diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/translations/ko_KR | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/translations/ko_KR')
-rw-r--r-- | Documentation/translations/ko_KR/howto.rst | 611 | ||||
-rw-r--r-- | Documentation/translations/ko_KR/index.rst | 12 | ||||
-rw-r--r-- | Documentation/translations/ko_KR/memory-barriers.txt | 2931 | ||||
-rw-r--r-- | Documentation/translations/ko_KR/stable_api_nonsense.txt | 195 |
4 files changed, 3749 insertions, 0 deletions
diff --git a/Documentation/translations/ko_KR/howto.rst b/Documentation/translations/ko_KR/howto.rst new file mode 100644 index 000000000..240d29be3 --- /dev/null +++ b/Documentation/translations/ko_KR/howto.rst @@ -0,0 +1,611 @@ +NOTE: +This is a version of Documentation/process/howto.rst translated into korean +This document is maintained by Minchan Kim <minchan@kernel.org> +If you find any difference between this document and the original file or +a problem with the translation, please contact the maintainer of this file. + +Please also note that the purpose of this file is to be easier to +read for non English (read: korean) speakers and is not intended as +a fork. So if you have any comments or updates for this file please +try to update the original English file first. + +---------------------------------- + +이 문서는 +Documentation/process/howto.rst +의 한글 번역입니다. + +역자: 김민찬 <minchan@kernel.org> +감수: 이제이미 <jamee.lee@samsung.com> + +---------------------------------- + + +어떻게 리눅스 커널 개발을 하는가 +================================ + +이 문서는 커널 개발에 있어 가장 중요한 문서이다. 이 문서는 +리눅스 커널 개발자가 되는 법과 리눅스 커널 개발 커뮤니티와 일하는 +법을 담고있다. 커널 프로그래밍의 기술적인 측면과 관련된 내용들은 +포함하지 않으려고 하였지만 올바른 길로 여러분을 안내하는 데는 도움이 +될 것이다. + +이 문서에서 오래된 것을 발견하면 문서의 아래쪽에 나열된 메인테이너에게 +패치를 보내달라. + + +소개 +---- + +자, 여러분은 리눅스 커널 개발자가 되는 법을 배우고 싶은가? 아니면 +상사로부터"이 장치를 위한 리눅스 드라이버를 작성하시오"라는 말을 +들었는가? 이 문서의 목적은 여러분이 겪게 될 과정과 커뮤니티와 협력하는 +법을 조언하여 여러분의 목적을 달성하기 위해 필요한 것 모두를 알려주기 +위함이다. + +커널은 대부분은 C로 작성되어 있고 몇몇 아키텍쳐의 의존적인 부분은 +어셈블리로 작성되어 있다. 커널 개발을 위해 C를 잘 이해하고 있어야 한다. +여러분이 특정 아키텍쳐의 low-level 개발을 할 것이 아니라면 +어셈블리(특정 아키텍쳐)는 잘 알아야 할 필요는 없다. +다음의 참고서적들은 기본에 충실한 C 교육이나 수년간의 경험에 견주지는 +못하지만 적어도 참고 용도로는 좋을 것이다 + + - "The C Programming Language" by Kernighan and Ritchie [Prentice Hall] + - "Practical C Programming" by Steve Oualline [O'Reilly] + - "C: A Reference Manual" by Harbison and Steele [Prentice Hall] + +커널은 GNU C와 GNU 툴체인을 사용하여 작성되었다. 이 툴들은 ISO C89 표준을 +따르는 반면 표준에 있지 않은 많은 확장기능도 가지고 있다. 커널은 표준 C +라이브러리와는 관계없이 freestanding C 환경이어서 C 표준의 일부는 +지원되지 않는다. 임의의 long long 나누기나 floating point는 지원되지 않는다. +때론 이런 이유로 커널이 그런 확장 기능을 가진 툴체인을 가지고 만들어졌다는 +것이 이해하기 어려울 수도 있고 게다가 불행하게도 그런 것을 정확하게 설명하는 +어떤 참고문서도 있지 않다. 정보를 얻기 위해서는 gcc info (`info gcc`)페이지를 +살펴보라. + +여러분은 기존의 개발 커뮤니티와 협력하는 법을 배우려고 하고 있다는 것을 +기억하라. 코딩, 스타일, 함수에 관한 훌륭한 표준을 가진 사람들이 모인 +다양한 그룹이 있다. 이 표준들은 오랜동안 크고 지역적으로 분산된 팀들에 +의해 가장 좋은 방법으로 일하기 위하여 찾은 것을 기초로 만들어져 왔다. +그 표준들은 문서화가 잘 되어있기 때문에 가능한한 미리 많은 표준들에 +관하여 배우려고 시도하라. 다른 사람들은 여러분이나 여러분의 회사가 +일하는 방식에 적응하는 것을 원하지는 않는다. + + +법적 문제 +--------- + +리눅스 커널 소스 코드는 GPL로 배포(release)되었다. 소스트리의 메인 +디렉토리에 있는 라이센스에 관하여 상세하게 쓰여 있는 COPYING이라는 +파일을 봐라. 리눅스 커널 라이센싱 규칙과 소스 코드 안의 `SPDX +<https://spdx.org/>`_ 식별자 사용법은 +:ref:`Documentation/process/license-rules.rst <kernel_licensing>` 에 설명되어 +있다. 여러분이 라이센스에 관한 더 깊은 문제를 가지고 있다면 리눅스 커널 메일링 +리스트에 묻지말고 변호사와 연락하라. 메일링 리스트들에 있는 사람들은 변호사가 +아니기 때문에 법적 문제에 관하여 그들의 말에 의지해서는 안된다. + +GPL에 관한 잦은 질문들과 답변들은 다음을 참조하라. + + https://www.gnu.org/licenses/gpl-faq.html + + +문서 +---- + +리눅스 커널 소스 트리는 커널 커뮤니티와 협력하는 법을 배우기위해 훌륭한 +다양한 문서들을 가지고 있다. 새로운 기능들이 커널에 들어가게 될 때, +그 기능을 어떻게 사용하는지에 관한 설명을 위하여 새로운 문서 파일을 +추가하는 것을 권장한다. 커널이 유저스페이스로 노출하는 인터페이스를 +변경하게 되면 변경을 설명하는 메뉴얼 페이지들에 대한 패치나 정보를 +mtk.manpages@gmail.com의 메인테이너에게 보낼 것을 권장한다. + +다음은 커널 소스 트리에 있는 읽어야 할 파일들의 리스트이다. + + :ref:`Documentation/admin-guide/README.rst <readme>` + 이 파일은 리눅스 커널에 관하여 간단한 배경 설명과 커널을 설정하고 + 빌드하기 위해 필요한 것을 설명한다. 커널에 입문하는 사람들은 여기서 + 시작해야 한다. + + :ref:`Documentation/process/changes.rst <changes>` + 이 파일은 커널을 성공적으로 빌드하고 실행시키기 위해 필요한 다양한 + 소프트웨어 패키지들의 최소 버젼을 나열한다. + + :ref:`Documentation/process/coding-style.rst <codingstyle>` + 이 문서는 리눅스 커널 코딩 스타일과 그렇게 한 몇몇 이유를 설명한다. + 모든 새로운 코드는 이 문서에 가이드라인들을 따라야 한다. 대부분의 + 메인테이너들은 이 규칙을 따르는 패치들만을 받아들일 것이고 많은 사람들이 + 그 패치가 올바른 스타일일 경우만 코드를 검토할 것이다. + + :ref:`Documentation/process/submitting-patches.rst <submittingpatches>` 와 :ref:`Documentation/process/submitting-drivers.rst <submittingdrivers>` + 이 파일들은 성공적으로 패치를 만들고 보내는 법을 다음의 내용들로 + 굉장히 상세히 설명하고 있다(그러나 다음으로 한정되진 않는다). + + - Email 내용들 + - Email 양식 + - 그것을 누구에게 보낼지 + + 이러한 규칙들을 따르는 것이 성공(역자주: 패치가 받아들여 지는 것)을 + 보장하진 않는다(왜냐하면 모든 패치들은 내용과 스타일에 관하여 + 면밀히 검토되기 때문이다). 그러나 규칙을 따르지 않는다면 거의 + 성공하지도 못할 것이다. + + 올바른 패치들을 만드는 법에 관한 훌륭한 다른 문서들이 있다. + + "The Perfect Patch" + https://www.ozlabs.org/~akpm/stuff/tpp.txt + + "Linux kernel patch submission format" + https://web.archive.org/web/20180829112450/http://linux.yyz.us/patch-format.html + + :ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>` + 이 문서는 의도적으로 커널이 불변하는 API를 갖지 않도록 결정한 + 이유를 설명하며 다음과 같은 것들을 포함한다. + + - 서브시스템 shim-layer(호환성을 위해?) + - 운영체제들간의 드라이버 이식성 + - 커널 소스 트리내에 빠른 변화를 늦추는 것(또는 빠른 변화를 막는 것) + + 이 문서는 리눅스 개발 철학을 이해하는데 필수적이며 다른 운영체제에서 + 리눅스로 전향하는 사람들에게는 매우 중요하다. + + + :ref:`Documentation/admin-guide/security-bugs.rst <securitybugs>` + 여러분들이 리눅스 커널의 보안 문제를 발견했다고 생각한다면 이 문서에 + 나온 단계에 따라서 커널 개발자들에게 알리고 그 문제를 해결할 수 있도록 + 도와 달라. + + :ref:`Documentation/process/management-style.rst <managementstyle>` + 이 문서는 리눅스 커널 메인테이너들이 그들의 방법론에 녹아 있는 + 정신을 어떻게 공유하고 운영하는지를 설명한다. 이것은 커널 개발에 입문하는 + 모든 사람들(또는 커널 개발에 작은 호기심이라도 있는 사람들)이 + 읽어야 할 중요한 문서이다. 왜냐하면 이 문서는 커널 메인테이너들의 + 독특한 행동에 관하여 흔히 있는 오해들과 혼란들을 해소하고 있기 + 때문이다. + + :ref:`Documentation/process/stable-kernel-rules.rst <stable_kernel_rules>` + 이 문서는 안정적인 커널 배포가 이루어지는 규칙을 설명하고 있으며 + 여러분들이 이러한 배포들 중 하나에 변경을 하길 원한다면 + 무엇을 해야 하는지를 설명한다. + + :ref:`Documentation/process/kernel-docs.rst <kernel_docs>` + 커널 개발에 관계된 외부 문서의 리스트이다. 커널 내의 포함된 문서들 + 중에 여러분이 찾고 싶은 문서를 발견하지 못할 경우 이 리스트를 + 살펴보라. + + :ref:`Documentation/process/applying-patches.rst <applying_patches>` + 패치가 무엇이며 그것을 커널의 다른 개발 브랜치들에 어떻게 + 적용하는지에 관하여 자세히 설명하고 있는 좋은 입문서이다. + +커널은 소스 코드 그 자체에서 또는 이것과 같은 ReStructuredText 마크업 (ReST) 을 +통해 자동적으로 만들어질 수 있는 많은 문서들을 가지고 있다. 이것은 커널 내의 +API에 대한 모든 설명, 그리고 락킹을 올바르게 처리하는 법에 관한 규칙을 포함하고 +있다. + +모든 그런 문서들은 커널 소스 디렉토리에서 다음 커맨드를 실행하는 것을 통해 PDF +나 HTML 의 형태로 만들어질 수 있다:: + + make pdfdocs + make htmldocs + +ReST 마크업을 사용하는 문서들은 Documentation/output 에 생성된다. 해당 +문서들은 다음의 커맨드를 사용하면 LaTeX 이나 ePub 로도 만들어질 수 있다:: + + make latexdocs + make epubdocs + +커널 개발자가 되는 것 +--------------------- + +여러분이 리눅스 커널 개발에 관하여 아무것도 모른다면 Linux KernelNewbies +프로젝트를 봐야 한다. + + https://kernelnewbies.org + +그곳은 거의 모든 종류의 기본적인 커널 개발 질문들(질문하기 전에 먼저 +아카이브를 찾아봐라. 과거에 이미 답변되었을 수도 있다)을 할 수 있는 도움이 +될만한 메일링 리스트가 있다. 또한 실시간으로 질문 할 수 있는 IRC 채널도 +가지고 있으며 리눅스 커널 개발을 배우는 데 유용한 문서들을 보유하고 있다. + +웹사이트는 코드구성, 서브시스템들, 그리고 현재 프로젝트들 +(트리 내, 외부에 존재하는)에 관한 기본적인 정보들을 가지고 있다. 또한 +그곳은 커널 컴파일이나 패치를 하는 법과 같은 기본적인 것들을 설명한다. + +여러분이 어디서 시작해야 할진 모르지만 커널 개발 커뮤니티에 참여할 수 +있는 일들을 찾길 원한다면 리눅스 커널 Janitor 프로젝트를 살펴봐라. + + https://kernelnewbies.org/KernelJanitors + +그곳은 시작하기에 훌륭한 장소이다. 그곳은 리눅스 커널 소스 트리내에 +간단히 정리되고 수정될 수 있는 문제들에 관하여 설명한다. 여러분은 이 +프로젝트를 대표하는 개발자들과 일하면서 자신의 패치를 리눅스 커널 트리에 +반영하기 위한 기본적인 것들을 배우게 될것이며 여러분이 아직 아이디어를 +가지고 있지 않다면 다음에 무엇을 해야할지에 관한 방향을 배울 수 있을 +것이다. + +리눅스 커널 코드에 실제 변경을 하기 전에 반드시 그 코드가 어떻게 +동작하는지 이해하고 있어야 한다. 코드를 분석하기 위하여 특정한 툴의 +도움을 빌려서라도 코드를 직접 읽는 것보다 좋은 것은 없다(대부분의 +자잘한 부분들은 잘 코멘트되어 있다). 그런 툴들 중에 특히 추천할만한 +것은 Linux Cross-Reference project이며 그것은 자기 참조 방식이며 +소스코드를 인덱스된 웹 페이지들의 형태로 보여준다. 최신의 멋진 커널 +코드 저장소는 다음을 통하여 참조할 수 있다. + + https://elixir.bootlin.com/ + + +개발 프로세스 +------------- + +리눅스 커널 개발 프로세스는 현재 몇몇 다른 메인 커널 "브랜치들"과 +서브시스템에 특화된 커널 브랜치들로 구성된다. 