ONCE() 나 WRITE_ONCE(), + barrier(), 또는 비슷한 것들을 담고 있지 않은 코드를 움직일 수 있을 것으로 + 가정되어야 합니다. + + 이 효과는 barrier() 를 통해서도 만들 수 있지만, READ_ONCE() 와 + WRITE_ONCE() 가 좀 더 안목 높은 선택입니다: READ_ONCE() 와 WRITE_ONCE()는 + 컴파일러에 주어진 메모리 영역에 대해서만 최적화 가능성을 포기하도록 + 하지만, barrier() 는 컴파일러가 지금까지 기계의 레지스터에 캐시해 놓은 + 모든 메모리 영역의 값을 버려야 하게 하기 때문입니다. 물론, 컴파일러는 + READ_ONCE() 와 WRITE_ONCE() 가 일어난 순서도 지켜줍니다, CPU 는 당연히 + 그 순서를 지킬 의무가 없지만요. + + (*) 컴파일러는 다음의 예에서와 같이 변수에의 스토어를 날조해낼 수도 있습니다: + + if (a) + b = a; + else + b = 42; + + 컴파일러는 아래와 같은 최적화로 브랜치를 줄일 겁니다: + + b = 42; + if (a) + b = a; + + 싱글 쓰레드 코드에서 이 최적화는 안전할 뿐 아니라 브랜치 갯수를 + 줄여줍니다. 하지만 안타깝게도, 동시성이 있는 코드에서는 이 최적화는 다른 + CPU 가 'b' 를 로드할 때, -- 'a' 가 0이 아닌데도 -- 가짜인 값, 42를 보게 + 되는 경우를 가능하게 합니다. 이걸 방지하기 위해 WRITE_ONCE() 를 + 사용하세요: + + if (a) + WRITE_ONCE(b, a); + else + WRITE_ONCE(b, 42); + + 컴파일러는 로드를 만들어낼 수도 있습니다. 일반적으로는 문제를 일으키지 + 않지만, 캐시 라인 바운싱을 일으켜 성능과 확장성을 떨어뜨릴 수 있습니다. + 날조된 로드를 막기 위해선 READ_ONCE() 를 사용하세요. + + (*) 정렬된 메모리 주소에 위치한, 한번의 메모리 참조 인스트럭션으로 액세스 + 가능한 크기의 데이터는 하나의 큰 액세스가 여러개의 작은 액세스들로 + 대체되는 "로드 티어링(load tearing)" 과 "스토어 티어링(store tearing)" 을 + 방지합니다. 예를 들어, 주어진 아키텍쳐가 7-bit imeediate field 를 갖는 + 16-bit 스토어 인스트럭션을 제공한다면, 컴파일러는 다음의 32-bit 스토어를 + 구현하는데에 두개의 16-bit store-immediate 명령을 사용하려 할겁니다: + + p = 0x00010002; + + 스토어 할 상수를 만들고 그 값을 스토어 하기 위해 두개가 넘는 인스트럭션을 + 사용하게 되는, 이런 종류의 최적화를 GCC 는 실제로 함을 부디 알아 두십시오. + 이 최적화는 싱글 쓰레드 코드에서는 성공적인 최적화 입니다. 실제로, 근래에 + 발생한 (그리고 고쳐진) 버그는 GCC 가 volatile 스토어에 비정상적으로 이 + 최적화를 사용하게 했습니다. 그런 버그가 없다면, 다음의 예에서 + WRITE_ONCE() 의 사용은 스토어 티어링을 방지합니다: + + WRITE_ONCE(p, 0x00010002); + + Packed 구조체의 사용 역시 다음의 예처럼 로드 / 스토어 티어링을 유발할 수 + 있습니다: + + struct __attribute__((__packed__)) foo { + short a; + int b; + short c; + }; + struct foo foo1, foo2; + ... + + foo2.a = foo1.a; + foo2.b = foo1.b; + foo2.c = foo1.c; + + READ_ONCE() 나 WRITE_ONCE() 도 없고 volatile 마킹도 없기 때문에, + 컴파일러는 이 세개의 대입문을 두개의 32-bit 로드와 두개의 32-bit 스토어로 + 변환할 수 있습니다. 이는 'foo1.b' 의 값의 로드 티어링과 'foo2.b' 의 + 스토어 티어링을 초래할 겁니다. 이 예에서도 READ_ONCE() 와 WRITE_ONCE() + 가 티어링을 막을 수 있습니다: + + foo2.a = foo1.a; + WRITE_ONCE(foo2.b, READ_ONCE(foo1.b)); + foo2.c = foo1.c; + +그렇지만, volatile 로 마크된 변수에 대해서는 READ_ONCE() 와 WRITE_ONCE() 가 +필요치 않습니다. 예를 들어, 'jiffies' 는 volatile 로 마크되어 있기 때문에, +READ_ONCE(jiffies) 라고 할 필요가 없습니다. READ_ONCE() 와 WRITE_ONCE() 가 +실은 volatile 캐스팅으로 구현되어 있어서 인자가 이미 volatile 로 마크되어 +있다면 또다른 효과를 내지는 않기 때문입니다. + +이 컴파일러 배리어들은 CPU 에는 직접적 효과를 전혀 만들지 않기 때문에, 결국은 +재배치가 일어날 수도 있음을 부디 기억해 두십시오. + + +CPU 메모리 배리어 +----------------- + +리눅스 커널은 다음의 여덟개 기본 CPU 메모리 배리어를 가지고 있습니다: + + TYPE MANDATORY SMP CONDITIONAL + =============== ======================= =========================== + 범용 mb() smp_mb() + 쓰기 wmb() smp_wmb() + 읽기 rmb() smp_rmb() + 데이터 의존성 READ_ONCE() + + +데이터 의존성 배리어를 제외한 모든 메모리 배리어는 컴파일러 배리어를 +포함합니다. 데이터 의존성은 컴파일러에의 추가적인 순서 보장을 포함하지 +않습니다. + +방백: 데이터 의존성이 있는 경우, 컴파일러는 해당 로드를 올바른 순서로 일으킬 +것으로 (예: `a[b]` 는 a[b] 를 로드 하기 전에 b 의 값을 먼저 로드한다) +기대되지만, C 언어 사양에는 컴파일러가 b 의 값을 추측 (예: 1 과 같음) 해서 +b 로드 전에 a 로드를 하는 코드 (예: tmp = a[1]; if (b != 1) tmp = a[b]; ) 를 +만들지 않아야 한다는 내용 같은 건 없습니다. 또한 컴파일러는 a[b] 를 로드한 +후에 b 를 또다시 로드할 수도 있어서, a[b] 보다 최신 버전의 b 값을 가질 수도 +있습니다. 이런 문제들의 해결책에 대한 의견 일치는 아직 없습니다만, 일단 +READ_ONCE() 매크로부터 보기 시작하는게 좋은 시작이 될겁니다. + +SMP 메모리 배리어들은 유니프로세서로 컴파일된 시스템에서는 컴파일러 배리어로 +바뀌는데, 하나의 CPU 는 스스로 일관성을 유지하고, 겹치는 액세스들 역시 올바른 +순서로 행해질 것으로 생각되기 때문입니다. 하지만, 아래의 "Virtual Machine +Guests" 서브섹션을 참고하십시오. + +[!] SMP 시스템에서 공유메모리로의 접근들을 순서 세워야 할 때, SMP 메모리 +배리어는 _반드시_ 사용되어야 함을 기억하세요, 그대신 락을 사용하는 것으로도 +충분하긴 하지만 말이죠. + +Mandatory 배리어들은 SMP 시스템에서도 UP 시스템에서도 SMP 효과만 통제하기에는 +불필요한 오버헤드를 갖기 때문에 SMP 효과만 통제하면 되는 곳에는 사용되지 않아야 +합니다. 하지만, 느슨한 순서 규칙의 메모리 I/O 윈도우를 통한 MMIO 의 효과를 +통제할 때에는 mandatory 배리어들이 사용될 수 있습니다. 이 배리어들은 +컴파일러와 CPU 모두 재배치를 못하도록 함으로써 메모리 오퍼레이션들이 디바이스에 +보여지는 순서에도 영향을 주기 때문에, SMP 가 아닌 시스템이라 할지라도 필요할 수 +있습니다. + + +일부 고급 배리어 함수들도 있습니다: + + (*) smp_store_mb(var, value) + + 이 함수는 특정 변수에 특정 값을 대입하고 범용 메모리 배리어를 칩니다. + UP 컴파일에서는 컴파일러 배리어보다 더한 것을 친다고는 보장되지 않습니다. + + + (*) smp_mb__before_atomic(); + (*) smp_mb__after_atomic(); + + 이것들은 메모리 배리어를 내포하지 않는 어토믹 RMW 함수를 사용하지만 코드에 + 메모리 배리어가 필요한 경우를 위한 것들입니다. 