몇몇 다른 메인 +브랜치들은 다음과 같다. + + - 리누스의 메인라인 트리 + - 여러 메이저 넘버를 갖는 다양한 안정된 커널 트리들 + - 서브시스템을 위한 커널 트리들 + - 통합 테스트를 위한 linux-next 커널 트리 + +메인라인 트리 +~~~~~~~~~~~~~ + +메인라인 트리는 Linus Torvalds가 관리하며 https://kernel.org 또는 소스 +저장소에서 참조될 수 있다.개발 프로세스는 다음과 같다. + + - 새로운 커널이 배포되자마자 2주의 시간이 주어진다. 이 기간동은 + 메인테이너들은 큰 diff들을 Linus에게 제출할 수 있다. 대개 이 패치들은 + 몇 주 동안 linux-next 커널내에 이미 있었던 것들이다. 큰 변경들을 제출하는 + 데 선호되는 방법은 git(커널의 소스 관리 툴, 더 많은 정보들은 + https://git-scm.com/ 에서 참조할 수 있다)를 사용하는 것이지만 순수한 + 패치파일의 형식으로 보내는 것도 무관하다. + - 2주 후에 -rc1 커널이 릴리즈되며 여기서부터의 주안점은 새로운 커널을 + 가능한한 안정되게 하는 것이다. 이 시점에서의 대부분의 패치들은 + 회귀(역자주: 이전에는 존재하지 않았지만 새로운 기능추가나 변경으로 인해 + 생겨난 버그)를 고쳐야 한다. 이전부터 존재한 버그는 회귀가 아니므로, 그런 + 버그에 대한 수정사항은 중요한 경우에만 보내져야 한다. 완전히 새로운 + 드라이버(혹은 파일시스템)는 -rc1 이후에만 받아들여진다는 것을 기억해라. + 왜냐하면 변경이 자체내에서만 발생하고 추가된 코드가 드라이버 외부의 다른 + 부분에는 영향을 주지 않으므로 그런 변경은 회귀를 일으킬 만한 위험을 가지고 + 있지 않기 때문이다. -rc1이 배포된 이후에 git를 사용하여 패치들을 Linus에게 + 보낼수 있지만 패치들은 공식적인 메일링 리스트로 보내서 검토를 받을 필요가 + 있다. + - 새로운 -rc는 Linus가 현재 git tree가 테스트 하기에 충분히 안정된 상태에 + 있다고 판단될 때마다 배포된다. 목표는 새로운 -rc 커널을 매주 배포하는 + 것이다. + - 이러한 프로세스는 커널이 "준비(ready)"되었다고 여겨질때까지 계속된다. + 프로세스는 대체로 6주간 지속된다. + +커널 배포에 있어서 언급할만한 가치가 있는 리눅스 커널 메일링 리스트의 +Andrew Morton의 글이 있다. + + *"커널이 언제 배포될지는 아무도 모른다. 왜냐하면 배포는 알려진 + 버그의 상황에 따라 배포되는 것이지 미리정해 놓은 시간에 따라 + 배포되는 것은 아니기 때문이다."* + +여러 메이저 넘버를 갖는 다양한 안정된 커널 트리들 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +세개의 버젼 넘버로 이루어진 버젼의 커널들은 -stable 커널들이다. 그것들은 해당 +메이저 메인라인 릴리즈에서 발견된 큰 회귀들이나 보안 문제들 중 비교적 작고 +중요한 수정들을 포함한다. 주요 stable 시리즈 릴리즈는 세번째 버젼 넘버를 +증가시키며 앞의 두 버젼 넘버는 그대로 유지한다. + +이것은 가장 최근의 안정적인 커널을 원하는 사용자에게 추천되는 브랜치이며, +개발/실험적 버젼을 테스트하는 것을 돕고자 하는 사용자들과는 별로 관련이 없다. + +-stable 트리들은 "stable" 팀<stable@vger.kernel.org>에 의해 관리되며 거의 매번 +격주로 배포된다. + +커널 트리 문서들 내의 :ref:`Documentation/process/stable-kernel-rules.rst <stable_kernel_rules>` +파일은 어떤 종류의 변경들이 -stable 트리로 들어왔는지와 +배포 프로세스가 어떻게 진행되는지를 설명한다. + +서브시스템 커널 트리들 +~~~~~~~~~~~~~~~~~~~~~~ + +다양한 커널 서브시스템의 메인테이너들 --- 그리고 많은 커널 서브시스템 개발자들 +--- 은 그들의 현재 개발 상태를 소스 저장소로 노출한다. 이를 통해 다른 사람들도 +커널의 다른 영역에 어떤 변화가 이루어지고 있는지 알 수 있다. 급속히 개발이 +진행되는 영역이 있고 그렇지 않은 영역이 있으므로, 개발자는 다른 개발자가 제출한 +수정 사항과 자신의 수정사항의 충돌이나 동일한 일을 동시에 두사람이 따로 +진행하는 사태를 방지하기 위해 급속히 개발이 진행되고 있는 영역에 작업의 +베이스를 맞춰줄 것이 요구된다. + +대부분의 이러한 저장소는 git 트리지만, git이 아닌 SCM으로 관리되거나, quilt +시리즈로 제공되는 패치들도 존재한다. 이러한 서브시스템 저장소들은 MAINTAINERS +파일에 나열되어 있다. 대부분은 https://git.kernel.org 에서 볼 수 있다. + +제안된 패치는 서브시스템 트리에 커밋되기 전에 메일링 리스트를 통해 +리뷰된다(아래의 관련 섹션을 참고하기 바란다). 일부 커널 서브시스템의 경우, 이 +리뷰 프로세스는 patchwork라는 도구를 통해 추적된다. patchwork은 등록된 패치와 +패치에 대한 코멘트, 패치의 버젼을 볼 수 있는 웹 인터페이스를 제공하고, +메인테이너는 패치를 리뷰 중, 리뷰 통과, 또는 반려됨으로 표시할 수 있다. +대부분의 이러한 patchwork 사이트는 https://patchwork.kernel.org/ 에 나열되어 +있다. + +통합 테스트를 위한 linux-next 커널 트리 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +서브시스템 트리들의 변경사항들은 mainline 트리로 들어오기 전에 통합 테스트를 +거쳐야 한다. 이런 목적으로, 모든 서브시스템 트리의 변경사항을 거의 매일 +받아가는 특수한 테스트 저장소가 존재한다: + + https://git.kernel.org/?p=linux/kernel/git/next/linux-next.git + +이런 식으로, linux-next 커널을 통해 다음 머지 기간에 메인라인 커널에 어떤 +변경이 가해질 것인지 간략히 알 수 있다. 모험심 강한 테스터라면 linux-next +커널에서 테스트를 수행하는 것도 좋을 것이다. + + +버그 보고 +--------- + +https://bugzilla.kernel.org 는 리눅스 커널 개발자들이 커널의 버그를 추적하는 +곳이다. 사용자들은 발견한 모든 버그들을 보고하기 위하여 이 툴을 사용할 것을 +권장한다. kernel bugzilla를 사용하는 자세한 방법은 다음을 참조하라. + + https://bugzilla.kernel.org/page.cgi?id=faq.html + +메인 커널 소스 디렉토리에 있는 :ref:`admin-guide/reporting-bugs.rst <reportingbugs>` +파일은 커널 버그라고 생각되는 것을 보고하는 방법에 관한 좋은 템플릿이며 문제를 +추적하기 위해서 커널 개발자들이 필요로 하는 정보가 무엇들인지를 상세히 설명하고 +있다. + + +버그 리포트들의 관리 +-------------------- + +여러분의 해킹 기술을 연습하는 가장 좋은 방법 중의 하는 다른 사람들이 +보고한 버그들을 수정하는 것이다. 여러분은 커널을 더욱 안정화시키는데 +도움을 줄 뿐만이 아니라 실제있는 문제들을 수정하는 법을 배우게 되고 +그와 함께 여러분들의 기술은 향상될 것이며 다른 개발자들이 여러분의 +존재에 대해 알게 될 것이다. 버그를 수정하는 것은 개발자들 사이에서 +점수를 얻을 수 있는 가장 좋은 방법중의 하나이다. 왜냐하면 많은 사람들은 +다른 사람들의 버그들을 수정하기 위하여 시간을 낭비하지 않기 때문이다. + +이미 보고된 버그 리포트들을 가지고 작업하기 위해서 https://bugzilla.kernel.org +를 참조하라. + + +메일링 리스트들 +--------------- + +위의 몇몇 문서들이 설명하였지만 핵심 커널 개발자들의 대다수는 +리눅스 커널 메일링 리스트에 참여하고 있다. 리스트에 등록하고 해지하는 +방법에 관한 자세한 사항은 다음에서 참조할 수 있다. + + http://vger.kernel.org/vger-lists.html#linux-kernel + +웹상의 많은 다른 곳에도 메일링 리스트의 아카이브들이 있다. +이러한 아카이브들을 찾으려면 검색 엔진을 사용하라. 예를 들어: + + http://dir.gmane.org/gmane.linux.kernel + +여러분이 새로운 문제에 관해 리스트에 올리기 전에 말하고 싶은 주제에 관한 +것을 아카이브에서 먼저 찾아보기를 강력히 권장한다. 이미 상세하게 토론된 많은 +것들이 메일링 리스트의 아카이브에 기록되어 있다. + +각각의 커널 서브시스템들의 대부분은 자신들의 개발에 관한 노력들로 이루어진 +분리된 메일링 리스트를 따로 가지고 있다. 다른 그룹들이 무슨 리스트를 가지고 +있는지는 MAINTAINERS 파일을 참조하라. + +많은 리스트들은 kernel.org에서 호스트되고 있다. 그 정보들은 다음에서 참조될 수 있다. + + http://vger.kernel.org/vger-lists.html + +리스트들을 사용할 때는 올바른 예절을 따를 것을 유념해라. +대단하진 않지만 다음 URL은 리스트(혹은 모든 리스트)와 대화하는 몇몇 간단한 +가이드라인을 가지고 있다. + + http://www.albion.com/netiquette/ + +여러 사람들이 여러분의 메일에 응답한다면 CC: 즉 수신 리스트는 꽤 커지게 +될 것이다. 아무 이유없이 CC에서 어떤 사람도 제거하거나 리스트 주소로만 +회신하지 마라. 메일을 보낸 사람으로서 하나를 받고 리스트로부터 또 +하나를 받아 두번 받는 것에 익숙하여 있으니 mail-header를 조작하려고 하지 +말아라. 사람들은 그런 것을 좋아하지 않을 것이다. + +여러분의 회신의 문맥을 원래대로 유지해야 한다. 여러분들의 회신의 윗부분에 +"John 커널해커는 작성했다...."를 유지하며 여러분들의 의견을 그 메일의 윗부분에 +작성하지 말고 각 인용한 단락들 사이에 넣어라. + +여러분들이 패치들을 메일에 넣는다면 그것들은 +:ref:`Documentation/process/submitting-patches.rst <submittingpatches>` 에 +나와있는데로 명백히(plain) 읽을 수 있는 텍스트여야 한다. 커널 개발자들은 +첨부파일이나 압축된 패치들을 원하지 않는다. 그들은 여러분들의 패치의 +각 라인 단위로 코멘트를 하길 원하며 압축하거나 첨부하지 않고 보내는 것이 +그렇게 할 수 있는 유일한 방법이다. 여러분들이 사용하는 메일 프로그램이 +스페이스나 탭 문자들을 조작하지 않는지 확인하라. 가장 좋은 첫 테스트는 +메일을 자신에게 보내보고 스스로 그 패치를 적용해보라. 그것이 동작하지 +않는다면 여러분의 메일 프로그램을 고치던가 제대로 동작하는 프로그램으로 +바꾸어라. + +무엇보다도 메일링 리스트의 다른 구독자들에게 보여주려 한다는 것을 기억하라. + + +커뮤니티와 협력하는 법 +---------------------- + +커널 커뮤니티의 목적은 가능한한 가장 좋은 커널을 제공하는 것이다. 여러분이 +받아들여질 패치를 제출하게 되면 그 패치의 기술적인 이점으로 검토될 것이다. +그럼 여러분들은 무엇을 기대하고 있어야 하는가? + + - 비판 + - 의견 + - 변경을 위한 요구 + - 당위성을 위한 요구 + - 침묵 + +기억하라. 이것들은 여러분의 패치가 커널로 들어가기 위한 과정이다. 여러분의 +패치들은 비판과 다른 의견을 받을 수 있고 그것들을 기술적인 레벨로 평가하고 +재작업하거나 또는 왜 수정하면 안되는지에 관하여 명료하고 간결한 이유를 +말할 수 있어야 한다. 여러분이 제출한 것에 어떤 응답도 있지 않다면 몇 일을 +기다려보고 다시 시도해라. 때론 너무 많은 메일들 속에 묻혀버리기도 한다. + +여러분은 무엇을 해서는 안되는가? + + - 여러분의 패치가 아무 질문 없이 받아들여지기를 기대하는 것 + - 방어적이 되는 것 + - 의견을 무시하는 것 + - 요청된 변경을 하지 않고 패치를 다시 제출하는 것 + +가능한한 가장 좋은 기술적인 해답을 찾고 있는 커뮤니티에서는 항상 +어떤 패치가 얼마나 좋은지에 관하여 다른 의견들이 있을 수 있다. 여러분은 +협조적이어야 하고 기꺼이 여러분의 생각을 커널 내에 맞추어야 한다. 아니면 +적어도 여러분의 것이 가치있다는 것을 증명하여야 한다. 잘못된 것도 여러분이 +올바른 방향의 해결책으로 이끌어갈 의지가 있다면 받아들여질 것이라는 점을 +기억하라. + +여러분의 첫 패치에 여러분이 수정해야하는 십여개 정도의 회신이 오는 +경우도 흔하다. 이것은 여러분의 패치가 받아들여지지 않을 것이라는 것을 +의미하는 것이 아니고 개인적으로 여러분에게 감정이 있어서 그러는 것도 +아니다. 간단히 여러분의 패치에 제기된 문제들을 수정하고 그것을 다시 +보내라. + + +커널 커뮤니티와 기업 조직간의 차이점 +------------------------------------ +커널 커뮤니티는 가장 전통적인 회사의 개발 환경과는 다르다. 여기에 여러분들의 +문제를 피하기 위한 목록이 있다. + + 여러분들이 제안한 변경들에 관하여 말할 때 좋은 것들 : + + - "이것은 여러 문제들을 해결합니다." + - "이것은 2000 라인의 코드를 줄입니다." + - "이것은 내가 말하려는 것에 관해 설명하는 패치입니다." + - "나는 5개의 다른 아키텍쳐에서 그것을 테스트 했으므로..." + - "여기에 일련의 작은 패치들이 있으므로..." + - "이것은 일반적인 머신에서 성능을 향상함으로..." + + 여러분들이 말할 때 피해야 할 좋지 않은 것들 : + + - "우리는 그것을 AIX/ptx/Solaris에서 이러한 방법으로 했다. 그러므로 그것은 좋은 것임에 틀림없다..." + - "나는 20년동안 이것을 해왔다. 그러므로..." + - "이것은 돈을 벌기위해 나의 회사가 필요로 하는 것이다." + - "이것은 우리의 엔터프라이즈 상품 라인을 위한 것이다." + - "여기에 나의 생각을 말하고 있는 1000 페이지 설계 문서가 있다." + - "나는 6달동안 이것을 했으니..." + - "여기에 5000 라인 짜리 패치가 있으니..." + - "나는 현재 뒤죽박죽인 것을 재작성했다. 그리고 여기에..." + - "나는 마감시한을 가지고 있으므로 이 패치는 지금 적용될 필요가 있다." + +커널 커뮤니티가 전통적인 소프트웨어 엔지니어링 개발 환경들과 +또 다른 점은 얼굴을 보지 않고 일한다는 점이다. 이메일과 irc를 대화의 +주요수단으로 사용하는 것의 한가지 장점은 성별이나 인종의 차별이 +없다는 것이다. 리눅스 커널의 작업 환경에서는 단지 이메일 주소만 +알수 있기 때문에 여성과 소수 민족들도 모두 받아들여진다. 국제적으로 +일하게 되는 측면은 사람의 이름에 근거하여 성별을 추측할 수 없게 +하기때문에 차별을 없애는 데 도움을 준다. Andrea라는 이름을 가진 남자와 +Pat이라는 이름을 가진 여자가 있을 수도 있는 것이다. 리눅스 커널에서 +작업하며 생각을 표현해왔던 대부분의 여성들은 긍정적인 경험을 가지고 +있다. + +언어 장벽은 영어에 익숙하지 않은 몇몇 사람들에게 문제가 될 수도 있다. +언어의 훌륭한 구사는 메일링 리스트에서 올바르게 자신의 생각을 +표현하기 위하여 필요하다. 그래서 여러분은 이메일을 보내기 전에 +영어를 올바르게 사용하고 있는지를 체크하는 것이 바람직하다. + + +여러분의 변경을 나누어라 +------------------------ + +리눅스 커널 커뮤니티는 한꺼번에 굉장히 큰 코드의 묶음(chunk)을 쉽게 +받아들이지 않는다. 변경은 적절하게 소개되고, 검토되고, 각각의 +부분으로 작게 나누어져야 한다. 이것은 회사에서 하는 것과는 정확히 +반대되는 것이다. 여러분들의 제안은 개발 초기에 일찍이 소개되야 한다. +그래서 여러분들은 자신이 하고 있는 것에 관하여 피드백을 받을 수 있게 +된다. 커뮤니티가 여러분들이 커뮤니티와 함께 일하고 있다는 것을 +느끼도록 만들고 커뮤니티가 여러분의 기능을 위한 쓰레기 장으로써 +사용되지 않고 있다는 것을 느끼게 하자. 그러나 메일링 리스트에 한번에 +50개의 이메일을 보내지는 말아라. 여러분들의 일련의 패치들은 항상 +더 작아야 한다. + +패치를 나누는 이유는 다음과 같다. + +1) 작은 패치들은 여러분의 패치들이 적용될 수 있는 확률을 높여준다. + 왜냐하면 다른 사람들은 정확성을 검증하기 위하여 많은 시간과 노력을 + 들이기를 원하지 않는다. 5줄의 패치는 메인테이너가 거의 몇 초간 힐끗 + 보면 적용될 수 있다. 그러나 500 줄의 패치는 정확성을 검토하기 위하여 + 몇시간이 걸릴 수도 있다(걸리는 시간은 패치의 크기 혹은 다른 것에 + 비례하여 기하급수적으로 늘어난다). + + 패치를 작게 만드는 것은 무엇인가 잘못되었을 때 디버그하는 것을 + 쉽게 만든다. 즉, 그렇게 만드는 것은 매우 큰 패치를 적용한 후에 + 조사하는 것 보다 작은 패치를 적용한 후에 (그리고 몇몇의 것이 + 깨졌을 때) 하나씩 패치들을 제거해가며 디버그 하기 쉽도록 만들어 준다. + +2) 작은 패치들을 보내는 것뿐만 아니라 패치들을 제출하기전에 재작성하고 + 간단하게(혹은 간단한게 재배치하여) 하는 것도 중요하다. + +여기에 커널 개발자 Al Viro의 이야기가 있다. + + *"학생의 수학 숙제를 채점하는 선생님을 생각해보라. 선생님은 학생들이 + 답을 얻을때까지 겪은 시행착오를 보길 원하지 않는다. 선생님들은 + 간결하고 가장 뛰어난 답을 보길 원한다. 훌륭한 학생은 이것을 알고 + 마지막으로 답을 얻기 전 중간 과정들을 제출하진 않는다.* + + *커널 개발도 마찬가지이다. 메인테이너들과 검토하는 사람들은 문제를 + 풀어나가는 과정속에 숨겨진 과정을 보길 원하진 않는다. 그들은 + 간결하고 멋진 답을 보길 원한다."* + +커뮤니티와 협력하며 뛰어난 답을 찾는 것과 여러분들의 끝마치지 못한 작업들 +사이에 균형을 유지해야 하는 것은 어려울지도 모른다. 그러므로 프로세스의 +초반에 여러분의 작업을 향상시키기위한 피드백을 얻는 것 뿐만 아니라 +여러분들의 변경들을 작은 묶음으로 유지해서 심지어는 여러분의 작업의 +모든 부분이 지금은 포함될 준비가 되어있지 않지만 작은 부분은 벌써 +받아들여질 수 있도록 유지하는 것이 바람직하다. + +또한 완성되지 않았고 "나중에 수정될 것이다." 와 같은 것들을 포함하는 +패치들은 받아들여지지 않을 것이라는 점을 유념하라. + + +변경을 정당화해라 +----------------- + +여러분들의 나누어진 패치들을 리눅스 커뮤니티가 왜 반영해야 하는지를 +알도록 하는 것은 매우 중요하다. 새로운 기능들이 필요하고 유용하다는 +것은 반드시 그에 합당한 이유가 있어야 한다. + + +변경을 문서화해라 +----------------- + +여러분이 패치를 보내려 할때는 여러분이 무엇을 말하려고 하는지를 충분히 +생각하여 이메일을 작성해야 한다. 이 정보는 패치를 위한 ChangeLog가 될 +것이다. 그리고 항상 그 내용을 보길 원하는 모든 사람들을 위해 보존될 +것이다. 패치는 완벽하게 다음과 같은 내용들을 포함하여 설명해야 한다. + + - 변경이 왜 필요한지 + - 패치에 관한 전체 설계 접근(approach) + - 구현 상세들 + - 테스트 결과들 + +이것이 무엇인지 더 자세한 것을 알고 싶다면 다음 문서의 ChageLog 항을 봐라. + + "The Perfect Patch" + + http://www.ozlabs.org/~akpm/stuff/tpp.txt + + +이 모든 것을 하는 것은 매우 어려운 일이다. 완벽히 소화하는 데는 적어도 몇년이 +걸릴 수도 있다. 많은 인내와 결심이 필요한 계속되는 개선의 과정이다. 그러나 +가능한한 포기하지 말라. 많은 사람들은 이전부터 해왔던 것이고 그 사람들도 +정확하게 여러분들이 지금 서 있는 그 곳부터 시작했었다. + + + + +---------- + +"개발 프로세스"(https://lwn.net/Articles/94386/) 섹션을 +작성하는데 있어 참고할 문서를 사용하도록 허락해준 Paolo Ciarrocchi에게 +감사한다. 여러분들이 말해야 할 것과 말해서는 안되는 것의 목록 중 일부를 제공해준 +Randy Dunlap과 Gerrit Huizenga에게 감사한다. 또한 검토와 의견 그리고 +공헌을 아끼지 않은 Pat Mochel, Hanna Linder, Randy Dunlap, Kay Sievers, +Vojtech Pavlik, Jan Kara, Josh Boyer, Kees Cook, Andrew Morton, Andi Kleen, +Vadim Lobanov, Jesper Juhl, Adrian Bunk, Keri Harris, Frans Pop, +David A. Wheeler, Junio Hamano, Michael Kerrisk, and Alex Shepard에게도 감사를 전한다. +그들의 도움이 없었다면 이 문서는 존재하지 않았을 것이다. + + + +메인테이너: Greg Kroah-Hartman <greg@kroah.com> diff --git a/Documentation/translations/ko_KR/index.rst b/Documentation/translations/ko_KR/index.rst new file mode 100644 index 000000000..27995c423 --- /dev/null +++ b/Documentation/translations/ko_KR/index.rst @@ -0,0 +1,12 @@ +.. raw:: latex + + \renewcommand\thesection* + \renewcommand\thesubsection* + +한국어 번역 +=========== + +.. toctree:: + :maxdepth: 1 + + howto diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt new file mode 100644 index 000000000..64d932f5d --- /dev/null +++ b/Documentation/translations/ko_KR/memory-barriers.txt @@ -0,0 +1,2931 @@ +NOTE: +This is a version of Documentation/memory-barriers.txt translated into Korean. +This document is maintained by SeongJae Park <sj38.park@gmail.com>. +If you find any difference between this document and the original file or +a problem with the translation, please contact the maintainer of this file. + +Please also note that the purpose of this file is to be easier to +read for non English (read: Korean) speakers and is not intended as +a fork. So if you have any comments or updates for this file please +update the original English file first. The English version is +definitive, and readers should look there if they have any doubt. + +=================================== +이 문서는 +Documentation/memory-barriers.txt +의 한글 번역입니다. + +역자: 박성재 <sj38.park@gmail.com> +=================================== + + + ========================= + 리눅스 커널 메모리 배리어 + ========================= + +저자: David Howells <dhowells@redhat.com> + Paul E. McKenney <paulmck@linux.ibm.com> + Will Deacon <will.deacon@arm.com> + Peter Zijlstra <peterz@infradead.org> + +======== +면책조항 +======== + +이 문서는 명세서가 아닙니다; 이 문서는 완벽하지 않은데, 간결성을 위해 의도된 +부분도 있고, 의도하진 않았지만 사람에 의해 쓰였다보니 불완전한 부분도 있습니다. +이 문서는 리눅스에서 제공하는 다양한 메모리 배리어들을 사용하기 위한 +안내서입니다만, 뭔가 이상하다 싶으면 (그런게 많을 겁니다) 질문을 부탁드립니다. +일부 이상한 점들은 공식적인 메모리 일관성 모델과 tools/memory-model/ 에 있는 +관련 문서를 참고해서 해결될 수 있을 겁니다. 그러나, 이 메모리 모델조차도 그 +관리자들의 의견의 집합으로 봐야지, 절대 옳은 예언자로 신봉해선 안될 겁니다. + +다시 말하지만, 이 문서는 리눅스가 하드웨어에 기대하는 사항에 대한 명세서가 +아닙니다. + +이 문서의 목적은 두가지입니다: + + (1) 어떤 특정 배리어에 대해 기대할 수 있는 최소한의 기능을 명세하기 위해서, + 그리고 + + (2) 사용 가능한 배리어들에 대해 어떻게 사용해야 하는지에 대한 안내를 제공하기 + 위해서. + +어떤 아키텍쳐는 특정한 배리어들에 대해서는 여기서 이야기하는 최소한의 +요구사항들보다 많은 기능을 제공할 수도 있습니다만, 여기서 이야기하는 +요구사항들을 충족하지 않는 아키텍쳐가 있다면 그 아키텍쳐가 잘못된 것이란 점을 +알아두시기 바랍니다. + +또한, 특정 아키텍쳐에서 일부 배리어는 해당 아키텍쳐의 특수한 동작 방식으로 인해 +해당 배리어의 명시적 사용이 불필요해서 no-op 이 될수도 있음을 알아두시기 +바랍니다. + +역자: 본 번역 역시 완벽하지 않은데, 이 역시 부분적으로는 의도된 것이기도 +합니다. 여타 기술 문서들이 그렇듯 완벽한 이해를 위해서는 번역문과 원문을 함께 +읽으시되 번역문을 하나의 가이드로 활용하시길 추천드리며, 발견되는 오역 등에 +대해서는 언제든 의견을 부탁드립니다. 과한 번역으로 인한 오해를 최소화하기 위해 +애매한 부분이 있을 경우에는 어색함이 있더라도 원래의 용어를 차용합니다. + + +===== +목차: +===== + + (*) 추상 메모리 액세스 모델. + + - 디바이스 오퍼레이션. + - 보장사항. + + (*) 메모리 배리어란 무엇인가? + + - 메모리 배리어의 종류. + - 메모리 배리어에 대해 가정해선 안될 것. + - 데이터 의존성 배리어 (역사적). + - 컨트롤 의존성. + - SMP 배리어 짝맞추기. + - 메모리 배리어 시퀀스의 예. + - 읽기 메모리 배리어 vs 로드 예측. + - Multicopy 원자성. + + (*) 명시적 커널 배리어. + + - 컴파일러 배리어. + - CPU 메모리 배리어. + + (*) 암묵적 커널 메모리 배리어. + + - 락 Acquisition 함수. + - 인터럽트 비활성화 함수. + - 슬립과 웨이크업 함수. + - 그외의 함수들. + + (*) CPU 간 ACQUIRING 배리어의 효과. + + - Acquire vs 메모리 액세스. + + (*) 메모리 배리어가 필요한 곳 + + - 프로세서간 상호 작용. + - 어토믹 오퍼레이션. + - 디바이스 액세스. + - 인터럽트. + + (*) 커널 I/O 배리어의 효과. + + (*) 가정되는 가장 완화된 실행 순서 모델. + + (*) CPU 캐시의 영향. + + - 캐시 일관성. + - 캐시 일관성 vs DMA. + - 캐시 일관성 vs MMIO. + + (*) CPU 들이 저지르는 일들. + + - 그리고, Alpha 가 있다. + - 가상 머신 게스트. + + (*) 사용 예. + + - 순환식 버퍼. + + (*) 참고 문헌. + + +======================= +추상 메모리 액세스 모델 +======================= + +다음과 같이 추상화된 시스템 모델을 생각해 봅시다: + + : : + : : + : : + +-------+ : +--------+ : +-------+ + | | : | | : | | + | | : | | : | | + | CPU 1 |<----->| Memory |<----->| CPU 2 | + | | : | | : | | + | | : | | : | | + +-------+ : +--------+ : +-------+ + ^ : ^ : ^ + | : | : | + | : | : | + | : v : | + | : +--------+ : | + | : | | : | + | : | | : | + +---------->| Device |<----------+ + : | | : + : | | : + : +--------+ : + : : + +프로그램은 여러 메모리 액세스 오퍼레이션을 발생시키고, 각각의 CPU 는 그런 +프로그램들을 실행합니다. 추상화된 CPU 모델에서 메모리 오퍼레이션들의 순서는 +매우 완화되어 있고, CPU 는 프로그램이 인과관계를 어기지 않는 상태로 관리된다고 +보일 수만 있다면 메모리 오퍼레이션을 자신이 원하는 어떤 순서대로든 재배치해 +동작시킬 수 있습니다. 비슷하게, 컴파일러 또한 프로그램의 정상적 동작을 해치지 +않는 한도 내에서는 어떤 순서로든 자신이 원하는 대로 인스트럭션을 재배치 할 수 +있습니다. + +따라서 위의 다이어그램에서 한 CPU가 동작시키는 메모리 오퍼레이션이 만들어내는 +변화는 해당 오퍼레이션이 CPU 와 시스템의 다른 부분들 사이의 인터페이스(점선)를 +지나가면서 시스템의 나머지 부분들에 인지됩니다. + + +예를 들어, 다음의 일련의 이벤트들을 생각해 봅시다: + + CPU 1 CPU 2 + =============== =============== + { A == 1; B == 2 } + A = 3; x = B; + B = 4; y = A; + +다이어그램의 가운데에 위치한 메모리 시스템에 보여지게 되는 액세스들은 다음의 총 +24개의 조합으로 재구성될 수 있습니다: + + STORE A=3, STORE B=4, y=LOAD A->3, x=LOAD B->4 + STORE A=3, STORE B=4, x=LOAD B->4, y=LOAD A->3 + STORE A=3, y=LOAD A->3, STORE B=4, x=LOAD B->4 + STORE A=3, y=LOAD A->3, x=LOAD B->2, STORE B=4 + STORE A=3, x=LOAD B->2, STORE B=4, y=LOAD A->3 + STORE A=3, x=LOAD B->2, y=LOAD A->3, STORE B=4 + STORE B=4, STORE A=3, y=LOAD A->3, x=LOAD B->4 + STORE B=4, ... + ... + +따라서 다음의 네가지 조합의 값들이 나올 수 있습니다: + + x == 2, y == 1 + x == 2, y == 3 + x == 4, y == 1 + x == 4, y == 3 + + +한발 더 나아가서, 한 CPU 가 메모리 시스템에 반영한 스토어 오퍼레이션들의 결과는 +다른 CPU 에서의 로드 오퍼레이션을 통해 인지되는데, 이 때 스토어가 반영된 순서와 +다른 순서로 인지될 수도 있습니다. + + +예로, 아래의 일련의 이벤트들을 생각해 봅시다: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C == 3, P == &A, Q == &C } + B = 4; Q = P; + P = &B D = *Q; + +D 로 읽혀지는 값은 CPU 2 에서 P 로부터 읽혀진 주소값에 의존적이기 때문에 여기엔 +분명한 데이터 의존성이 있습니다. 