메모리 배리어를 내포하지 + 않는 어토믹 RMW 함수들의 예로는 더하기, 빼기, (실패한) 조건적 + 오퍼레이션들, _relaxed 함수들이 있으며, atomic_read 나 atomic_set 은 이에 + 해당되지 않습니다. 메모리 배리어가 필요해지는 흔한 예로는 어토믹 + 오퍼레이션을 사용해 레퍼런스 카운트를 수정하는 경우를 들 수 있습니다. + + 이것들은 또한 (set_bit 과 clear_bit 같은) 메모리 배리어를 내포하지 않는 + 어토믹 RMW bitop 함수들을 위해서도 사용될 수 있습니다. + + 한 예로, 객체 하나를 무효한 것으로 표시하고 그 객체의 레퍼런스 카운트를 + 감소시키는 다음 코드를 보세요: + + obj->dead = 1; + smp_mb__before_atomic(); + atomic_dec(&obj->ref_count); + + 이 코드는 객체의 업데이트된 death 마크가 레퍼런스 카운터 감소 동작 + *전에* 보일 것을 보장합니다. + + 더 많은 정보를 위해선 Documentation/atomic_{t,bitops}.txt 문서를 + 참고하세요. + + + (*) dma_wmb(); + (*) dma_rmb(); + + 이것들은 CPU 와 DMA 가능한 디바이스에서 모두 액세스 가능한 공유 메모리의 + 읽기, 쓰기 작업들의 순서를 보장하기 위해 consistent memory 에서 사용하기 + 위한 것들입니다. + + 예를 들어, 디바이스와 메모리를 공유하며, 디스크립터 상태 값을 사용해 + 디스크립터가 디바이스에 속해 있는지 아니면 CPU 에 속해 있는지 표시하고, + 공지용 초인종(doorbell) 을 사용해 업데이트된 디스크립터가 디바이스에 사용 + 가능해졌음을 공지하는 디바이스 드라이버를 생각해 봅시다: + + if (desc->status != DEVICE_OWN) { + /* 디스크립터를 소유하기 전에는 데이터를 읽지 않음 */ + dma_rmb(); + + /* 데이터를 읽고 씀 */ + read_data = desc->data; + desc->data = write_data; + + /* 상태 업데이트 전 수정사항을 반영 */ + dma_wmb(); + + /* 소유권을 수정 */ + desc->status = DEVICE_OWN; + + /* 업데이트된 디스크립터의 디바이스에 공지 */ + writel(DESC_NOTIFY, doorbell); + } + + dma_rmb() 는 디스크립터로부터 데이터를 읽어오기 전에 디바이스가 소유권을 + 내려놓았을 것을 보장하고, dma_wmb() 는 디바이스가 자신이 소유권을 다시 + 가졌음을 보기 전에 디스크립터에 데이터가 쓰였을 것을 보장합니다. 참고로, + writel() 을 사용하면 캐시 일관성이 있는 메모리 (cache coherent memory) + 쓰기가 MMIO 영역에의 쓰기 전에 완료되었을 것을 보장하므로 writel() 앞에 + wmb() 를 실행할 필요가 없음을 알아두시기 바랍니다. writel() 보다 비용이 + 저렴한 writel_relaxed() 는 이런 보장을 제공하지 않으므로 여기선 사용되지 + 않아야 합니다. + + writel_relaxed() 와 같은 완화된 I/O 접근자들에 대한 자세한 내용을 위해서는 + "커널 I/O 배리어의 효과" 섹션을, consistent memory 에 대한 자세한 내용을 + 위해선 Documentation/core-api/dma-api.rst 문서를 참고하세요. + + (*) pmem_wmb(); + + 이것은 persistent memory 를 위한 것으로, persistent 저장소에 가해진 변경 + 사항이 플랫폼 연속성 도메인에 도달했을 것을 보장하기 위한 것입니다. + + 예를 들어, 임시적이지 않은 pmem 영역으로의 쓰기 후, 우리는 쓰기가 플랫폼 + 연속성 도메인에 도달했을 것을 보장하기 위해 pmem_wmb() 를 사용합니다. + 이는 쓰기가 뒤따르는 instruction 들이 유발하는 어떠한 데이터 액세스나 + 데이터 전송의 시작 전에 persistent 저장소를 업데이트 했을 것을 보장합니다. + 이는 wmb() 에 의해 이뤄지는 순서 규칙을 포함합니다. + + Persistent memory 에서의 로드를 위해선 현재의 읽기 메모리 배리어로도 읽기 + 순서를 보장하는데 충분합니다. + +========================= +암묵적 커널 메모리 배리어 +========================= + +리눅스 커널의 일부 함수들은 메모리 배리어를 내장하고 있는데, 락(lock)과 +스케쥴링 관련 함수들이 대부분입니다. + +여기선 _최소한의_ 보장을 설명합니다; 특정 아키텍쳐에서는 이 설명보다 더 많은 +보장을 제공할 수도 있습니다만 해당 아키텍쳐에 종속적인 코드 외의 부분에서는 +그런 보장을 기대해선 안될겁니다. + + +락 ACQUISITION 함수 +------------------- + +리눅스 커널은 다양한 락 구성체를 가지고 있습니다: + + (*) 스핀 락 + (*) R/W 스핀 락 + (*) 뮤텍스 + (*) 세마포어 + (*) R/W 세마포어 + +각 구성체마다 모든 경우에 "ACQUIRE" 오퍼레이션과 "RELEASE" 오퍼레이션의 변종이 +존재합니다. 이 오퍼레이션들은 모두 적절한 배리어를 내포하고 있습니다: + + (1) ACQUIRE 오퍼레이션의 영향: + + ACQUIRE 뒤에서 요청된 메모리 오퍼레이션은 ACQUIRE 오퍼레이션이 완료된 + 뒤에 완료됩니다. + + ACQUIRE 앞에서 요청된 메모리 오퍼레이션은 ACQUIRE 오퍼레이션이 완료된 후에 + 완료될 수 있습니다. + + (2) RELEASE 오퍼레이션의 영향: + + RELEASE 앞에서 요청된 메모리 오퍼레이션은 RELEASE 오퍼레이션이 완료되기 + 전에 완료됩니다. + + RELEASE 뒤에서 요청된 메모리 오퍼레이션은 RELEASE 오퍼레이션 완료 전에 + 완료될 수 있습니다. + + (3) ACQUIRE vs ACQUIRE 영향: + + 어떤 ACQUIRE 오퍼레이션보다 앞에서 요청된 모든 ACQUIRE 오퍼레이션은 그 + ACQUIRE 오퍼레이션 전에 완료됩니다. + + (4) ACQUIRE vs RELEASE implication: + + 어떤 RELEASE 오퍼레이션보다 앞서 요청된 ACQUIRE 오퍼레이션은 그 RELEASE + 오퍼레이션보다 먼저 완료됩니다. + + (5) 실패한 조건적 ACQUIRE 영향: + + ACQUIRE 오퍼레이션의 일부 락(lock) 변종은 락이 곧바로 획득하기에는 + 불가능한 상태이거나 락이 획득 가능해지도록 기다리는 도중 시그널을 받거나 + 해서 실패할 수 있습니다. 실패한 락은 어떤 배리어도 내포하지 않습니다. + +[!] 참고: 락 ACQUIRE 와 RELEASE 가 단방향 배리어여서 나타나는 현상 중 하나는 +크리티컬 섹션 바깥의 인스트럭션의 영향이 크리티컬 섹션 내부로도 들어올 수 +있다는 것입니다. + +RELEASE 후에 요청되는 ACQUIRE 는 전체 메모리 배리어라 여겨지면 안되는데, +ACQUIRE 앞의 액세스가 ACQUIRE 후에 수행될 수 있고, RELEASE 후의 액세스가 +RELEASE 전에 수행될 수도 있으며, 그 두개의 액세스가 서로를 지나칠 수도 있기 +때문입니다: + + *A = a; + ACQUIRE M + RELEASE M + *B = b; + +는 다음과 같이 될 수도 있습니다: + + ACQUIRE M, STORE *B, STORE *A, RELEASE M + +ACQUIRE 와 RELEASE 가 락 획득과 해제라면, 그리고 락의 ACQUIRE 와 RELEASE 가 +같은 락 변수에 대한 것이라면, 해당 락을 쥐고 있지 않은 다른 CPU 의 시야에는 +이와 같은 재배치가 일어나는 것으로 보일 수 있습니다. 