하지만 이 이벤트들의 실행 결과로는 아래의 +결과들이 모두 나타날 수 있습니다: + + (Q == &A) and (D == 1) + (Q == &B) and (D == 2) + (Q == &B) and (D == 4) + +CPU 2 는 *Q 의 로드를 요청하기 전에 P 를 Q 에 넣기 때문에 D 에 C 를 집어넣는 +일은 없음을 알아두세요. + + +디바이스 오퍼레이션 +------------------- + +일부 디바이스는 자신의 컨트롤 인터페이스를 메모리의 특정 영역으로 매핑해서 +제공하는데(Memory mapped I/O), 해당 컨트롤 레지스터에 접근하는 순서는 매우 +중요합니다. 예를 들어, 어드레스 포트 레지스터 (A) 와 데이터 포트 레지스터 (D) +를 통해 접근되는 내부 레지스터 집합을 갖는 이더넷 카드를 생각해 봅시다. 내부의 +5번 레지스터를 읽기 위해 다음의 코드가 사용될 수 있습니다: + + *A = 5; + x = *D; + +하지만, 이건 다음의 두 조합 중 하나로 만들어질 수 있습니다: + + STORE *A = 5, x = LOAD *D + x = LOAD *D, STORE *A = 5 + +두번째 조합은 데이터를 읽어온 _후에_ 주소를 설정하므로, 오동작을 일으킬 겁니다. + + +보장사항 +-------- + +CPU 에게 기대할 수 있는 최소한의 보장사항 몇가지가 있습니다: + + (*) 어떤 CPU 든, 의존성이 존재하는 메모리 액세스들은 해당 CPU 자신에게 + 있어서는 순서대로 메모리 시스템에 수행 요청됩니다. 즉, 다음에 대해서: + + Q = READ_ONCE(P); D = READ_ONCE(*Q); + + CPU 는 다음과 같은 메모리 오퍼레이션 시퀀스를 수행 요청합니다: + + Q = LOAD P, D = LOAD *Q + + 그리고 그 시퀀스 내에서의 순서는 항상 지켜집니다. 하지만, DEC Alpha 에서 + READ_ONCE() 는 메모리 배리어 명령도 내게 되어 있어서, DEC Alpha CPU 는 + 다음과 같은 메모리 오퍼레이션들을 내놓게 됩니다: + + Q = LOAD P, MEMORY_BARRIER, D = LOAD *Q, MEMORY_BARRIER + + DEC Alpha 에서 수행되든 아니든, READ_ONCE() 는 컴파일러로부터의 악영향 + 또한 제거합니다. + + (*) 특정 CPU 내에서 겹치는 영역의 메모리에 행해지는 로드와 스토어 들은 해당 + CPU 안에서는 순서가 바뀌지 않은 것으로 보여집니다. 즉, 다음에 대해서: + + a = READ_ONCE(*X); WRITE_ONCE(*X, b); + + CPU 는 다음의 메모리 오퍼레이션 시퀀스만을 메모리에 요청할 겁니다: + + a = LOAD *X, STORE *X = b + + 그리고 다음에 대해서는: + + WRITE_ONCE(*X, c); d = READ_ONCE(*X); + + CPU 는 다음의 수행 요청만을 만들어 냅니다: + + STORE *X = c, d = LOAD *X + + (로드 오퍼레이션과 스토어 오퍼레이션이 겹치는 메모리 영역에 대해 + 수행된다면 해당 오퍼레이션들은 겹친다고 표현됩니다). + +그리고 _반드시_ 또는 _절대로_ 가정하거나 가정하지 말아야 하는 것들이 있습니다: + + (*) 컴파일러가 READ_ONCE() 나 WRITE_ONCE() 로 보호되지 않은 메모리 액세스를 + 당신이 원하는 대로 할 것이라는 가정은 _절대로_ 해선 안됩니다. 그것들이 + 없다면, 컴파일러는 컴파일러 배리어 섹션에서 다루게 될, 모든 "창의적인" + 변경들을 만들어낼 권한을 갖게 됩니다. + + (*) 개별적인 로드와 스토어들이 주어진 순서대로 요청될 것이라는 가정은 _절대로_ + 하지 말아야 합니다. 이 말은 곧: + + X = *A; Y = *B; *D = Z; + + 는 다음의 것들 중 어느 것으로든 만들어질 수 있다는 의미입니다: + + X = LOAD *A, Y = LOAD *B, STORE *D = Z + X = LOAD *A, STORE *D = Z, Y = LOAD *B + Y = LOAD *B, X = LOAD *A, STORE *D = Z + Y = LOAD *B, STORE *D = Z, X = LOAD *A + STORE *D = Z, X = LOAD *A, Y = LOAD *B + STORE *D = Z, Y = LOAD *B, X = LOAD *A + + (*) 겹치는 메모리 액세스들은 합쳐지거나 버려질 수 있음을 _반드시_ 가정해야 + 합니다. 다음의 코드는: + + X = *A; Y = *(A + 4); + + 다음의 것들 중 뭐든 될 수 있습니다: + + X = LOAD *A; Y = LOAD *(A + 4); + Y = LOAD *(A + 4); X = LOAD *A; + {X, Y} = LOAD {*A, *(A + 4) }; + + 그리고: + + *A = X; *(A + 4) = Y; + + 는 다음 중 뭐든 될 수 있습니다: + + STORE *A = X; STORE *(A + 4) = Y; + STORE *(A + 4) = Y; STORE *A = X; + STORE {*A, *(A + 4) } = {X, Y}; + +그리고 보장사항에 반대되는 것들(anti-guarantees)이 있습니다: + + (*) 이 보장사항들은 bitfield 에는 적용되지 않는데, 컴파일러들은 bitfield 를 + 수정하는 코드를 생성할 때 원자성 없는(non-atomic) 읽고-수정하고-쓰는 + 인스트럭션들의 조합을 만드는 경우가 많기 때문입니다. 병렬 알고리즘의 + 동기화에 bitfield 를 사용하려 하지 마십시오. + + (*) bitfield 들이 여러 락으로 보호되는 경우라 하더라도, 하나의 bitfield 의 + 모든 필드들은 하나의 락으로 보호되어야 합니다. 만약 한 bitfield 의 두 + 필드가 서로 다른 락으로 보호된다면, 컴파일러의 원자성 없는 + 읽고-수정하고-쓰는 인스트럭션 조합은 한 필드에의 업데이트가 근처의 + 필드에도 영향을 끼치게 할 수 있습니다. + + (*) 이 보장사항들은 적절하게 정렬되고 크기가 잡힌 스칼라 변수들에 대해서만 + 적용됩니다. "적절하게 크기가 잡힌" 이라함은 현재로써는 "char", "short", + "int" 그리고 "long" 과 같은 크기의 변수들을 의미합니다. "적절하게 정렬된" + 은 자연스런 정렬을 의미하는데, 따라서 "char" 에 대해서는 아무 제약이 없고, + "short" 에 대해서는 2바이트 정렬을, "int" 에는 4바이트 정렬을, 그리고 + "long" 에 대해서는 32-bit 시스템인지 64-bit 시스템인지에 따라 4바이트 또는 + 8바이트 정렬을 의미합니다. 이 보장사항들은 C11 표준에서 소개되었으므로, + C11 전의 오래된 컴파일러(예를 들어, gcc 4.6) 를 사용할 때엔 주의하시기 + 바랍니다. 표준에 이 보장사항들은 "memory location" 을 정의하는 3.14 + 섹션에 다음과 같이 설명되어 있습니다: + (역자: 인용문이므로 번역하지 않습니다) + + memory location + either an object of scalar type, or a maximal sequence + of adjacent bit-fields all having nonzero width + + NOTE 1: Two threads of execution can update and access + separate memory locations without interfering with + each other. + + NOTE 2: A bit-field and an adjacent non-bit-field member + are in separate memory locations. The same applies + to two bit-fields, if one is declared inside a nested + structure declaration and the other is not, or if the two + are separated by a zero-length bit-field declaration, + or if they are separated by a non-bit-field member + declaration. It is not safe to concurrently update two + bit-fields in the same structure if all members declared + between them are also bit-fields, no matter what the + sizes of those intervening bit-fields happen to be. + + +========================= +메모리 배리어란 무엇인가? +========================= + +앞에서 봤듯이, 상호간 의존성이 없는 메모리 오퍼레이션들은 실제로는 무작위적 +순서로 수행될 수 있으며, 이는 CPU 와 CPU 간의 상호작용이나 I/O 에 문제가 될 수 +있습니다. 따라서 컴파일러와 CPU 가 순서를 바꾸는데 제약을 걸 수 있도록 개입할 +수 있는 어떤 방법이 필요합니다. + +메모리 배리어는 그런 개입 수단입니다. 메모리 배리어는 배리어를 사이에 둔 앞과 +뒤 양측의 메모리 오퍼레이션들 간에 부분적 순서가 존재하도록 하는 효과를 줍니다. + +시스템의 CPU 들과 여러 디바이스들은 성능을 올리기 위해 명령어 재배치, 실행 +유예, 메모리 오퍼레이션들의 조합, 예측적 로드(speculative load), 브랜치 +예측(speculative branch prediction), 다양한 종류의 캐싱(caching) 등의 다양한 +트릭을 사용할 수 있기 때문에 이런 강제력은 중요합니다. 메모리 배리어들은 이런 +트릭들을 무효로 하거나 억제하는 목적으로 사용되어져서 코드가 여러 CPU 와 +디바이스들 간의 상호작용을 정상적으로 제어할 수 있게 해줍니다. + + +메모리 배리어의 종류 +-------------------- + +메모리 배리어는 네개의 기본 타입으로 분류됩니다: + + (1) 쓰기 (또는 스토어) 메모리 배리어. + + 쓰기 메모리 배리어는 시스템의 다른 컴포넌트들에 해당 배리어보다 앞서 + 명시된 모든 STORE 오퍼레이션들이 해당 배리어 뒤에 명시된 모든 STORE + 오퍼레이션들보다 먼저 수행된 것으로 보일 것을 보장합니다. + + 쓰기 배리어는 스토어 오퍼레이션들에 대한 부분적 순서 세우기입니다; 로드 + 오퍼레이션들에 대해서는 어떤 영향도 끼치지 않습니다. + + CPU 는 시간의 흐름에 따라 메모리 시스템에 일련의 스토어 오퍼레이션들을 + 하나씩 요청해 집어넣습니다. 쓰기 배리어 앞의 모든 스토어 오퍼레이션들은 + 쓰기 배리어 뒤의 모든 스토어 오퍼레이션들보다 _앞서_ 수행될 겁니다. + + [!] 쓰기 배리어들은 읽기 또는 데이터 의존성 배리어와 함께 짝을 맞춰 + 사용되어야만 함을 알아두세요; "SMP 배리어 짝맞추기" 서브섹션을 참고하세요. + + + (2) 데이터 의존성 배리어. + + 데이터 의존성 배리어는 읽기 배리어의 보다 완화된 형태입니다. 두개의 로드 + 오퍼레이션이 있고 두번째 것이 첫번째 것의 결과에 의존하고 있을 때(예: + 두번째 로드가 참조할 주소를 첫번째 로드가 읽는 경우), 두번째 로드가 읽어올 + 데이터는 첫번째 로드에 의해 그 주소가 얻어진 뒤에 업데이트 됨을 보장하기 + 위해서 데이터 의존성 배리어가 필요할 수 있습니다. + + 데이터 의존성 배리어는 상호 의존적인 로드 오퍼레이션들 사이의 부분적 순서 + 세우기입니다; 스토어 오퍼레이션들이나 독립적인 로드들, 또는 중복되는 + 로드들에 대해서는 어떤 영향도 끼치지 않습니다. + + (1) 에서 언급했듯이, 시스템의 CPU 들은 메모리 시스템에 일련의 스토어 + 오퍼레이션들을 던져 넣고 있으며, 거기에 관심이 있는 다른 CPU 는 그 + 오퍼레이션들을 메모리 시스템이 실행한 결과를 인지할 수 있습니다. 이처럼 + 다른 CPU 의 스토어 오퍼레이션의 결과에 관심을 두고 있는 CPU 가 수행 요청한 + 데이터 의존성 배리어는, 배리어 앞의 어떤 로드 오퍼레이션이 다른 CPU 에서 + 던져 넣은 스토어 오퍼레이션과 같은 영역을 향했다면, 그런 스토어 + 오퍼레이션들이 만들어내는 결과가 데이터 의존성 배리어 뒤의 로드 + 오퍼레이션들에게는 보일 것을 보장합니다. + + 이 순서 세우기 제약에 대한 그림을 보기 위해선 "메모리 배리어 시퀀스의 예" + 서브섹션을 참고하시기 바랍니다. + + [!] 첫번째 로드는 반드시 _데이터_ 의존성을 가져야지 컨트롤 의존성을 가져야 + 하는게 아님을 알아두십시오. 만약 두번째 로드를 위한 주소가 첫번째 로드에 + 의존적이지만 그 의존성은 조건적이지 그 주소 자체를 가져오는게 아니라면, + 그것은 _컨트롤_ 의존성이고, 이 경우에는 읽기 배리어나 그보다 강력한 + 무언가가 필요합니다. 더 자세한 내용을 위해서는 "컨트롤 의존성" 서브섹션을 + 참고하시기 바랍니다. + + [!] 데이터 의존성 배리어는 보통 쓰기 배리어들과 함께 짝을 맞춰 사용되어야 + 합니다; "SMP 배리어 짝맞추기" 서브섹션을 참고하세요. + + + (3) 읽기 (또는 로드) 메모리 배리어. + + 읽기 배리어는 데이터 의존성 배리어 기능의 보장사항에 더해서 배리어보다 + 앞서 명시된 모든 LOAD 오퍼레이션들이 배리어 뒤에 명시되는 모든 LOAD + 오퍼레이션들보다 먼저 행해진 것으로 시스템의 다른 컴포넌트들에 보여질 것을 + 보장합니다. + + 읽기 배리어는 로드 오퍼레이션에 행해지는 부분적 순서 세우기입니다; 스토어 + 오퍼레이션에 대해서는 어떤 영향도 끼치지 않습니다. + + 읽기 메모리 배리어는 데이터 의존성 배리어를 내장하므로 데이터 의존성 + 배리어를 대신할 수 있습니다. + + [!] 