요약하자면, ACQUIRE 에 +이어 RELEASE 오퍼레이션을 순차적으로 실행하는 행위가 전체 메모리 배리어로 +생각되어선 -안됩니다-. + +비슷하게, 앞의 반대 케이스인 RELEASE 와 ACQUIRE 두개 오퍼레이션의 순차적 실행 +역시 전체 메모리 배리어를 내포하지 않습니다. 따라서, RELEASE, ACQUIRE 로 +규정되는 크리티컬 섹션의 CPU 수행은 RELEASE 와 ACQUIRE 를 가로지를 수 있으므로, +다음과 같은 코드는: + + *A = a; + RELEASE M + ACQUIRE N + *B = b; + +다음과 같이 수행될 수 있습니다: + + ACQUIRE N, STORE *B, STORE *A, RELEASE M + +이런 재배치는 데드락을 일으킬 수도 있을 것처럼 보일 수 있습니다. 하지만, 그런 +데드락의 조짐이 있다면 RELEASE 는 단순히 완료될 것이므로 데드락은 존재할 수 +없습니다. + + 이게 어떻게 올바른 동작을 할 수 있을까요? + + 우리가 이야기 하고 있는건 재배치를 하는 CPU 에 대한 이야기이지, + 컴파일러에 대한 것이 아니란 점이 핵심입니다. 컴파일러 (또는, 개발자) + 가 오퍼레이션들을 이렇게 재배치하면, 데드락이 일어날 수 -있습-니다. + + 하지만 CPU 가 오퍼레이션들을 재배치 했다는걸 생각해 보세요. 이 예에서, + 어셈블리 코드 상으로는 언락이 락을 앞서게 되어 있습니다. CPU 가 이를 + 재배치해서 뒤의 락 오퍼레이션을 먼저 실행하게 됩니다. 만약 데드락이 + 존재한다면, 이 락 오퍼레이션은 그저 스핀을 하며 계속해서 락을 + 시도합니다 (또는, 한참 후에겠지만, 잠듭니다). CPU 는 언젠가는 + (어셈블리 코드에서는 락을 앞서는) 언락 오퍼레이션을 실행하는데, 이 언락 + 오퍼레이션이 잠재적 데드락을 해결하고, 락 오퍼레이션도 뒤이어 성공하게 + 됩니다. + + 하지만 만약 락이 잠을 자는 타입이었다면요? 그런 경우에 코드는 + 스케쥴러로 들어가려 할 거고, 여기서 결국은 메모리 배리어를 만나게 + 되는데, 이 메모리 배리어는 앞의 언락 오퍼레이션이 완료되도록 만들고, + 데드락은 이번에도 해결됩니다. 잠을 자는 행위와 언락 사이의 경주 상황 + (race) 도 있을 수 있겠습니다만, 락 관련 기능들은 그런 경주 상황을 모든 + 경우에 제대로 해결할 수 있어야 합니다. + +락과 세마포어는 UP 컴파일된 시스템에서의 순서에 대해 보장을 하지 않기 때문에, +그런 상황에서 인터럽트 비활성화 오퍼레이션과 함께가 아니라면 어떤 일에도 - 특히 +I/O 액세스와 관련해서는 - 제대로 사용될 수 없을 겁니다. + +"CPU 간 ACQUIRING 배리어 효과" 섹션도 참고하시기 바랍니다. + + +예를 들어, 다음과 같은 코드를 생각해 봅시다: + + *A = a; + *B = b; + ACQUIRE + *C = c; + *D = d; + RELEASE + *E = e; + *F = f; + +여기선 다음의 이벤트 시퀀스가 생길 수 있습니다: + + ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE + + [+] {*F,*A} 는 조합된 액세스를 의미합니다. + +하지만 다음과 같은 건 불가능하죠: + + {*F,*A}, *B, ACQUIRE, *C, *D, RELEASE, *E + *A, *B, *C, ACQUIRE, *D, RELEASE, *E, *F + *A, *B, ACQUIRE, *C, RELEASE, *D, *E, *F + *B, ACQUIRE, *C, *D, RELEASE, {*F,*A}, *E + + + +인터럽트 비활성화 함수 +---------------------- + +인터럽트를 비활성화 하는 함수 (ACQUIRE 와 동일) 와 인터럽트를 활성화 하는 함수 +(RELEASE 와 동일) 는 컴파일러 배리어처럼만 동작합니다. 따라서, 별도의 메모리 +배리어나 I/O 배리어가 필요한 상황이라면 그 배리어들은 인터럽트 비활성화 함수 +외의 방법으로 제공되어야만 합니다. + + +슬립과 웨이크업 함수 +-------------------- + +글로벌 데이터에 표시된 이벤트에 의해 프로세스를 잠에 빠트리는 것과 깨우는 것은 +해당 이벤트를 기다리는 태스크의 태스크 상태와 그 이벤트를 알리기 위해 사용되는 +글로벌 데이터, 두 데이터간의 상호작용으로 볼 수 있습니다. 이것이 옳은 순서대로 +일어남을 분명히 하기 위해, 프로세스를 잠에 들게 하는 기능과 깨우는 기능은 +몇가지 배리어를 내포합니다. + +먼저, 잠을 재우는 쪽은 일반적으로 다음과 같은 이벤트 시퀀스를 따릅니다: + + for (;;) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (event_indicated) + break; + schedule(); + } + +set_current_state() 에 의해, 태스크 상태가 바뀐 후 범용 메모리 배리어가 +자동으로 삽입됩니다: + + CPU 1 + =============================== + set_current_state(); + smp_store_mb(); + STORE current->state + <범용 배리어> + LOAD event_indicated + +set_current_state() 는 다음의 것들로 감싸질 수도 있습니다: + + prepare_to_wait(); + prepare_to_wait_exclusive(); + +이것들 역시 상태를 설정한 후 범용 메모리 배리어를 삽입합니다. +앞의 전체 시퀀스는 다음과 같은 함수들로 한번에 수행 가능한데, 이것들은 모두 +올바른 장소에 메모리 배리어를 삽입합니다: + + wait_event(); + wait_event_interruptible(); + wait_event_interruptible_exclusive(); + wait_event_interruptible_timeout(); + wait_event_killable(); + wait_event_timeout(); + wait_on_bit(); + wait_on_bit_lock(); + + +두번째로, 깨우기를 수행하는 코드는 일반적으로 다음과 같을 겁니다: + + event_indicated = 1; + wake_up(&event_wait_queue); + +또는: + + event_indicated = 1; + wake_up_process(event_daemon); + +wake_up() 이 무언가를 깨우게 되면, 이 함수는 범용 메모리 배리어를 수행합니다. +이 함수가 아무것도 깨우지 않는다면 메모리 배리어는 수행될 수도, 수행되지 않을 +수도 있습니다; 이 경우에 메모리 배리어를 수행할 거라 오해해선 안됩니다. 이 +배리어는 태스크 상태가 접근되기 전에 수행되는데, 자세히 말하면 이 이벤트를 +알리기 위한 STORE 와 TASK_RUNNING 으로 상태를 쓰는 STORE 사이에 수행됩니다: + + CPU 1 (Sleeper) CPU 2 (Waker) + =============================== =============================== + set_current_state(); STORE event_indicated + smp_store_mb(); wake_up(); + STORE current->state ... + <범용 배리어> <범용 배리어> + LOAD event_indicated if ((LOAD task->state) & TASK_NORMAL) + STORE task->state + +여기서 "task" 는 깨어나지는 쓰레드이고 CPU 1 의 "current" 와 같습니다. + +반복하지만, wake_up() 이 무언가를 정말 깨운다면 범용 메모리 배리어가 수행될 +것이 보장되지만, 그렇지 않다면 그런 보장이 없습니다. 