읽기 배리어는 일반적으로 쓰기 배리어들과 함께 짝을 맞춰 사용되어야 + 합니다; "SMP 배리어 짝맞추기" 서브섹션을 참고하세요. + + + (4) 범용 메모리 배리어. + + 범용(general) 메모리 배리어는 배리어보다 앞서 명시된 모든 LOAD 와 STORE + 오퍼레이션들이 배리어 뒤에 명시된 모든 LOAD 와 STORE 오퍼레이션들보다 + 먼저 수행된 것으로 시스템의 나머지 컴포넌트들에 보이게 됨을 보장합니다. + + 범용 메모리 배리어는 로드와 스토어 모두에 대한 부분적 순서 세우기입니다. + + 범용 메모리 배리어는 읽기 메모리 배리어, 쓰기 메모리 배리어 모두를 + 내장하므로, 두 배리어를 모두 대신할 수 있습니다. + + +그리고 두개의 명시적이지 않은 타입이 있습니다: + + (5) ACQUIRE 오퍼레이션. + + 이 타입의 오퍼레이션은 단방향의 투과성 배리어처럼 동작합니다. ACQUIRE + 오퍼레이션 뒤의 모든 메모리 오퍼레이션들이 ACQUIRE 오퍼레이션 후에 + 일어난 것으로 시스템의 나머지 컴포넌트들에 보이게 될 것이 보장됩니다. + LOCK 오퍼레이션과 smp_load_acquire(), smp_cond_load_acquire() 오퍼레이션도 + ACQUIRE 오퍼레이션에 포함됩니다. + + ACQUIRE 오퍼레이션 앞의 메모리 오퍼레이션들은 ACQUIRE 오퍼레이션 완료 후에 + 수행된 것처럼 보일 수 있습니다. + + ACQUIRE 오퍼레이션은 거의 항상 RELEASE 오퍼레이션과 짝을 지어 사용되어야 + 합니다. + + + (6) RELEASE 오퍼레이션. + + 이 타입의 오퍼레이션들도 단방향 투과성 배리어처럼 동작합니다. RELEASE + 오퍼레이션 앞의 모든 메모리 오퍼레이션들은 RELEASE 오퍼레이션 전에 완료된 + 것으로 시스템의 다른 컴포넌트들에 보여질 것이 보장됩니다. UNLOCK 류의 + 오퍼레이션들과 smp_store_release() 오퍼레이션도 RELEASE 오퍼레이션의 + 일종입니다. + + RELEASE 오퍼레이션 뒤의 메모리 오퍼레이션들은 RELEASE 오퍼레이션이 + 완료되기 전에 행해진 것처럼 보일 수 있습니다. + + ACQUIRE 와 RELEASE 오퍼레이션의 사용은 일반적으로 다른 메모리 배리어의 + 필요성을 없앱니다. 또한, RELEASE+ACQUIRE 조합은 범용 메모리 배리어처럼 + 동작할 것을 보장하지 -않습니다-. 하지만, 어떤 변수에 대한 RELEASE + 오퍼레이션을 앞서는 메모리 액세스들의 수행 결과는 이 RELEASE 오퍼레이션을 + 뒤이어 같은 변수에 대해 수행된 ACQUIRE 오퍼레이션을 뒤따르는 메모리 + 액세스에는 보여질 것이 보장됩니다. 다르게 말하자면, 주어진 변수의 + 크리티컬 섹션에서는, 해당 변수에 대한 앞의 크리티컬 섹션에서의 모든 + 액세스들이 완료되었을 것을 보장합니다. + + 즉, ACQUIRE 는 최소한의 "취득" 동작처럼, 그리고 RELEASE 는 최소한의 "공개" + 처럼 동작한다는 의미입니다. + +atomic_t.txt 에 설명된 어토믹 오퍼레이션들 중 일부는 완전히 순서잡힌 것들과 +(배리어를 사용하지 않는) 완화된 순서의 것들 외에 ACQUIRE 와 RELEASE 부류의 +것들도 존재합니다. 로드와 스토어를 모두 수행하는 조합된 어토믹 오퍼레이션에서, +ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE 는 해당 +오퍼레이션의 스토어 부분에만 적용됩니다. + +메모리 배리어들은 두 CPU 간, 또는 CPU 와 디바이스 간에 상호작용의 가능성이 있을 +때에만 필요합니다. 만약 어떤 코드에 그런 상호작용이 없을 것이 보장된다면, 해당 +코드에서는 메모리 배리어를 사용할 필요가 없습니다. + + +이것들은 _최소한의_ 보장사항들임을 알아두세요. 다른 아키텍쳐에서는 더 강력한 +보장사항을 제공할 수도 있습니다만, 그런 보장사항은 아키텍쳐 종속적 코드 이외의 +부분에서는 신뢰되지 _않을_ 겁니다. + + +메모리 배리어에 대해 가정해선 안될 것 +------------------------------------- + +리눅스 커널 메모리 배리어들이 보장하지 않는 것들이 있습니다: + + (*) 메모리 배리어 앞에서 명시된 어떤 메모리 액세스도 메모리 배리어 명령의 수행 + 완료 시점까지 _완료_ 될 것이란 보장은 없습니다; 배리어가 하는 일은 CPU 의 + 액세스 큐에 특정 타입의 액세스들은 넘을 수 없는 선을 긋는 것으로 생각될 수 + 있습니다. + + (*) 한 CPU 에서 메모리 배리어를 수행하는게 시스템의 다른 CPU 나 하드웨어에 + 어떤 직접적인 영향을 끼친다는 보장은 존재하지 않습니다. 배리어 수행이 + 만드는 간접적 영향은 두번째 CPU 가 첫번째 CPU 의 액세스들의 결과를 + 바라보는 순서가 됩니다만, 다음 항목을 보세요: + + (*) 첫번째 CPU 가 두번째 CPU 의 메모리 액세스들의 결과를 바라볼 때, _설령_ + 두번째 CPU 가 메모리 배리어를 사용한다 해도, 첫번째 CPU _또한_ 그에 맞는 + 메모리 배리어를 사용하지 않는다면 ("SMP 배리어 짝맞추기" 서브섹션을 + 참고하세요) 그 결과가 올바른 순서로 보여진다는 보장은 없습니다. + + (*) CPU 바깥의 하드웨어[*] 가 메모리 액세스들의 순서를 바꾸지 않는다는 보장은 + 존재하지 않습니다. CPU 캐시 일관성 메커니즘은 메모리 배리어의 간접적 + 영향을 CPU 사이에 전파하긴 하지만, 순서대로 전파하지는 않을 수 있습니다. + + [*] 버스 마스터링 DMA 와 일관성에 대해서는 다음을 참고하시기 바랍니다: + + Documentation/driver-api/pci/pci.rst + Documentation/core-api/dma-api-howto.rst + Documentation/core-api/dma-api.rst + + +데이터 의존성 배리어 (역사적) +----------------------------- + +리눅스 커널 v4.15 기준으로, smp_mb() 가 DEC Alpha 용 READ_ONCE() 코드에 +추가되었는데, 이는 이 섹션에 주의를 기울여야 하는 사람들은 DEC Alpha 아키텍쳐 +전용 코드를 만드는 사람들과 READ_ONCE() 자체를 만드는 사람들 뿐임을 의미합니다. +그런 분들을 위해, 그리고 역사에 관심 있는 분들을 위해, 여기 데이터 의존성 +배리어에 대한 이야기를 적습니다. + +데이터 의존성 배리어의 사용에 있어 지켜야 하는 사항들은 약간 미묘하고, 데이터 +의존성 배리어가 사용되어야 하는 상황도 항상 명백하지는 않습니다. 설명을 위해 +다음의 이벤트 시퀀스를 생각해 봅시다: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C == 3, P == &A, Q == &C } + B = 4; + <쓰기 배리어> + WRITE_ONCE(P, &B) + Q = READ_ONCE(P); + D = *Q; + +여기엔 분명한 데이터 의존성이 존재하므로, 이 시퀀스가 끝났을 때 Q 는 &A 또는 &B +일 것이고, 따라서: + + (Q == &A) 는 (D == 1) 를, + (Q == &B) 는 (D == 4) 를 의미합니다. + +하지만! CPU 2 는 B 의 업데이트를 인식하기 전에 P 의 업데이트를 인식할 수 있고, +따라서 다음의 결과가 가능합니다: + + (Q == &B) and (D == 2) ???? + +이런 결과는 일관성이나 인과 관계 유지가 실패한 것처럼 보일 수도 있겠지만, +그렇지 않습니다, 그리고 이 현상은 (DEC Alpha 와 같은) 여러 CPU 에서 실제로 +발견될 수 있습니다. + +이 문제 상황을 제대로 해결하기 위해, 데이터 의존성 배리어나 그보다 강화된 +무언가가 주소를 읽어올 때와 데이터를 읽어올 때 사이에 추가되어야만 합니다: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C == 3, P == &A, Q == &C } + B = 4; + <쓰기 배리어> + WRITE_ONCE(P, &B); + Q = READ_ONCE(P); + <데이터 의존성 배리어> + D = *Q; + +이 변경은 앞의 처음 두가지 결과 중 하나만이 발생할 수 있고, 세번째의 결과는 +발생할 수 없도록 합니다. + + +[!] 이 상당히 반직관적인 상황은 분리된 캐시를 가지는 기계들에서 가장 잘 +발생하는데, 예를 들면 한 캐시 뱅크는 짝수 번호의 캐시 라인들을 처리하고, 다른 +뱅크는 홀수 번호의 캐시 라인들을 처리하는 경우임을 알아두시기 바랍니다. 포인터 +P 는 짝수 번호 캐시 라인에 저장되어 있고, 변수 B 는 홀수 번호 캐시 라인에 +저장되어 있을 수 있습니다. 여기서 값을 읽어오는 CPU 의 캐시의 홀수 번호 처리 +뱅크는 열심히 일감을 처리중인 반면 홀수 번호 처리 뱅크는 할 일 없이 한가한 +중이라면 포인터 P (&B) 의 새로운 값과 변수 B 의 기존 값 (2) 를 볼 수 있습니다. + + +의존적 쓰기들의 순서를 맞추는데에는 데이터 의존성 배리어가 필요치 않은데, 이는 +리눅스 커널이 지원하는 CPU 들은 (1) 쓰기가 정말로 일어날지, (2) 쓰기가 어디에 +이루어질지, 그리고 (3) 쓰여질 값을 확실히 알기 전까지는 쓰기를 수행하지 않기 +때문입니다. 하지만 "컨트롤 의존성" 섹션과 +Documentation/RCU/rcu_dereference.rst 파일을 주의 깊게 읽어 주시기 바랍니다: +컴파일러는 매우 창의적인 많은 방법으로 종속성을 깰 수 있습니다. + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C = 3, P == &A, Q == &C } + B = 4; + <쓰기 배리어> + WRITE_ONCE(P, &B); + Q = READ_ONCE(P); + WRITE_ONCE(*Q, 5); + +따라서, Q 로의 읽기와 *Q 로의 쓰기 사이에는 데이터 종속성 배리어가 필요치 +않습니다. 달리 말하면, 데이터 종속성 배리어가 없더라도 다음 결과는 생기지 +않습니다: + + (Q == &B) && (B == 4) + +이런 패턴은 드물게 사용되어야 함을 알아 두시기 바랍니다. 무엇보다도, 의존성 +순서 규칙의 의도는 쓰기 작업을 -예방- 해서 그로 인해 발생하는 비싼 캐시 미스도 +없애려는 것입니다. 이 패턴은 드물게 발생하는 에러 조건 같은것들을 기록하는데 +사용될 수 있으며, CPU의 자연적인 순서 보장이 그런 기록들을 사라지지 않게 +해줍니다. + + +데이터 의존성에 의해 제공되는 이 순서규칙은 이를 포함하고 있는 CPU 에 +지역적임을 알아두시기 바랍니다. 더 많은 정보를 위해선 "Multicopy 원자성" +섹션을 참고하세요. + + +데이터 의존성 배리어는 매우 중요한데, 예를 들어 RCU 시스템에서 그렇습니다. +include/linux/rcupdate.h 의 rcu_assign_pointer() 와 rcu_dereference() 를 +참고하세요. 여기서 데이터 의존성 배리어는 RCU 로 관리되는 포인터의 타겟을 현재 +타겟에서 수정된 새로운 타겟으로 바꾸는 작업에서 새로 수정된 타겟이 초기화가 +완료되지 않은 채로 보여지는 일이 일어나지 않게 해줍니다. + +더 많은 예를 위해선 "캐시 일관성" 서브섹션을 참고하세요. + + +컨트롤 의존성 +------------- + +현재의 컴파일러들은 컨트롤 의존성을 이해하고 있지 않기 때문에 컨트롤 의존성은 +약간 다루기 어려울 수 있습니다. 이 섹션의 목적은 여러분이 컴파일러의 무시로 +인해 여러분의 코드가 망가지는 걸 막을 수 있도록 돕는겁니다. + +로드-로드 컨트롤 의존성은 데이터 의존성 배리어만으로는 정확히 동작할 수가 +없어서 읽기 메모리 배리어를 필요로 합니다. 아래의 코드를 봅시다: + + q = READ_ONCE(a); + if (q) { + <데이터 의존성 배리어> /* BUG: No data dependency!!! */ + p = READ_ONCE(b); + } + +이 코드는 원하는 대로의 효과를 내지 못할 수 있는데, 이 코드에는 데이터 의존성이 +아니라 컨트롤 의존성이 존재하기 때문으로, 이런 상황에서 CPU 는 실행 속도를 더 +빠르게 하기 위해 분기 조건의 결과를 예측하고 코드를 재배치 할 수 있어서 다른 +CPU 는 b 로부터의 로드 오퍼레이션이 a 로부터의 로드 오퍼레이션보다 먼저 발생한 +걸로 인식할 수 있습니다. 여기에 정말로 필요했던 건 다음과 같습니다: + + q = READ_ONCE(a); + if (q) { + <읽기 배리어> + p = READ_ONCE(b); + } + +하지만, 스토어 오퍼레이션은 예측적으로 수행되지 않습니다. 즉, 다음 예에서와 +같이 로드-스토어 컨트롤 의존성이 존재하는 경우에는 순서가 -지켜진다-는 +의미입니다. + + q = READ_ONCE(a); + if (q) { + WRITE_ONCE(b, 1); + } + +컨트롤 의존성은 보통 다른 타입의 배리어들과 짝을 맞춰 사용됩니다. 그렇다곤 +하나, READ_ONCE() 도 WRITE_ONCE() 도 선택사항이 아니라 필수사항임을 부디 +명심하세요! READ_ONCE() 가 없다면, 컴파일러는 'a' 로부터의 로드를 'a' 로부터의 +또다른 로드와 조합할 수 있습니다. WRITE_ONCE() 가 없다면, 컴파일러는 'b' 로의 +스토어를 'b' 로의 또라느 스토어들과 조합할 수 있습니다. 두 경우 모두 순서에 +있어 상당히 비직관적인 결과를 초래할 수 있습니다. + +이걸로 끝이 아닌게, 컴파일러가 변수 'a' 의 값이 항상 0이 아니라고 증명할 수 +있다면, 앞의 예에서 "if" 문을 없애서 다음과 같이 최적화 할 수도 있습니다: + + q = a; + b = 1; /* BUG: Compiler and CPU can both reorder!!! */ + +그러니 READ_ONCE() 를 반드시 사용하세요. + +다음과 같이 "if" 문의 양갈래 브랜치에 모두 존재하는 동일한 스토어에 대해 순서를 +강제하고 싶은 경우가 있을 수 있습니다: + + q = READ_ONCE(a); + if (q) { + barrier(); + WRITE_ONCE(b, 1); + do_something(); + } else { + barrier(); + WRITE_ONCE(b, 1); + do_something_else(); + } + +안타깝게도, 현재의 컴파일러들은 높은 최적화 레벨에서는 이걸 다음과 같이 +바꿔버립니다: + + q = READ_ONCE(a); + barrier(); + WRITE_ONCE(b, 1); /* BUG: No ordering vs. load from a!!! */ + if (q) { + /* WRITE_ONCE(b, 1); -- moved up, BUG!!! */ + do_something(); + } else { + /* WRITE_ONCE(b, 1); -- moved up, BUG!!! */ + do_something_else(); + } + +이제 'a' 에서의 로드와 'b' 로의 스토어 사이에는 조건적 관계가 없기 때문에 CPU +는 이들의 순서를 바꿀 수 있게 됩니다: 이런 경우에 조건적 관계는 반드시 +필요한데, 모든 컴파일러 최적화가 이루어지고 난 후의 어셈블리 코드에서도 +마찬가지입니다. 