이걸 이해하기 위해, X 와 +Y 는 모두 0 으로 초기화 되어 있다는 가정 하에 아래의 이벤트 시퀀스를 생각해 +봅시다: + + CPU 1 CPU 2 + =============================== =============================== + X = 1; Y = 1; + smp_mb(); wake_up(); + LOAD Y LOAD X + +정말로 깨우기가 행해졌다면, 두 로드 중 (최소한) 하나는 1 을 보게 됩니다. +반면에, 실제 깨우기가 행해지지 않았다면, 두 로드 모두 0을 볼 수도 있습니다. + +wake_up_process() 는 항상 범용 메모리 배리어를 수행합니다. 이 배리어 역시 +태스크 상태가 접근되기 전에 수행됩니다. 특히, 앞의 예제 코드에서 wake_up() 이 +wake_up_process() 로 대체된다면 두 로드 중 하나는 1을 볼 것이 보장됩니다. + +사용 가능한 깨우기류 함수들로 다음과 같은 것들이 있습니다: + + complete(); + wake_up(); + wake_up_all(); + wake_up_bit(); + wake_up_interruptible(); + wake_up_interruptible_all(); + wake_up_interruptible_nr(); + wake_up_interruptible_poll(); + wake_up_interruptible_sync(); + wake_up_interruptible_sync_poll(); + wake_up_locked(); + wake_up_locked_poll(); + wake_up_nr(); + wake_up_poll(); + wake_up_process(); + +메모리 순서규칙 관점에서, 이 함수들은 모두 wake_up() 과 같거나 보다 강한 순서 +보장을 제공합니다. + +[!] 잠재우는 코드와 깨우는 코드에 내포되는 메모리 배리어들은 깨우기 전에 +이루어진 스토어를 잠재우는 코드가 set_current_state() 를 호출한 후에 행하는 +로드에 대해 순서를 맞추지 _않는다는_ 점을 기억하세요. 예를 들어, 잠재우는 +코드가 다음과 같고: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) + break; + __set_current_state(TASK_RUNNING); + do_something(my_data); + +깨우는 코드는 다음과 같다면: + + my_data = value; + event_indicated = 1; + wake_up(&event_wait_queue); + +event_indecated 에의 변경이 잠재우는 코드에게 my_data 에의 변경 후에 이루어진 +것으로 인지될 것이라는 보장이 없습니다. 이런 경우에는 양쪽 코드 모두 각각의 +데이터 액세스 사이에 메모리 배리어를 직접 쳐야 합니다. 따라서 앞의 재우는 +코드는 다음과 같이: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) { + smp_rmb(); + do_something(my_data); + } + +그리고 깨우는 코드는 다음과 같이 되어야 합니다: + + my_data = value; + smp_wmb(); + event_indicated = 1; + wake_up(&event_wait_queue); + + +그외의 함수들 +------------- + +그외의 배리어를 내포하는 함수들은 다음과 같습니다: + + (*) schedule() 과 그 유사한 것들이 완전한 메모리 배리어를 내포합니다. + + +============================== +CPU 간 ACQUIRING 배리어의 효과 +============================== + +SMP 시스템에서의 락 기능들은 더욱 강력한 형태의 배리어를 제공합니다: 이 +배리어는 동일한 락을 사용하는 다른 CPU 들의 메모리 액세스 순서에도 영향을 +끼칩니다. + + +ACQUIRE VS 메모리 액세스 +------------------------ + +다음의 예를 생각해 봅시다: 시스템은 두개의 스핀락 (M) 과 (Q), 그리고 세개의 CPU +를 가지고 있습니다; 여기에 다음의 이벤트 시퀀스가 발생합니다: + + CPU 1 CPU 2 + =============================== =============================== + WRITE_ONCE(*A, a); WRITE_ONCE(*E, e); + ACQUIRE M ACQUIRE Q + WRITE_ONCE(*B, b); WRITE_ONCE(*F, f); + WRITE_ONCE(*C, c); WRITE_ONCE(*G, g); + RELEASE M RELEASE Q + WRITE_ONCE(*D, d); WRITE_ONCE(*H, h); + +*A 로의 액세스부터 *H 로의 액세스까지가 어떤 순서로 CPU 3 에게 보여질지에 +대해서는 각 CPU 에서의 락 사용에 의해 내포되어 있는 제약을 제외하고는 어떤 +보장도 존재하지 않습니다. 예를 들어, CPU 3 에게 다음과 같은 순서로 보여지는 +것이 가능합니다: + + *E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M + +하지만 다음과 같이 보이지는 않을 겁니다: + + *B, *C or *D preceding ACQUIRE M + *A, *B or *C following RELEASE M + *F, *G or *H preceding ACQUIRE Q + *E, *F or *G following RELEASE Q + + +========================= +메모리 배리어가 필요한 곳 +========================= + +설령 SMP 커널을 사용하더라도 싱글 쓰레드로 동작하는 코드는 올바르게 동작하는 +것으로 보여질 것이기 때문에, 평범한 시스템 운영중에 메모리 오퍼레이션 재배치는 +일반적으로 문제가 되지 않습니다. 하지만, 재배치가 문제가 _될 수 있는_ 네가지 +환경이 있습니다: + + (*) 프로세서간 상호 작용. + + (*) 어토믹 오퍼레이션. + + (*) 디바이스 액세스. + + (*) 인터럽트. + + +프로세서간 상호 작용 +-------------------- + +두개 이상의 프로세서를 가진 시스템이 있다면, 시스템의 두개 이상의 CPU 는 동시에 +같은 데이터에 대한 작업을 할 수 있습니다. 이는 동기화 문제를 일으킬 수 있고, +이 문제를 해결하는 일반적 방법은 락을 사용하는 것입니다. 하지만, 락은 상당히 +비용이 비싸서 가능하면 락을 사용하지 않고 일을 처리하는 것이 낫습니다. 이런 +경우, 두 CPU 모두에 영향을 끼치는 오퍼레이션들은 오동작을 막기 위해 신중하게 +순서가 맞춰져야 합니다. + +예를 들어, R/W 세마포어의 느린 수행경로 (slow path) 를 생각해 봅시다. +세마포어를 위해 대기를 하는 하나의 프로세스가 자신의 스택 중 일부를 이 +세마포어의 대기 프로세스 리스트에 링크한 채로 있습니다: + + struct rw_semaphore { + ... + spinlock_t lock; + struct list_head waiters; + }; + + struct rwsem_waiter { + struct list_head list; + struct task_struct *task; + }; + +특정 대기 상태 프로세스를 깨우기 위해, up_read() 나 up_write() 함수는 다음과 +같은 일을 합니다: + + (1) 다음 대기 상태 프로세스 레코드는 어디있는지 알기 위해 이 대기 상태 + 프로세스 레코드의 next 포인터를 읽습니다; + + (2) 이 대기 상태 프로세스의 task 구조체로의 포인터를 읽습니다; + + (3) 이 대기 상태 프로세스가 세마포어를 획득했음을 알리기 위해 task + 포인터를 초기화 합니다; + + (4) 해당 태스크에 대해 wake_up_process() 를 호출합니다; 그리고 + + (5) 해당 대기 상태 프로세스의 task 구조체를 잡고 있던 레퍼런스를 해제합니다. + +달리 말하자면, 다음 이벤트 시퀀스를 수행해야 합니다: + + LOAD waiter->list.next; + LOAD waiter->task; + STORE waiter->task; + CALL wakeup + RELEASE task + +그리고 