따라서, 이 예에서 순서를 지키기 위해서는 smp_store_release() +와 같은 명시적 메모리 배리어가 필요합니다: + + q = READ_ONCE(a); + if (q) { + smp_store_release(&b, 1); + do_something(); + } else { + smp_store_release(&b, 1); + do_something_else(); + } + +반면에 명시적 메모리 배리어가 없다면, 이런 경우의 순서는 스토어 오퍼레이션들이 +서로 다를 때에만 보장되는데, 예를 들면 다음과 같은 경우입니다: + + q = READ_ONCE(a); + if (q) { + WRITE_ONCE(b, 1); + do_something(); + } else { + WRITE_ONCE(b, 2); + do_something_else(); + } + +처음의 READ_ONCE() 는 컴파일러가 'a' 의 값을 증명해내는 것을 막기 위해 여전히 +필요합니다. + +또한, 로컬 변수 'q' 를 가지고 하는 일에 대해 주의해야 하는데, 그러지 않으면 +컴파일러는 그 값을 추측하고 또다시 필요한 조건관계를 없애버릴 수 있습니다. +예를 들면: + + q = READ_ONCE(a); + if (q % MAX) { + WRITE_ONCE(b, 1); + do_something(); + } else { + WRITE_ONCE(b, 2); + do_something_else(); + } + +만약 MAX 가 1 로 정의된 상수라면, 컴파일러는 (q % MAX) 는 0이란 것을 알아채고, +위의 코드를 아래와 같이 바꿔버릴 수 있습니다: + + q = READ_ONCE(a); + WRITE_ONCE(b, 2); + do_something_else(); + +이렇게 되면, CPU 는 변수 'a' 로부터의 로드와 변수 'b' 로의 스토어 사이의 순서를 +지켜줄 필요가 없어집니다. barrier() 를 추가해 해결해 보고 싶겠지만, 그건 +도움이 안됩니다. 조건 관계는 사라졌고, barrier() 는 이를 되돌리지 못합니다. +따라서, 이 순서를 지켜야 한다면, MAX 가 1 보다 크다는 것을, 다음과 같은 방법을 +사용해 분명히 해야 합니다: + + q = READ_ONCE(a); + BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */ + if (q % MAX) { + WRITE_ONCE(b, 1); + do_something(); + } else { + WRITE_ONCE(b, 2); + do_something_else(); + } + +'b' 로의 스토어들은 여전히 서로 다름을 알아두세요. 만약 그것들이 동일하면, +앞에서 이야기했듯, 컴파일러가 그 스토어 오퍼레이션들을 'if' 문 바깥으로 +끄집어낼 수 있습니다. + +또한 이진 조건문 평가에 너무 의존하지 않도록 조심해야 합니다. 다음의 예를 +봅시다: + + q = READ_ONCE(a); + if (q || 1 > 0) + WRITE_ONCE(b, 1); + +첫번째 조건만으로는 브랜치 조건 전체를 거짓으로 만들 수 없고 두번째 조건은 항상 +참이기 때문에, 컴파일러는 이 예를 다음과 같이 바꿔서 컨트롤 의존성을 없애버릴 +수 있습니다: + + q = READ_ONCE(a); + WRITE_ONCE(b, 1); + +이 예는 컴파일러가 코드를 추측으로 수정할 수 없도록 분명히 해야 한다는 점을 +강조합니다. 조금 더 일반적으로 말해서, READ_ONCE() 는 컴파일러에게 주어진 로드 +오퍼레이션을 위한 코드를 정말로 만들도록 하지만, 컴파일러가 그렇게 만들어진 +코드의 수행 결과를 사용하도록 강제하지는 않습니다. + +또한, 컨트롤 의존성은 if 문의 then 절과 else 절에 대해서만 적용됩니다. 상세히 +말해서, 컨트롤 의존성은 if 문을 뒤따르는 코드에는 적용되지 않습니다: + + q = READ_ONCE(a); + if (q) { + WRITE_ONCE(b, 1); + } else { + WRITE_ONCE(b, 2); + } + WRITE_ONCE(c, 1); /* BUG: No ordering against the read from 'a'. */ + +컴파일러는 volatile 타입에 대한 액세스를 재배치 할 수 없고 이 조건 하의 'b' +로의 쓰기를 재배치 할 수 없기 때문에 여기에 순서 규칙이 존재한다고 주장하고 +싶을 겁니다. 불행히도 이 경우에, 컴파일러는 다음의 가상의 pseudo-assembly 언어 +코드처럼 'b' 로의 두개의 쓰기 오퍼레이션을 conditional-move 인스트럭션으로 +번역할 수 있습니다: + + ld r1,a + cmp r1,$0 + cmov,ne r4,$1 + cmov,eq r4,$2 + st r4,b + st $1,c + +완화된 순서 규칙의 CPU 는 'a' 로부터의 로드와 'c' 로의 스토어 사이에 어떤 +종류의 의존성도 갖지 않을 겁니다. 이 컨트롤 의존성은 두개의 cmov 인스트럭션과 +거기에 의존하는 스토어 에게만 적용될 겁니다. 짧게 말하자면, 컨트롤 의존성은 +주어진 if 문의 then 절과 else 절에게만 (그리고 이 두 절 내에서 호출되는 +함수들에게까지) 적용되지, 이 if 문을 뒤따르는 코드에는 적용되지 않습니다. + + +컨트롤 의존성에 의해 제공되는 이 순서규칙은 이를 포함하고 있는 CPU 에 +지역적입니다. 더 많은 정보를 위해선 "Multicopy 원자성" 섹션을 참고하세요. + + +요약하자면: + + (*) 컨트롤 의존성은 앞의 로드들을 뒤의 스토어들에 대해 순서를 맞춰줍니다. + 하지만, 그 외의 어떤 순서도 보장하지 -않습니다-: 앞의 로드와 뒤의 로드들 + 사이에도, 앞의 스토어와 뒤의 스토어들 사이에도요. 이런 다른 형태의 + 순서가 필요하다면 smp_rmb() 나 smp_wmb()를, 또는, 앞의 스토어들과 뒤의 + 로드들 사이의 순서를 위해서는 smp_mb() 를 사용하세요. + + (*) "if" 문의 양갈래 브랜치가 같은 변수에의 동일한 스토어로 시작한다면, 그 + 스토어들은 각 스토어 앞에 smp_mb() 를 넣거나 smp_store_release() 를 + 사용해서 스토어를 하는 식으로 순서를 맞춰줘야 합니다. 이 문제를 해결하기 + 위해 "if" 문의 양갈래 브랜치의 시작 지점에 barrier() 를 넣는 것만으로는 + 충분한 해결이 되지 않는데, 이는 앞의 예에서 본것과 같이, 컴파일러의 + 최적화는 barrier() 가 의미하는 바를 지키면서도 컨트롤 의존성을 손상시킬 + 수 있기 때문이라는 점을 부디 알아두시기 바랍니다. + + (*) 컨트롤 의존성은 앞의 로드와 뒤의 스토어 사이에 최소 하나의, 실행 + 시점에서의 조건관계를 필요로 하며, 이 조건관계는 앞의 로드와 관계되어야 + 합니다. 만약 컴파일러가 조건 관계를 최적화로 없앨수 있다면, 순서도 + 최적화로 없애버렸을 겁니다. READ_ONCE() 와 WRITE_ONCE() 의 주의 깊은 + 사용은 주어진 조건 관계를 유지하는데 도움이 될 수 있습니다. + + (*) 컨트롤 의존성을 위해선 컴파일러가 조건관계를 없애버리는 것을 막아야 + 합니다. 주의 깊은 READ_ONCE() 나 atomic{,64}_read() 의 사용이 컨트롤 + 의존성이 사라지지 않게 하는데 도움을 줄 수 있습니다. 더 많은 정보를 + 위해선 "컴파일러 배리어" 섹션을 참고하시기 바랍니다. + + (*) 컨트롤 의존성은 컨트롤 의존성을 갖는 if 문의 then 절과 else 절과 이 두 절 + 내에서 호출되는 함수들에만 적용됩니다. 컨트롤 의존성은 컨트롤 의존성을 + 갖는 if 문을 뒤따르는 코드에는 적용되지 -않습니다-. + + (*) 컨트롤 의존성은 보통 다른 타입의 배리어들과 짝을 맞춰 사용됩니다. + + (*) 컨트롤 의존성은 multicopy 원자성을 제공하지 -않습니다-. 모든 CPU 들이 + 특정 스토어를 동시에 보길 원한다면, smp_mb() 를 사용하세요. + + (*) 컴파일러는 컨트롤 의존성을 이해하고 있지 않습니다. 따라서 컴파일러가 + 여러분의 코드를 망가뜨리지 않도록 하는건 여러분이 해야 하는 일입니다. + + +SMP 배리어 짝맞추기 +-------------------- + +CPU 간 상호작용을 다룰 때에 일부 타입의 메모리 배리어는 항상 짝을 맞춰 +사용되어야 합니다. 적절하게 짝을 맞추지 않은 코드는 사실상 에러에 가깝습니다. + +범용 배리어들은 범용 배리어끼리도 짝을 맞추지만 multicopy 원자성이 없는 +대부분의 다른 타입의 배리어들과도 짝을 맞춥니다. ACQUIRE 배리어는 RELEASE +배리어와 짝을 맞춥니다만, 둘 다 범용 배리어를 포함해 다른 배리어들과도 짝을 +맞출 수 있습니다. 쓰기 배리어는 데이터 의존성 배리어나 컨트롤 의존성, ACQUIRE +배리어, RELEASE 배리어, 읽기 배리어, 또는 범용 배리어와 짝을 맞춥니다. +비슷하게 읽기 배리어나 컨트롤 의존성, 또는 데이터 의존성 배리어는 쓰기 배리어나 +ACQUIRE 배리어, RELEASE 배리어, 또는 범용 배리어와 짝을 맞추는데, 다음과 +같습니다: + + CPU 1 CPU 2 + =============== =============== + WRITE_ONCE(a, 1); + <쓰기 배리어> + WRITE_ONCE(b, 2); x = READ_ONCE(b); + <읽기 배리어> + y = READ_ONCE(a); + +또는: + + CPU 1 CPU 2 + =============== =============================== + a = 1; + <쓰기 배리어> + WRITE_ONCE(b, &a); x = READ_ONCE(b); + <데이터 의존성 배리어> + y = *x; + +또는: + + CPU 1 CPU 2 + =============== =============================== + r1 = READ_ONCE(y); + <범용 배리어> + WRITE_ONCE(x, 1); if (r2 = READ_ONCE(x)) { + <묵시적 컨트롤 의존성> + WRITE_ONCE(y, 1); + } + + assert(r1 == 0 || r2 == 0); + +기본적으로, 여기서의 읽기 배리어는 "더 완화된" 타입일 순 있어도 항상 존재해야 +합니다. + +[!] 쓰기 배리어 앞의 스토어 오퍼레이션은 일반적으로 읽기 배리어나 데이터 +의존성 배리어 뒤의 로드 오퍼레이션과 매치될 것이고, 반대도 마찬가지입니다: + + CPU 1 CPU 2 + =================== =================== + WRITE_ONCE(a, 1); }---- --->{ v = READ_ONCE(c); + WRITE_ONCE(b, 2); } \ / { w = READ_ONCE(d); + <쓰기 배리어> \ <읽기 배리어> + WRITE_ONCE(c, 3); } / \ { x = READ_ONCE(a); + WRITE_ONCE(d, 4); }---- --->{ y = READ_ONCE(b); + + +메모리 배리어 시퀀스의 예 +------------------------- + +첫째, 쓰기 배리어는 스토어 오퍼레이션들의 부분적 순서 세우기로 동작합니다. +아래의 이벤트 시퀀스를 보세요: + + CPU 1 + ======================= + STORE A = 1 + STORE B = 2 + STORE C = 3 + <쓰기 배리어> + STORE D = 4 + STORE E = 5 + +이 이벤트 시퀀스는 메모리 일관성 시스템에 원소끼리의 순서가 존재하지 않는 집합 +{ STORE A, STORE B, STORE C } 가 역시 원소끼리의 순서가 존재하지 않는 집합 +{ STORE D, STORE E } 보다 먼저 일어난 것으로 시스템의 나머지 요소들에 보이도록 +전달됩니다: + + +-------+ : : + | | +------+ + | |------>| C=3 | } /\ + | | : +------+ }----- \ -----> 시스템의 나머지 요소에 + | | : | A=1 | } \/ 보여질 수 있는 이벤트들 + | | : +------+ } + | CPU 1 | : | B=2 | } + | | +------+ } + | | wwwwwwwwwwwwwwww } <--- 여기서 쓰기 배리어는 배리어 앞의 + | | +------+ } 모든 스토어가 배리어 뒤의 스토어 + | | : | E=5 | } 전에 메모리 시스템에 전달되도록 + | | : +------+ } 합니다 + | |------>| D=4 | } + | | +------+ + +-------+ : : + | + | CPU 1 에 의해 메모리 시스템에 전달되는 + | 일련의 스토어 오퍼레이션들 + V + + +둘째, 데이터 의존성 배리어는 데이터 의존적 로드 오퍼레이션들의 부분적 순서 +세우기로 동작합니다. 다음 일련의 이벤트들을 보세요: + + CPU 1 CPU 2 + ======================= ======================= + { B = 7; X = 9; Y = 8; C = &Y } + STORE A = 1 + STORE B = 2 + <쓰기 배리어> + STORE C = &B LOAD X + STORE D = 4 LOAD C (gets &B) + LOAD *C (reads B) + +여기에 별다른 개입이 없다면, CPU 1 의 쓰기 배리어에도 불구하고 CPU 2 는 CPU 1 +의 이벤트들을 완전히 무작위적 순서로 인지하게 됩니다: + + +-------+ : : : : + | | +------+ +-------+ | CPU 2 에 인지되는 + | |------>| B=2 |----- --->| Y->8 | | 업데이트 이벤트 + | | : +------+ \ +-------+ | 시퀀스 + | CPU 1 | : | A=1 | \ --->| C->&Y | V + | | +------+ | +-------+ + | | wwwwwwwwwwwwwwww | : : + | | +------+ | : : + | | : | C=&B |--- | : : +-------+ + | | : +------+ \ | +-------+ | | + | |------>| D=4 | ----------->| C->&B |------>| | + | | +------+ | +-------+ | | + +-------+ : : | : : | | + | : : | | + | : : | CPU 2 | + | +-------+ | | + 분명히 잘못된 ---> | | B->7 |------>| | + B 의 값 인지 (!) | +-------+ | | + | : : | | + | +-------+ | | + X 의 로드가 B 의 ---> \ | X->9 |------>| | + 일관성 유지를 \ +-------+ | | + 지연시킴 ----->| B->2 | +-------+ + +-------+ + : : + + +앞의 예에서, CPU 2 는 (B 의 값이 될) *C 의 값 읽기가 C 의 LOAD 뒤에 이어짐에도 +B 가 7 이라는 결과를 얻습니다. + +하지만, 만약 데이터 의존성 배리어가 C 의 로드와 *C (즉, B) 의 로드 사이에 +있었다면: + + CPU 1 CPU 2 + ======================= ======================= + { B = 7; X = 9; Y = 8; C = &Y } + STORE A = 1 + STORE B = 2 + <쓰기 배리어> + STORE C = &B LOAD X + STORE D = 4 LOAD C (gets &B) + <데이터 의존성 배리어> + LOAD *C (reads B) + +다음과 같이 됩니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| B=2 |----- --->| Y->8 | + | | : +------+ \ +-------+ + | CPU 1 | : | A=1 | \ --->| C->&Y | + | | +------+ | +-------+ + | | wwwwwwwwwwwwwwww | : : + | | +------+ | : : + | | : | C=&B |--- | : : +-------+ + | | : +------+ \ | +-------+ | | + | |------>| D=4 | ----------->| C->&B |------>| | + | | +------+ | +-------+ | | + +-------+ : : | : : | | + | : : | | + | : : | CPU 2 | + | +-------+ | | + | | X->9 |------>| | + | +-------+ | | + C 로의 스토어 앞의 ---> \ ddddddddddddddddd | | + 모든 이벤트 결과가 \ +-------+ | | + 뒤의 로드에게 ----->| B->2 |------>| | + 보이게 강제한다 +-------+ | | + : : +-------+ + + +셋째, 읽기 배리어는 로드 오퍼레이션들에의 부분적 순서 세우기로 동작합니다. +아래의 일련의 이벤트를 봅시다: + + CPU 1 CPU 2 + ======================= ======================= + { A = 0, B = 9 } + STORE A=1 + <쓰기 배리어> + STORE B=2 + LOAD B + LOAD A + +CPU 1 은 쓰기 배리어를 쳤지만, 별다른 개입이 없다면 CPU 2 는 CPU 1 에서 행해진 +이벤트의 결과를 무작위적 순서로 인지하게 됩니다. + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | | A->0 |------>| | + | +-------+ | | + | : : +-------+ + \ : : + \ +-------+ + ---->| A->1 | + +-------+ + : : + + +하지만, 만약 읽기 배리어가 B 의 로드와 A 의 로드 사이에 존재한다면: + + CPU 1 CPU 2 + ======================= ======================= + { A = 0, B = 9 } + STORE A=1 + <쓰기 배리어> + STORE B=2 + LOAD B + <읽기 배리어> + LOAD A + +CPU 1 에 의해 만들어진 부분적 순서가 CPU 2 에도 그대로 인지됩니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | : : | | + | : : | | + 여기서 읽기 배리어는 ----> \ rrrrrrrrrrrrrrrrr | | + B 로의 스토어 전의 \ +-------+ | | + 모든 결과를 CPU 2 에 ---->| A->1 |------>| | + 보이도록 한다 +-------+ | | + : : +-------+ + + +더 완벽한 설명을 위해, A 의 로드가 읽기 배리어 앞과 뒤에 있으면 어떻게 될지 +생각해 봅시다: + + CPU 1 CPU 2 + ======================= ======================= + { A = 0, B = 9 } + STORE A=1 + <쓰기 배리어> + STORE B=2 + LOAD B + LOAD A [first load of A] + <읽기 배리어> + LOAD A [second load of A] + +A 의 로드 두개가 모두 B 의 로드 뒤에 있지만, 서로 다른 값을 얻어올 수 +있습니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | : : | | + | : : | | + | +-------+ | | + | | A->0 |------>| 1st | + | +-------+ | | + 여기서 읽기 배리어는 ----> \ rrrrrrrrrrrrrrrrr | | + B 로의 스토어 전의 \ +-------+ | | + 모든 결과를 CPU 2 에 ---->| A->1 |------>| 2nd | + 보이도록 한다 +-------+ | | + : : +-------+ + + +하지만 CPU 1 에서의 A 업데이트는 읽기 배리어가 완료되기 전에도 보일 수도 +있긴 합니다: + + +-------+ : : : : + | | +------+ +-------+ + | |------>| A=1 |------ --->| A->0 | + | | +------+ \ +-------+ + | CPU 1 | wwwwwwwwwwwwwwww \ --->| B->9 | + | | +------+ | +-------+ + | |------>| B=2 |--- | : : + | | +------+ \ | : : +-------+ + +-------+ : : \ | +-------+ | | + ---------->| B->2 |------>| | + | +-------+ | CPU 2 | + | : : | | + \ : : | | + \ +-------+ | | + ---->| A->1 |------>| 1st | + +-------+ | | + rrrrrrrrrrrrrrrrr | | + +-------+ | | + | A->1 |------>| 2nd | + +-------+ | | + : : +-------+ + + +여기서 보장되는 건, 만약 B 의 로드가 B == 2 라는 결과를 봤다면, A 에의 두번째 +로드는 항상 A == 1 을 보게 될 것이라는 겁니다. A 에의 첫번째 로드에는 그런 +보장이 없습니다; A == 0 이거나 A == 1 이거나 둘 중 하나의 결과를 보게 될겁니다. + + +읽기 메모리 배리어 VS 로드 예측 +------------------------------- + +많은 CPU들이 로드를 예측적으로 (speculatively) 합니다: 어떤 데이터를 메모리에서 +로드해야 하게 될지 예측을 했다면, 해당 데이터를 로드하는 인스트럭션을 실제로는 +아직 만나지 않았더라도 다른 로드 작업이 없어 버스 (bus) 가 아무 일도 하고 있지 +않다면, 그 데이터를 로드합니다. 이후에 실제 로드 인스트럭션이 실행되면 CPU 가 +이미 그 값을 가지고 있기 때문에 그 로드 인스트럭션은 즉시 완료됩니다. + +해당 CPU 는 실제로는 그 값이 필요치 않았다는 사실이 나중에 드러날 수도 있는데 - +해당 로드 인스트럭션이 브랜치로 우회되거나 했을 수 있겠죠 - , 그렇게 되면 앞서 +읽어둔 값을 버리거나 나중의 사용을 위해 캐시에 넣어둘 수 있습니다. + +다음을 생각해 봅시다: + + CPU 1 CPU 2 + ======================= ======================= + LOAD B + DIVIDE } 나누기 명령은 일반적으로 + DIVIDE } 긴 시간을 필요로 합니다 + LOAD A + +는 이렇게 될 수 있습니다: + + : : +-------+ + +-------+ | | + --->| B->2 |------>| | + +-------+ | CPU 2 | + : :DIVIDE | | + +-------+ | | + 나누기 하느라 바쁜 ---> --->| A->0 |~~~~ | | + CPU 는 A 의 LOAD 를 +-------+ ~ | | + 예측해서 수행한다 : : ~ | | + : :DIVIDE | | + : : ~ | | + 나누기가 끝나면 ---> ---> : : ~-->| | + CPU 는 해당 LOAD 를 : : | | + 즉각 완료한다 : : +-------+ + + +읽기 배리어나 데이터 의존성 배리어를 두번째 로드 직전에 놓는다면: + + CPU 1 CPU 2 + ======================= ======================= + LOAD B + DIVIDE + DIVIDE + <읽기 배리어> + LOAD A + +예측으로 얻어진 값은 사용된 배리어의 타입에 따라서 해당 값이 옳은지 검토되게 +됩니다. 만약 해당 메모리 영역에 변화가 없었다면, 예측으로 얻어두었던 값이 +사용됩니다: + + : : +-------+ + +-------+ | | + --->| B->2 |------>| | + +-------+ | CPU 2 | + : :DIVIDE | | + +-------+ | | + 나누기 하느라 바쁜 ---> --->| A->0 |~~~~ | | + CPU 는 A 의 LOAD 를 +-------+ ~ | | + 예측한다 : : ~ | | + : :DIVIDE | | + : : ~ | | + : : ~ | | + rrrrrrrrrrrrrrrr~ | | + : : ~ | | + : : ~-->| | + : : | | + : : +-------+ + + +하지만 다른 CPU 에서 업데이트나 무효화가 있었다면, 그 예측은 무효화되고 그 값은 +다시 읽혀집니다: + + : : +-------+ + +-------+ | | + --->| B->2 |------>| | + +-------+ | CPU 2 | + : :DIVIDE | | + +-------+ | | + 나누기 하느라 바쁜 ---> --->| A->0 |~~~~ | | + CPU 는 A 의 LOAD 를 +-------+ ~ | | + 예측한다 : : ~ | | + : :DIVIDE | | + : : ~ | | + : : ~ | | + rrrrrrrrrrrrrrrrr | | + +-------+ | | + 예측성 동작은 무효화 되고 ---> --->| A->1 |------>| | + 업데이트된 값이 다시 읽혀진다 +-------+ | | + : : +-------+ + + +MULTICOPY 원자성 +---------------- + +Multicopy 원자성은 실제의 컴퓨터 시스템에서 항상 제공되지는 않는, 순서 맞추기에 +대한 상당히 직관적인 개념으로, 특정 스토어가 모든 CPU 들에게 동시에 보여지게 +됨을, 달리 말하자면 모든 CPU 들이 모든 스토어들이 보여지는 순서를 동의하게 되는 +것입니다. 하지만, 완전한 multicopy 원자성의 사용은 가치있는 하드웨어 +최적화들을 무능하게 만들어버릴 수 있어서, 보다 완화된 형태의 ``다른 multicopy +원자성'' 라는 이름의, 특정 스토어가 모든 -다른- CPU 들에게는 동시에 보여지게 +하는 보장을 대신 제공합니다. 이 문서의 뒷부분들은 이 완화된 형태에 대해 논하게 +됩니다만, 단순히 ``multicopy 원자성'' 이라고 부르겠습니다. + +다음의 예가 multicopy 원자성을 보입니다: + + CPU 1 CPU 2 CPU 3 + ======================= ======================= ======================= + { X = 0, Y = 0 } + STORE X=1 r1=LOAD X (reads 1) LOAD Y (reads 1) + <범용 배리어> <읽기 배리어> + STORE Y=r1 LOAD X + +CPU 2 의 Y 로의 스토어에 사용되는 X 로드의 결과가 1 이었고 CPU 3 의 Y 로드가 +1을 리턴했다고 해봅시다. 이는 CPU 1 의 X 로의 스토어가 CPU 2 의 X 로부터의 +로드를 앞서고 CPU 2 의 Y 로의 스토어가 CPU 3 의 Y 로부터의 로드를 앞섬을 +의미합니다. 또한, 여기서의 메모리 배리어들은 CPU 2 가 자신의 로드를 자신의 +스토어 전에 수행하고, CPU 3 가 Y 로부터의 로드를 X 로부터의 로드 전에 수행함을 +보장합니다. 그럼 "CPU 3 의 X 로부터의 로드는 0 을 리턴할 수 있을까요?" + +CPU 3 의 X 로드가 CPU 2 의 로드보다 뒤에 이루어졌으므로, CPU 3 의 X 로부터의 +로드는 1 을 리턴한다고 예상하는게 당연합니다. 이런 예상은 multicopy +원자성으로부터 나옵니다: CPU B 에서 수행된 로드가 CPU A 의 같은 변수로부터의 +로드를 뒤따른다면 (그리고 CPU A 가 자신이 읽은 값으로 먼저 해당 변수에 스토어 +하지 않았다면) multicopy 원자성을 제공하는 시스템에서는, CPU B 의 로드가 CPU A +의 로드와 같은 값 또는 그 나중 값을 리턴해야만 합니다. 하지만, 리눅스 커널은 +시스템들이 multicopy 원자성을 제공할 것을 요구하지 않습니다. + +앞의 범용 메모리 배리어의 사용은 모든 multicopy 원자성의 부족을 보상해줍니다. +앞의 예에서, CPU 2 의 X 로부터의 로드가 1 을 리턴했고 CPU 3 의 Y 로부터의 +로드가 1 을 리턴했다면, CPU 3 의 X 로부터의 로드는 1을 리턴해야만 합니다. + +하지만, 의존성, 읽기 배리어, 쓰기 배리어는 항상 non-multicopy 원자성을 보상해 +주지는 않습니다. 예를 들어, CPU 2 의 범용 배리어가 앞의 예에서 사라져서 +아래처럼 데이터 의존성만 남게 되었다고 해봅시다: + + CPU 1 CPU 2 CPU 3 + ======================= ======================= ======================= + { X = 0, Y = 0 } + STORE X=1 r1=LOAD X (reads 1) LOAD Y (reads 1) + <데이터 의존성> <읽기 배리어> + STORE Y=r1 LOAD X (reads 0) + +이 변화는 non-multicopy 원자성이 만연하게 합니다: 이 예에서, CPU 2 의 X +로부터의 로드가 1을 리턴하고, CPU 3 의 Y 로부터의 로드가 1 을 리턴하는데, CPU 3 +의 X 로부터의 로드가 0 을 리턴하는게 완전히 합법적입니다. + +핵심은, CPU 2 의 데이터 의존성이 자신의 로드와 스토어를 순서짓지만, CPU 1 의 +스토어에 대한 순서는 보장하지 않는다는 것입니다. 따라서, 이 예제가 CPU 1 과 +CPU 2 가 스토어 버퍼나 한 수준의 캐시를 공유하는, multicopy 원자성을 제공하지 +않는 시스템에서 수행된다면 CPU 2 는 CPU 1 의 쓰기에 이른 접근을 할 수도 +있습니다. 따라서, 모든 CPU 들이 여러 접근들의 조합된 순서에 대해서 동의하게 +하기 위해서는 범용 배리어가 필요합니다. + +범용 배리어는 non-multicopy 원자성만 보상할 수 있는게 아니라, -모든- CPU 들이 +-모든- 오퍼레이션들의 순서를 동일하게 인식하게 하는 추가적인 순서 보장을 +만들어냅니다. 반대로, release-acquire 짝의 연결은 이런 추가적인 순서는 +제공하지 않는데, 해당 연결에 들어있는 CPU 들만이 메모리 접근의 조합된 순서에 +대해 동의할 것으로 보장됨을 의미합니다. 예를 들어, 존경스런 Herman Hollerith +의 코드를 C 코드로 변환하면: + + int u, v, x, y, z; + + void cpu0(void) + { + r0 = smp_load_acquire(&x); + WRITE_ONCE(u, 1); + smp_store_release(&y, 1); + } + + void cpu1(void) + { + r1 = smp_load_acquire(&y); + r4 = READ_ONCE(v); + r5 = READ_ONCE(u); + smp_store_release(&z, 1); + } + + void cpu2(void) + { + r2 = smp_load_acquire(&z); + smp_store_release(&x, 1); + } + + void cpu3(void) + { + WRITE_ONCE(v, 1); + smp_mb(); + r3 = READ_ONCE(u); + } + +cpu0(), cpu1(), 그리고 cpu2() 는 smp_store_release()/smp_load_acquire() 쌍의 +연결에 참여되어 있으므로, 다음과 같은 결과는 나오지 않을 겁니다: + + r0 == 1 && r1 == 1 && r2 == 1 + +더 나아가서, cpu0() 와 cpu1() 사이의 release-acquire 관계로 인해, cpu1() 은 +cpu0() 의 쓰기를 봐야만 하므로, 다음과 같은 결과도 없을 겁니다: + + r1 == 1 && r5 == 0 + +하지만, release-acquire 에 의해 제공되는 순서는 해당 연결에 동참한 CPU 들에만 +적용되므로 cpu3() 에, 적어도 스토어들 외에는 적용되지 않습니다. 