이 이벤트들이 다른 순서로 수행된다면, 오동작이 일어날 수 있습니다. + +한번 세마포어의 대기줄에 들어갔고 세마포어 락을 놓았다면, 해당 대기 프로세스는 +락을 다시는 잡지 않습니다; 대신 자신의 task 포인터가 초기화 되길 기다립니다. +그 레코드는 대기 프로세스의 스택에 있기 때문에, 리스트의 next 포인터가 읽혀지기 +_전에_ task 포인터가 지워진다면, 다른 CPU 는 해당 대기 프로세스를 시작해 버리고 +up*() 함수가 next 포인터를 읽기 전에 대기 프로세스의 스택을 마구 건드릴 수 +있습니다. + +그렇게 되면 위의 이벤트 시퀀스에 어떤 일이 일어나는지 생각해 보죠: + + CPU 1 CPU 2 + =============================== =============================== + down_xxx() + Queue waiter + Sleep + up_yyy() + LOAD waiter->task; + STORE waiter->task; + Woken up by other event + <preempt> + Resume processing + down_xxx() returns + call foo() + foo() clobbers *waiter + </preempt> + LOAD waiter->list.next; + --- OOPS --- + +이 문제는 세마포어 락의 사용으로 해결될 수도 있겠지만, 그렇게 되면 깨어난 후에 +down_xxx() 함수가 불필요하게 스핀락을 또다시 얻어야만 합니다. + +이 문제를 해결하는 방법은 범용 SMP 메모리 배리어를 추가하는 겁니다: + + LOAD waiter->list.next; + LOAD waiter->task; + smp_mb(); + STORE waiter->task; + CALL wakeup + RELEASE task + +이 경우에, 배리어는 시스템의 나머지 CPU 들에게 모든 배리어 앞의 메모리 액세스가 +배리어 뒤의 메모리 액세스보다 앞서 일어난 것으로 보이게 만듭니다. 배리어 앞의 +메모리 액세스들이 배리어 명령 자체가 완료되는 시점까지 완료된다고는 보장하지 +_않습니다_. + +(이게 문제가 되지 않을) 단일 프로세서 시스템에서 smp_mb() 는 실제로는 그저 +컴파일러가 CPU 안에서의 순서를 바꾸거나 하지 않고 주어진 순서대로 명령을 +내리도록 하는 컴파일러 배리어일 뿐입니다. 오직 하나의 CPU 만 있으니, CPU 의 +의존성 순서 로직이 그 외의 모든것을 알아서 처리할 겁니다. + + +어토믹 오퍼레이션 +----------------- + +어토믹 오퍼레이션은 기술적으로 프로세서간 상호작용으로 분류되며 그 중 일부는 +전체 메모리 배리어를 내포하고 또 일부는 내포하지 않지만, 커널에서 상당히 +의존적으로 사용하는 기능 중 하나입니다. + +더 많은 내용을 위해선 Documentation/atomic_t.txt 를 참고하세요. + + +디바이스 액세스 +--------------- + +많은 디바이스가 메모리 매핑 기법으로 제어될 수 있는데, 그렇게 제어되는 +디바이스는 CPU 에는 단지 특정 메모리 영역의 집합처럼 보이게 됩니다. 드라이버는 +그런 디바이스를 제어하기 위해 정확히 올바른 순서로 올바른 메모리 액세스를 +만들어야 합니다. + +하지만, 액세스들을 재배치 하거나 조합하거나 병합하는게 더 효율적이라 판단하는 +영리한 CPU 나 컴파일러들을 사용하면 드라이버 코드의 조심스럽게 순서 맞춰진 +액세스들이 디바이스에는 요청된 순서대로 도착하지 못하게 할 수 있는 - 디바이스가 +오동작을 하게 할 - 잠재적 문제가 생길 수 있습니다. + +리눅스 커널 내부에서, I/O 는 어떻게 액세스들을 적절히 순차적이게 만들 수 있는지 +알고 있는, - inb() 나 writel() 과 같은 - 적절한 액세스 루틴을 통해 이루어져야만 +합니다. 이것들은 대부분의 경우에는 명시적 메모리 배리어 와 함께 사용될 필요가 +없습니다만, 완화된 메모리 액세스 속성으로 I/O 메모리 윈도우로의 참조를 위해 +액세스 함수가 사용된다면 순서를 강제하기 위해 _mandatory_ 메모리 배리어가 +필요합니다. + +더 많은 정보를 위해선 Documentation/driver-api/device-io.rst 를 참고하십시오. + + +인터럽트 +-------- + +드라이버는 자신의 인터럽트 서비스 루틴에 의해 인터럽트 당할 수 있기 때문에 +드라이버의 이 두 부분은 서로의 디바이스 제어 또는 액세스 부분과 상호 간섭할 수 +있습니다. + +스스로에게 인터럽트 당하는 걸 불가능하게 하고, 드라이버의 크리티컬한 +오퍼레이션들을 모두 인터럽트가 불가능하게 된 영역에 집어넣거나 하는 방법 (락의 +한 형태) 으로 이런 상호 간섭을 - 최소한 부분적으로라도 - 줄일 수 있습니다. +드라이버의 인터럽트 루틴이 실행 중인 동안, 해당 드라이버의 코어는 같은 CPU 에서 +수행되지 않을 것이며, 현재의 인터럽트가 처리되는 중에는 또다시 인터럽트가 +일어나지 못하도록 되어 있으니 인터럽트 핸들러는 그에 대해서는 락을 잡지 않아도 +됩니다. + +하지만, 어드레스 레지스터와 데이터 레지스터를 갖는 이더넷 카드를 다루는 +드라이버를 생각해 봅시다. 만약 이 드라이버의 코어가 인터럽트를 비활성화시킨 +채로 이더넷 카드와 대화하고 드라이버의 인터럽트 핸들러가 호출되었다면: + + LOCAL IRQ DISABLE + writew(ADDR, 3); + writew(DATA, y); + LOCAL IRQ ENABLE + <interrupt> + writew(ADDR, 4); + q = readw(DATA); + </interrupt> + +만약 순서 규칙이 충분히 완화되어 있다면 데이터 레지스터에의 스토어는 어드레스 +레지스터에 두번째로 행해지는 스토어 뒤에 일어날 수도 있습니다: + + STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA + + +만약 순서 규칙이 충분히 완화되어 있고 묵시적으로든 명시적으로든 배리어가 +사용되지 않았다면 인터럽트 비활성화 섹션에서 일어난 액세스가 바깥으로 새어서 +인터럽트 내에서 일어난 액세스와 섞일 수 있다고 - 그리고 그 반대도 - 가정해야만 +합니다. + +그런 영역 안에서 일어나는 I/O 액세스는 묵시적 I/O 배리어를 형성하는, 엄격한 +순서 규칙의 I/O 레지스터로의 로드 오퍼레이션을 포함하기 때문에 일반적으로는 +문제가 되지 않습니다. + + +하나의 인터럽트 루틴과 별도의 CPU 에서 수행중이며 서로 통신을 하는 두 루틴 +사이에도 비슷한 상황이 일어날 수 있습니다. 만약 그런 경우가 발생할 가능성이 +있다면, 순서를 보장하기 위해 인터럽트 비활성화 락이 사용되어져야만 합니다. + + +====================== +커널 I/O 배리어의 효과 +====================== + +I/O 액세스를 통한 주변장치와의 통신은 아키텍쳐와 기기에 매우 종속적입니다. +따라서, 본질적으로 이식성이 없는 드라이버는 가능한 가장 적은 오버헤드로 +동기화를 하기 위해 각자의 타겟 시스템의 특정 동작에 의존할 겁니다. 다양한 +아키텍쳐와 버스 구현에 이식성을 가지려 하는 드라이버를 위해, 커널은 다양한 +정도의 순서 보장을 제공하는 일련의 액세스 함수를 제공합니다. + + (*) readX(), writeX(): + + readX() 와 writeX() MMIO 액세스 함수는 접근되는 주변장치로의 포인터를 + __iomem * 패러미터로 받습니다. 디폴트 I/O 기능으로 매핑되는 포인터 + (예: ioremap() 으로 반환되는 것) 의 순서 보장은 다음과 같습니다: + + 1. 같은 주변장치로의 모든 readX() 와 writeX() 액세스는 각자에 대해 + 순서지어집니다. 이는 같은 CPU 쓰레드에 의한 특정 디바이스로의 MMIO + 레지스터 액세스가 프로그램 순서대로 도착할 것을 보장합니다. + + 2. 한 스핀락을 잡은 CPU 쓰레드에 의한 writeX() 는 같은 스핀락을 나중에 + 잡은 다른 CPU 쓰레드에 의해 같은 주변장치를 향해 호출된 writeX() + 앞으로 순서지어집니다. 이는 스핀락을 잡은 채 특정 디바이스를 향해 + 호출된 MMIO 레지스터 쓰기는 해당 락의 획득에 일관적인 순서로 도달할 + 것을 보장합니다. + + 3. 특정 주변장치를 향한 특정 CPU 쓰레드의 writeX() 는 먼저 해당 + 쓰레드로 전파되는, 또는 해당 쓰레드에 의해 요청된 모든 앞선 메모리 + 쓰기가 완료되기 전까지 먼저 기다립니다. 이는 dma_alloc_coherent() + 를 통해 할당된 전송용 DMA 버퍼로의 해당 CPU 의 쓰기가 이 CPU 가 이 + 전송을 시작시키기 위해 MMIO 컨트롤 레지스터에 쓰기를 할 때 DMA + 엔진에 보여질 것을 보장합니다. + + 4. 특정 CPU 쓰레드에 의한 주변장치로의 readX() 는 같은 쓰레드에 의한 + 모든 뒤따르는 메모리 읽기가 시작되기 전에 완료됩니다. 이는 + dma_alloc_coherent() 를 통해 할당된 수신용 DMA 버퍼로부터의 CPU 의 + 읽기는 이 DMA 수신의 완료를 표시하는 DMA 엔진의 MMIO 상태 레지스터 + 읽기 후에는 오염된 데이터를 읽지 않을 것을 보장합니다. + + 5. CPU 에 의한 주변장치로의 readX() 는 모든 뒤따르는 delay() 루프가 + 수행을 시작하기 전에 완료됩니다. 이는 CPU 의 특정 + 주변장치로의 두개의 MMIO 레지스터 쓰기가 행해지는데 첫번째 쓰기가 + readX() 를 통해 곧바로 읽어졌고 이어 두번째 writeX() 전에 udelay(1) + 이 호출되었다면 이 두개의 쓰기는 최소 1us 의 간격을 두고 행해질 것을 + 보장합니다: + + writel(42, DEVICE_REGISTER_0); // 디바이스에 도착함... + readl(DEVICE_REGISTER_0); + udelay(1); + writel(42, DEVICE_REGISTER_1); // ...이것보다 최소 1us 전에. + + 디폴트가 아닌 기능을 통해 얻어지는 __iomem 포인터 (예: ioremap_wc() 를 + 통해 리턴되는 것) 의 순서 속성은 실제 아키텍쳐에 의존적이어서 이런 + 종류의 매핑으로의 액세스는 앞서 설명된 보장사항에 의존할 수 없습니다. + + (*) readX_relaxed(), writeX_relaxed() + + 이것들은 readX() 와 writeX() 랑 비슷하지만, 더 완화된 메모리 순서 + 보장을 제공합니다. 구체적으로, 이것들은 일반적 메모리 액세스나 delay() + 루프 (예:앞의 2-5 항목) 에 대해 순서를 보장하지 않습니다만 디폴트 I/O + 기능으로 매핑된 __iomem 포인터에 대해 동작할 때, 같은 CPU 쓰레드에 의한 + 같은 주변장치로의 액세스에는 순서가 맞춰질 것이 보장됩니다. + + (*) readsX(), writesX(): + + readsX() 와 writesX() MMIO 액세스 함수는 DMA 를 수행하는데 적절치 않은, + 주변장치 내의 메모리 매핑된 레지스터 기반 FIFO 로의 액세스를 위해 + 설계되었습니다. 따라서, 이 기능들은 앞서 설명된 readX_relaxed() 와 + writeX_relaxed() 의 순서 보장만을 제공합니다. + + (*) inX(), outX(): + + inX() 와 outX() 액세스 함수는 일부 아키텍쳐 (특히 x86) 에서는 특수한 + 명령어를 필요로 하며 포트에 매핑되는, 과거의 유산인 I/O 주변장치로의 + 접근을 위해 만들어졌습니다. + + 많은 CPU 아키텍쳐가 결국은 이런 주변장치를 내부의 가상 메모리 매핑을 + 통해 접근하기 때문에, inX() 와 outX() 가 제공하는 이식성 있는 순서 + 보장은 디폴트 I/O 기능을 통한 매핑을 접근할 때의 readX() 와 writeX() 에 + 의해 제공되는 것과 각각 동일합니다. + + 디바이스 드라이버는 outX() 가 리턴하기 전에 해당 I/O 주변장치로부터의 + 완료 응답을 기다리는 쓰기 트랜잭션을 만들어 낸다고 기대할 수도 + 있습니다. 이는 모든 아키텍쳐에서 보장되지는 않고, 따라서 이식성 있는 + 순서 규칙의 일부분이 아닙니다. + + (*) insX(), outsX(): + + 앞에서와 같이, insX() 와 outsX() 액세스 함수는 디폴트 I/O 기능을 통한 + 매핑을 접근할 때 각각 readX() 와 writeX() 와 같은 순서 보장을 + 제공합니다. + + (*) ioreadX(), iowriteX() + + 이것들은 inX()/outX() 나 readX()/writeX() 처럼 실제로 수행하는 액세스의 + 종류에 따라 적절하게 수행될 것입니다. + +String 액세스 함수 (insX(), outsX(), readsX() 그리고 writesX()) 의 예외를 +제외하고는, 앞의 모든 것이 아랫단의 주변장치가 little-endian 이라 가정하며, +따라서 big-endian 아키텍쳐에서는 byte-swapping 오퍼레이션을 수행합니다. + + +=================================== +가정되는 가장 완화된 실행 순서 모델 +=================================== + +컨셉적으로 CPU 는 주어진 프로그램에 대해 프로그램 그 자체에는 인과성 (program +causality) 을 지키는 것처럼 보이게 하지만 일반적으로는 순서를 거의 지켜주지 +않는다고 가정되어야만 합니다. (i386 이나 x86_64 같은) 일부 CPU 들은 코드 +재배치에 (powerpc 나 frv 와 같은) 다른 것들에 비해 강한 제약을 갖지만, 아키텍쳐 +종속적 코드 이외의 코드에서는 순서에 대한 제약이 가장 완화된 경우 (DEC Alpha) +를 가정해야 합니다. + +이 말은, CPU 에게 주어지는 인스트럭션 스트림 내의 한 인스트럭션이 앞의 +인스트럭션에 종속적이라면 앞의 인스트럭션은 뒤의 종속적 인스트럭션이 실행되기 +전에 완료[*]될 수 있어야 한다는 제약 (달리 말해서, 인과성이 지켜지는 것으로 +보이게 함) 외에는 자신이 원하는 순서대로 - 심지어 병렬적으로도 - 그 스트림을 +실행할 수 있음을 의미합니다 + + [*] 일부 인스트럭션은 하나 이상의 영향 - 조건 코드를 바꾼다던지, 레지스터나 + 메모리를 바꾼다던지 - 을 만들어내며, 다른 인스트럭션은 다른 효과에 + 종속적일 수 있습니다. + +CPU 는 최종적으로 아무 효과도 만들지 않는 인스트럭션 시퀀스는 없애버릴 수도 +있습니다. 예를 들어, 만약 두개의 연속되는 인스트럭션이 둘 다 같은 레지스터에 +직접적인 값 (immediate value) 을 집어넣는다면, 첫번째 인스트럭션은 버려질 수도 +있습니다. + + +비슷하게, 컴파일러 역시 프로그램의 인과성만 지켜준다면 인스트럭션 스트림을 +자신이 보기에 올바르다 생각되는대로 재배치 할 수 있습니다. + + +=============== +CPU 캐시의 영향 +=============== + +캐시된 메모리 오퍼레이션들이 시스템 전체에 어떻게 인지되는지는 CPU 와 메모리 +사이에 존재하는 캐시들, 그리고 시스템 상태의 일관성을 관리하는 메모리 일관성 +시스템에 상당 부분 영향을 받습니다. + +한 CPU 가 시스템의 다른 부분들과 캐시를 통해 상호작용한다면, 메모리 시스템은 +CPU 의 캐시들을 포함해야 하며, CPU 와 CPU 자신의 캐시 사이에서의 동작을 위한 +메모리 배리어를 가져야 합니다. (메모리 배리어는 논리적으로는 다음 그림의 +점선에서 동작합니다): + + <--- CPU ---> : <----------- Memory -----------> + : + +--------+ +--------+ : +--------+ +-----------+ + | | | | : | | | | +--------+ + | CPU | | Memory | : | CPU | | | | | + | Core |--->| Access |----->| Cache |<-->| | | | + | | | Queue | : | | | |--->| Memory | + | | | | : | | | | | | + +--------+ +--------+ : +--------+ | | | | + : | Cache | +--------+ + : | Coherency | + : | Mechanism | +--------+ + +--------+ +--------+ : +--------+ | | | | + | | | | : | | | | | | + | CPU | | Memory | : | CPU | | |--->| Device | + | Core |--->| Access |----->| Cache |<-->| | | | + | | | Queue | : | | | | | | + | | | | : | | | | +--------+ + +--------+ +--------+ : +--------+ +-----------+ + : + : + +특정 로드나 스토어는 해당 오퍼레이션을 요청한 CPU 의 캐시 내에서 동작을 완료할 +수도 있기 때문에 해당 CPU 의 바깥에는 보이지 않을 수 있지만, 다른 CPU 가 관심을 +갖는다면 캐시 일관성 메커니즘이 해당 캐시라인을 해당 CPU 에게 전달하고, 해당 +메모리 영역에 대한 오퍼레이션이 발생할 때마다 그 영향을 전파시키기 때문에, 해당 +오퍼레이션은 메모리에 실제로 액세스를 한것처럼 나타날 것입니다. + +CPU 코어는 프로그램의 인과성이 유지된다고만 여겨진다면 인스트럭션들을 어떤 +순서로든 재배치해서 수행할 수 있습니다. 일부 인스트럭션들은 로드나 스토어 +오퍼레이션을 만드는데 이 오퍼레이션들은 이후 수행될 메모리 액세스 큐에 들어가게 +됩니다. 코어는 이 오퍼레이션들을 해당 큐에 어떤 순서로든 원하는대로 넣을 수 +있고, 다른 인스트럭션의 완료를 기다리도록 강제되기 전까지는 수행을 계속합니다. + +메모리 배리어가 하는 일은 CPU 쪽에서 메모리 쪽으로 넘어가는 액세스들의 순서, +그리고 그 액세스의 결과가 시스템의 다른 관찰자들에게 인지되는 순서를 제어하는 +것입니다. + +[!] CPU 들은 항상 그들 자신의 로드와 스토어는 프로그램 순서대로 일어난 것으로 +보기 때문에, 주어진 CPU 내에서는 메모리 배리어를 사용할 필요가 _없습니다_. + +[!] MMIO 나 다른 디바이스 액세스들은 캐시 시스템을 우회할 수도 있습니다. 우회 +여부는 디바이스가 액세스 되는 메모리 윈도우의 특성에 의해 결정될 수도 있고, CPU +가 가지고 있을 수 있는 특수한 디바이스 통신 인스트럭션의 사용에 의해서 결정될 +수도 있습니다. + + +캐시 일관성 VS DMA +------------------ + +모든 시스템이 DMA 를 하는 디바이스에 대해서까지 캐시 일관성을 유지하지는 +않습니다. 그런 경우, DMA 를 시도하는 디바이스는 RAM 으로부터 잘못된 데이터를 +읽을 수 있는데, 더티 캐시 라인이 CPU 의 캐시에 머무르고 있고, 바뀐 값이 아직 +RAM 에 써지지 않았을 수 있기 때문입니다. 이 문제를 해결하기 위해선, 커널의 +적절한 부분에서 각 CPU 캐시의 문제되는 비트들을 플러시 (flush) 시켜야만 합니다 +(그리고 그것들을 무효화 - invalidation - 시킬 수도 있겠죠). + +또한, 디바이스에 의해 RAM 에 DMA 로 쓰여진 값은 디바이스가 쓰기를 완료한 후에 +CPU 의 캐시에서 RAM 으로 쓰여지는 더티 캐시 라인에 의해 덮어써질 수도 있고, CPU +의 캐시에 존재하는 캐시 라인이 해당 캐시에서 삭제되고 다시 값을 읽어들이기 +전까지는 RAM 이 업데이트 되었다는 사실 자체가 숨겨져 버릴 수도 있습니다. 이 +문제를 해결하기 위해선, 커널의 적절한 부분에서 각 CPU 의 캐시 안의 문제가 되는 +비트들을 무효화 시켜야 합니다. + +캐시 관리에 대한 더 많은 정보를 위해선 Documentation/core-api/cachetlb.rst 를 +참고하세요. + + +캐시 일관성 VS MMIO +------------------- + +Memory mapped I/O 는 일반적으로 CPU 의 메모리 공간 내의 한 윈도우의 특정 부분 +내의 메모리 지역에 이루어지는데, 이 윈도우는 일반적인, RAM 으로 향하는 +윈도우와는 다른 특성을 갖습니다. + +그런 특성 가운데 하나는, 일반적으로 그런 액세스는 캐시를 완전히 우회하고 +디바이스 버스로 곧바로 향한다는 것입니다. 이 말은 MMIO 액세스는 먼저 +시작되어서 캐시에서 완료된 메모리 액세스를 추월할 수 있다는 뜻입니다. 이런 +경우엔 메모리 배리어만으로는 충분치 않고, 만약 캐시된 메모리 쓰기 오퍼레이션과 +MMIO 액세스가 어떤 방식으로든 의존적이라면 해당 캐시는 두 오퍼레이션 사이에 +비워져(flush)야만 합니다. + + +====================== +CPU 들이 저지르는 일들 +====================== + +프로그래머는 CPU 가 메모리 오퍼레이션들을 정확히 요청한대로 수행해 줄 것이라고 +생각하는데, 예를 들어 다음과 같은 코드를 CPU 에게 넘긴다면: + + a = READ_ONCE(*A); + WRITE_ONCE(*B, b); + c = READ_ONCE(*C); + d = READ_ONCE(*D); + WRITE_ONCE(*E, e); + +CPU 는 다음 인스트럭션을 처리하기 전에 현재의 인스트럭션을 위한 메모리 +오퍼레이션을 완료할 것이라 생각하고, 따라서 시스템 외부에서 관찰하기에도 정해진 +순서대로 오퍼레이션이 수행될 것으로 예상합니다: + + LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E. + + +당연하지만, 실제로는 훨씬 엉망입니다. 많은 CPU 와 컴파일러에서 앞의 가정은 +성립하지 못하는데 그 이유는 다음과 같습니다: + + (*) 로드 오퍼레이션들은 실행을 계속 해나가기 위해 곧바로 완료될 필요가 있는 + 경우가 많은 반면, 스토어 오퍼레이션들은 종종 별다른 문제 없이 유예될 수 + 있습니다; + + (*) 로드 오퍼레이션들은 예측적으로 수행될 수 있으며, 필요없는 로드였다고 + 증명된 예측적 로드의 결과는 버려집니다; + + (*) 로드 오퍼레이션들은 예측적으로 수행될 수 있으므로, 예상된 이벤트의 + 시퀀스와 다른 시간에 로드가 이뤄질 수 있습니다; + + (*) 메모리 액세스 순서는 CPU 버스와 캐시를 좀 더 잘 사용할 수 있도록 재배치 + 될 수 있습니다; + + (*) 로드와 스토어는 인접한 위치에의 액세스들을 일괄적으로 처리할 수 있는 + 메모리나 I/O 하드웨어 (메모리와 PCI 디바이스 둘 다 이게 가능할 수 + 있습니다) 에 대해 요청되는 경우, 개별 오퍼레이션을 위한 트랜잭션 설정 + 비용을 아끼기 위해 조합되어 실행될 수 있습니다; 그리고 + + (*) 해당 CPU 의 데이터 캐시가 순서에 영향을 끼칠 수도 있고, 캐시 일관성 + 메커니즘이 - 스토어가 실제로 캐시에 도달한다면 - 이 문제를 완화시킬 수는 + 있지만 이 일관성 관리가 다른 CPU 들에도 같은 순서로 전달된다는 보장은 + 없습니다. + +따라서, 앞의 코드에 대해 다른 CPU 가 보는 결과는 다음과 같을 수 있습니다: + + LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B + + ("LOAD {*C,*D}" 는 조합된 로드입니다) + + +하지만, CPU 는 스스로는 일관적일 것을 보장합니다: CPU _자신_ 의 액세스들은 +자신에게는 메모리 배리어가 없음에도 불구하고 정확히 순서 세워진 것으로 보여질 +것입니다. 예를 들어 다음의 코드가 주어졌다면: + + U = READ_ONCE(*A); + WRITE_ONCE(*A, V); + WRITE_ONCE(*A, W); + X = READ_ONCE(*A); + WRITE_ONCE(*A, Y); + Z = READ_ONCE(*A); + +그리고 외부의 영향에 의한 간섭이 없다고 가정하면, 최종 결과는 다음과 같이 +나타날 것이라고 예상될 수 있습니다: + + U == *A 의 최초 값 + X == W + Z == Y + *A == Y + +앞의 코드는 CPU 가 다음의 메모리 액세스 시퀀스를 만들도록 할겁니다: + + U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A + +하지만, 별다른 개입이 없고 프로그램의 시야에 이 세상이 여전히 일관적이라고 +보인다는 보장만 지켜진다면 이 시퀀스는 어떤 조합으로든 재구성될 수 있으며, 각 +액세스들은 합쳐지거나 버려질 수 있습니다. 일부 아키텍쳐에서 CPU 는 같은 위치에 +대한 연속적인 로드 오퍼레이션들을 재배치 할 수 있기 때문에 앞의 예에서의 +READ_ONCE() 와 WRITE_ONCE() 는 반드시 존재해야 함을 알아두세요. 그런 종류의 +아키텍쳐에서 READ_ONCE() 와 WRITE_ONCE() 는 이 문제를 막기 위해 필요한 일을 +뭐가 됐든지 하게 되는데, 예를 들어 Itanium 에서는 READ_ONCE() 와 WRITE_ONCE() +가 사용하는 volatile 캐스팅은 GCC 가 그런 재배치를 방지하는 특수 인스트럭션인 +ld.acq 와 stl.rel 인스트럭션을 각각 만들어 내도록 합니다. + +컴파일러 역시 이 시퀀스의 액세스들을 CPU 가 보기도 전에 합치거나 버리거나 뒤로 +미뤄버릴 수 있습니다. + +예를 들어: + + *A = V; + *A = W; + +는 다음과 같이 변형될 수 있습니다: + + *A = W; + +따라서, 쓰기 배리어나 WRITE_ONCE() 가 없다면 *A 로의 V 값의 저장의 효과는 +사라진다고 가정될 수 있습니다. 비슷하게: + + *A = Y; + Z = *A; + +는, 메모리 배리어나 READ_ONCE() 와 WRITE_ONCE() 없이는 다음과 같이 변형될 수 +있습니다: + + *A = Y; + Z = Y; + +그리고 이 LOAD 오퍼레이션은 CPU 바깥에는 아예 보이지 않습니다. + + +그리고, ALPHA 가 있다 +--------------------- + +DEC Alpha CPU 는 가장 완화된 메모리 순서의 CPU 중 하나입니다. 뿐만 아니라, +Alpha CPU 의 일부 버전은 분할된 데이터 캐시를 가지고 있어서, 의미적으로 +관계되어 있는 두개의 캐시 라인이 서로 다른 시간에 업데이트 되는게 가능합니다. +이게 데이터 의존성 배리어가 정말 필요해지는 부분인데, 데이터 의존성 배리어는 +메모리 일관성 시스템과 함께 두개의 캐시를 동기화 시켜서, 포인터 변경과 새로운 +데이터의 발견을 올바른 순서로 일어나게 하기 때문입니다. + +리눅스 커널의 메모리 배리어 모델은 Alpha 에 기초해서 정의되었습니다만, v4.15 +부터는 Alpha 용 READ_ONCE() 코드 내에 smp_mb() 가 추가되어서 메모리 모델로의 +Alpha 의 영향력이 크게 줄어들었습니다. + + +가상 머신 게스트 +---------------- + +가상 머신에서 동작하는 게스트들은 게스트 자체는 SMP 지원 없이 컴파일 되었다 +해도 SMP 영향을 받을 수 있습니다. 이건 UP 커널을 사용하면서 SMP 호스트와 +결부되어 발생하는 부작용입니다. 이 경우에는 mandatory 배리어를 사용해서 문제를 +해결할 수 있겠지만 그런 해결은 대부분의 경우 최적의 해결책이 아닙니다. + +이 문제를 완벽하게 해결하기 위해, 로우 레벨의 virt_mb() 등의 매크로를 사용할 수 +있습니다. 이것들은 SMP 가 활성화 되어 있다면 smp_mb() 등과 동일한 효과를 +갖습니다만, SMP 와 SMP 아닌 시스템 모두에 대해 동일한 코드를 만들어냅니다. +예를 들어, 가상 머신 게스트들은 (SMP 일 수 있는) 호스트와 동기화를 할 때에는 +smp_mb() 가 아니라 virt_mb() 를 사용해야 합니다. + +이것들은 smp_mb() 류의 것들과 모든 부분에서 동일하며, 특히, MMIO 의 영향에 +대해서는 간여하지 않습니다: MMIO 의 영향을 제어하려면, mandatory 배리어를 +사용하시기 바랍니다. + + +======= +사용 예 +======= + +순환식 버퍼 +----------- + +메모리 배리어는 순환식 버퍼를 생성자(producer)와 소비자(consumer) 사이의 +동기화에 락을 사용하지 않고 구현하는데에 사용될 수 있습니다. 더 자세한 내용을 +위해선 다음을 참고하세요: + + Documentation/core-api/circular-buffers.rst + + +========= +참고 문헌 +========= + +Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek, +Digital Press) + Chapter 5.2: Physical Address Space Characteristics + Chapter 5.4: Caches and Write Buffers + Chapter 5.5: Data Sharing + Chapter 5.6: Read/Write Ordering + +AMD64 Architecture Programmer's Manual Volume 2: System Programming + Chapter 7.1: Memory-Access Ordering + Chapter 7.4: Buffering and Combining Memory Writes + +ARM Architecture Reference Manual (ARMv8, for ARMv8-A architecture profile) + Chapter B2: The AArch64 Application Level Memory Model + +IA-32 Intel Architecture Software Developer's Manual, Volume 3: +System Programming Guide + Chapter 7.1: Locked Atomic Operations + Chapter 7.2: Memory Ordering + Chapter 7.4: Serializing Instructions + +The SPARC Architecture Manual, Version 9 + Chapter 8: Memory Models + Appendix D: Formal Specification of the Memory Models + Appendix J: Programming with the Memory Models + +Storage in the PowerPC (Stone and Fitzgerald) + +UltraSPARC Programmer Reference Manual + Chapter 5: Memory Accesses and Cacheability + Chapter 15: Sparc-V9 Memory Models + +UltraSPARC III Cu User's Manual + Chapter 9: Memory Models + +UltraSPARC IIIi Processor User's Manual + Chapter 8: Memory Models + +UltraSPARC Architecture 2005 + Chapter 9: Memory + Appendix D: Formal Specifications of the Memory Models + +UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005 + Chapter 8: Memory Models + Appendix F: Caches and Cache Coherency + +Solaris Internals, Core Kernel Architecture, p63-68: + Chapter 3.3: Hardware Considerations for Locks and + Synchronization + +Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching +for Kernel Programmers: + Chapter 13: Other Memory Models + +Intel Itanium Architecture Software Developer's Manual: Volume 1: + Section 2.6: Speculation + Section 4.4: Memory Access |