따라서, 다음과 +같은 결과가 가능합니다: + + r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 + +비슷하게, 다음과 같은 결과도 가능합니다: + + r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1 + +cpu0(), cpu1(), 그리고 cpu2() 는 그들의 읽기와 쓰기를 순서대로 보게 되지만, +release-acquire 체인에 관여되지 않은 CPU 들은 그 순서에 이견을 가질 수 +있습니다. 이런 이견은 smp_load_acquire() 와 smp_store_release() 의 구현에 +사용되는 완화된 메모리 배리어 인스트럭션들은 항상 배리어 앞의 스토어들을 뒤의 +로드들에 앞세울 필요는 없다는 사실에서 기인합니다. 이 말은 cpu3() 는 cpu0() 의 +u 로의 스토어를 cpu1() 의 v 로부터의 로드 뒤에 일어난 것으로 볼 수 있다는 +뜻입니다, cpu0() 와 cpu1() 은 이 두 오퍼레이션이 의도된 순서대로 일어났음에 +모두 동의하는데도 말입니다. + +하지만, smp_load_acquire() 는 마술이 아님을 명심하시기 바랍니다. 구체적으로, +이 함수는 단순히 순서 규칙을 지키며 인자로부터의 읽기를 수행합니다. 이것은 +어떤 특정한 값이 읽힐 것인지는 보장하지 -않습니다-. 따라서, 다음과 같은 결과도 +가능합니다: + + r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0 + +이런 결과는 어떤 것도 재배치 되지 않는, 순차적 일관성을 가진 가상의 +시스템에서도 일어날 수 있음을 기억해 두시기 바랍니다. + +다시 말하지만, 당신의 코드가 모든 오퍼레이션들의 완전한 순서를 필요로 한다면, +범용 배리어를 사용하십시오. + + +================== +명시적 커널 배리어 +================== + +리눅스 커널은 서로 다른 단계에서 동작하는 다양한 배리어들을 가지고 있습니다: + + (*) 컴파일러 배리어. + + (*) CPU 메모리 배리어. + + +컴파일러 배리어 +--------------- + +리눅스 커널은 컴파일러가 메모리 액세스를 재배치 하는 것을 막아주는 명시적인 +컴파일러 배리어를 가지고 있습니다: + + barrier(); + +이건 범용 배리어입니다 -- barrier() 의 읽기-읽기 나 쓰기-쓰기 변종은 없습니다. +하지만, READ_ONCE() 와 WRITE_ONCE() 는 특정 액세스들에 대해서만 동작하는 +barrier() 의 완화된 형태로 볼 수 있습니다. + +barrier() 함수는 다음과 같은 효과를 갖습니다: + + (*) 컴파일러가 barrier() 뒤의 액세스들이 barrier() 앞의 액세스보다 앞으로 + 재배치되지 못하게 합니다. 예를 들어, 인터럽트 핸들러 코드와 인터럽트 당한 + 코드 사이의 통신을 신중히 하기 위해 사용될 수 있습니다. + + (*) 루프에서, 컴파일러가 루프 조건에 사용된 변수를 매 이터레이션마다 + 메모리에서 로드하지 않아도 되도록 최적화 하는걸 방지합니다. + +READ_ONCE() 와 WRITE_ONCE() 함수는 싱글 쓰레드 코드에서는 문제 없지만 동시성이 +있는 코드에서는 문제가 될 수 있는 모든 최적화를 막습니다. 이런 류의 최적화에 +대한 예를 몇가지 들어보면 다음과 같습니다: + + (*) 컴파일러는 같은 변수에 대한 로드와 스토어를 재배치 할 수 있고, 어떤 + 경우에는 CPU가 같은 변수로부터의 로드들을 재배치할 수도 있습니다. 이는 + 다음의 코드가: + + a[0] = x; + a[1] = x; + + x 의 예전 값이 a[1] 에, 새 값이 a[0] 에 있게 할 수 있다는 뜻입니다. + 컴파일러와 CPU가 이런 일을 못하게 하려면 다음과 같이 해야 합니다: + + a[0] = READ_ONCE(x); + a[1] = READ_ONCE(x); + + 즉, READ_ONCE() 와 WRITE_ONCE() 는 여러 CPU 에서 하나의 변수에 가해지는 + 액세스들에 캐시 일관성을 제공합니다. + + (*) 컴파일러는 같은 변수에 대한 연속적인 로드들을 병합할 수 있습니다. 그런 + 병합 작업으로 컴파일러는 다음의 코드를: + + while (tmp = a) + do_something_with(tmp); + + 다음과 같이, 싱글 쓰레드 코드에서는 말이 되지만 개발자의 의도와 전혀 맞지 + 않는 방향으로 "최적화" 할 수 있습니다: + + if (tmp = a) + for (;;) + do_something_with(tmp); + + 컴파일러가 이런 짓을 하지 못하게 하려면 READ_ONCE() 를 사용하세요: + + while (tmp = READ_ONCE(a)) + do_something_with(tmp); + + (*) 예컨대 레지스터 사용량이 많아 컴파일러가 모든 데이터를 레지스터에 담을 수 + 없는 경우, 컴파일러는 변수를 다시 로드할 수 있습니다. 따라서 컴파일러는 + 앞의 예에서 변수 'tmp' 사용을 최적화로 없애버릴 수 있습니다: + + while (tmp = a) + do_something_with(tmp); + + 이 코드는 다음과 같이 싱글 쓰레드에서는 완벽하지만 동시성이 존재하는 + 경우엔 치명적인 코드로 바뀔 수 있습니다: + + while (a) + do_something_with(a); + + 예를 들어, 최적화된 이 코드는 변수 a 가 다른 CPU 에 의해 "while" 문과 + do_something_with() 호출 사이에 바뀌어 do_something_with() 에 0을 넘길 + 수도 있습니다. + + 이번에도, 컴파일러가 그런 짓을 하는걸 막기 위해 READ_ONCE() 를 사용하세요: + + while (tmp = READ_ONCE(a)) + do_something_with(tmp); + + 레지스터가 부족한 상황을 겪는 경우, 컴파일러는 tmp 를 스택에 저장해둘 수도 + 있습니다. 컴파일러가 변수를 다시 읽어들이는건 이렇게 저장해두고 후에 다시 + 읽어들이는데 드는 오버헤드 때문입니다. 그렇게 하는게 싱글 쓰레드 + 코드에서는 안전하므로, 안전하지 않은 경우에는 컴파일러에게 직접 알려줘야 + 합니다. + + (*) 컴파일러는 그 값이 무엇일지 알고 있다면 로드를 아예 안할 수도 있습니다. + 예를 들어, 다음의 코드는 변수 'a' 의 값이 항상 0임을 증명할 수 있다면: + + while (tmp = a) + do_something_with(tmp); + + 이렇게 최적화 되어버릴 수 있습니다: + + do { } while (0); + + 이 변환은 싱글 쓰레드 코드에서는 도움이 되는데 로드와 브랜치를 제거했기 + 때문입니다. 문제는 컴파일러가 'a' 의 값을 업데이트 하는건 현재의 CPU 하나 + 뿐이라는 가정 위에서 증명을 했다는데 있습니다. 만약 변수 'a' 가 공유되어 + 있다면, 컴파일러의 증명은 틀린 것이 될겁니다. 컴파일러는 그 자신이 + 생각하는 것만큼 많은 것을 알고 있지 못함을 컴파일러에게 알리기 위해 + READ_ONCE() 를 사용하세요: + + while (tmp = READ_ONCE(a)) + do_something_with(tmp); + + 하지만 컴파일러는 READ_ONCE() 뒤에 나오는 값에 대해서도 눈길을 두고 있음을 + 기억하세요. 예를 들어, 다음의 코드에서 MAX 는 전처리기 매크로로, 1의 값을 + 갖는다고 해봅시다: + + while ((tmp = READ_ONCE(a)) % MAX) + do_something_with(tmp); + + 이렇게 되면 컴파일러는 MAX 를 가지고 수행되는 "%" 오퍼레이터의 결과가 항상 + 0이라는 것을 알게 되고, 컴파일러가 코드를 실질적으로는 존재하지 않는 + 것처럼 최적화 하는 것이 허용되어 버립니다. ('a' 변수의 로드는 여전히 + 행해질 겁니다.) + + (*) 비슷하게, 컴파일러는 변수가 저장하려 하는 값을 이미 가지고 있다는 것을 + 알면 스토어 자체를 제거할 수 있습니다. 이번에도, 컴파일러는 현재의 CPU + 만이 그 변수에 값을 쓰는 오로지 하나의 존재라고 생각하여 공유된 변수에 + 대해서는 잘못된 일을 하게 됩니다. 예를 들어, 다음과 같은 경우가 있을 수 + 있습니다: + + a = 0; + ... 변수 a 에 스토어를 하지 않는 코드 ... + a = 0; + + 컴파일러는 변수 'a' 의 값은 이미 0이라는 것을 알고, 따라서 두번째 스토어를 + 삭제할 겁니다. 만약 다른 CPU 가 그 사이 변수 'a' 에 다른 값을 썼다면 + 황당한 결과가 나올 겁니다. + + 컴파일러가 그런 잘못된 추측을 하지 않도록 WRITE_ONCE() 를 사용하세요: + + WRITE_ONCE(a, 0); + ... 변수 a 에 스토어를 하지 않는 코드 ... + WRITE_ONCE(a, 0); + + (*) 컴파일러는 하지 말라고 하지 않으면 메모리 액세스들을 재배치 할 수 + 있습니다. 예를 들어, 다음의 프로세스 레벨 코드와 인터럽트 핸들러 사이의 + 상호작용을 생각해 봅시다: + + void process_level(void) + { + msg = get_message(); + flag = true; + } + + void interrupt_handler(void) + { + if (flag) + process_message(msg); + } + + 이 코드에는 컴파일러가 process_level() 을 다음과 같이 변환하는 것을 막을 + 수단이 없고, 이런 변환은 싱글쓰레드에서라면 실제로 훌륭한 선택일 수 + 있습니다: + + void process_level(void) + { + flag = true; + msg = get_message(); + } + + 이 두개의 문장 사이에 인터럽트가 발생한다면, interrupt_handler() 는 의미를 + 알 수 없는 메세지를 받을 수도 있습니다. 이걸 막기 위해 다음과 같이 + WRITE_ONCE() 를 사용하세요: + + void process_level(void) + { + WRITE_ONCE(msg, get_message()); + WRITE_ONCE(flag, true); + } + + void interrupt_handler(void) + { + if (READ_ONCE(flag)) + process_message(READ_ONCE(msg)); + } + + interrupt_handler() 안에서도 중첩된 인터럽트나 NMI 와 같이 인터럽트 핸들러 + 역시 'flag' 와 'msg' 에 접근하는 또다른 무언가에 인터럽트 될 수 있다면 + READ_ONCE() 와 WRITE_ONCE() 를 사용해야 함을 기억해 두세요. 만약 그런 + 가능성이 없다면, interrupt_handler() 안에서는 문서화 목적이 아니라면 + READ_ONCE() 와 WRITE_ONCE() 는 필요치 않습니다. (근래의 리눅스 커널에서 + 중첩된 인터럽트는 보통 잘 일어나지 않음도 기억해 두세요, 실제로, 어떤 + 인터럽트 핸들러가 인터럽트가 활성화된 채로 리턴하면 WARN_ONCE() 가 + 실행됩니다.) + + 컴파일러는 READ_ONCE() 와 WRITE_ONCE() 뒤의 READ_ONCE() 나 WRITE_ONCE(), + barrier(), 또는 비슷한 것들을 담고 있지 않은 코드를 움직일 수 있을 것으로 + 가정되어야 합니다. + + 이 효과는 barrier() 를 통해서도 만들 수 있지만, READ_ONCE() 와 + WRITE_ONCE() 가 좀 더 안목 높은 선택입니다: READ_ONCE() 와 WRITE_ONCE()는 + 컴파일러에 주어진 메모리 영역에 대해서만 최적화 가능성을 포기하도록 + 하지만, barrier() 는 컴파일러가 지금까지 기계의 레지스터에 캐시해 놓은 + 모든 메모리 영역의 값을 버려야 하게 하기 때문입니다. 물론, 컴파일러는 + READ_ONCE() 와 WRITE_ONCE() 가 일어난 순서도 지켜줍니다, CPU 는 당연히 + 그 순서를 지킬 의무가 없지만요. + + (*) 컴파일러는 다음의 예에서와 같이 변수에의 스토어를 날조해낼 수도 있습니다: + + if (a) + b = a; + else + b = 42; + + 컴파일러는 아래와 같은 최적화로 브랜치를 줄일 겁니다: + + b = 42; + if (a) + b = a; + + 싱글 쓰레드 코드에서 이 최적화는 안전할 뿐 아니라 브랜치 갯수를 + 줄여줍니다. 하지만 안타깝게도, 동시성이 있는 코드에서는 이 최적화는 다른 + CPU 가 'b' 를 로드할 때, -- 'a' 가 0이 아닌데도 -- 가짜인 값, 42를 보게 + 되는 경우를 가능하게 합니다. 이걸 방지하기 위해 WRITE_ONCE() 를 + 사용하세요: + + if (a) + WRITE_ONCE(b, a); + else + WRITE_ONCE(b, 42); + + 컴파일러는 로드를 만들어낼 수도 있습니다. 일반적으로는 문제를 일으키지 + 않지만, 캐시 라인 바운싱을 일으켜 성능과 확장성을 떨어뜨릴 수 있습니다. + 날조된 로드를 막기 위해선 READ_ONCE() 를 사용하세요. + + (*) 정렬된 메모리 주소에 위치한, 한번의 메모리 참조 인스트럭션으로 액세스 + 가능한 크기의 데이터는 하나의 큰 액세스가 여러개의 작은 액세스들로 + 대체되는 "로드 티어링(load tearing)" 과 "스토어 티어링(store tearing)" 을 + 방지합니다. 예를 들어, 주어진 아키텍쳐가 7-bit imeediate field 를 갖는 + 16-bit 스토어 인스트럭션을 제공한다면, 컴파일러는 다음의 32-bit 스토어를 + 구현하는데에 두개의 16-bit store-immediate 명령을 사용하려 할겁니다: + + p = 0x00010002; + + 스토어 할 상수를 만들고 그 값을 스토어 하기 위해 두개가 넘는 인스트럭션을 + 사용하게 되는, 이런 종류의 최적화를 GCC 는 실제로 함을 부디 알아 두십시오. + 이 최적화는 싱글 쓰레드 코드에서는 성공적인 최적화 입니다. 실제로, 근래에 + 발생한 (그리고 고쳐진) 버그는 GCC 가 volatile 스토어에 비정상적으로 이 + 최적화를 사용하게 했습니다. 그런 버그가 없다면, 다음의 예에서 + WRITE_ONCE() 의 사용은 스토어 티어링을 방지합니다: + + WRITE_ONCE(p, 0x00010002); + + Packed 구조체의 사용 역시 다음의 예처럼 로드 / 스토어 티어링을 유발할 수 + 있습니다: + + struct __attribute__((__packed__)) foo { + short a; + int b; + short c; + }; + struct foo foo1, foo2; + ... + + foo2.a = foo1.a; + foo2.b = foo1.b; + foo2.c = foo1.c; + + READ_ONCE() 나 WRITE_ONCE() 도 없고 volatile 마킹도 없기 때문에, + 컴파일러는 이 세개의 대입문을 두개의 32-bit 로드와 두개의 32-bit 스토어로 + 변환할 수 있습니다. 이는 'foo1.b' 의 값의 로드 티어링과 'foo2.b' 의 + 스토어 티어링을 초래할 겁니다. 이 예에서도 READ_ONCE() 와 WRITE_ONCE() + 가 티어링을 막을 수 있습니다: + + foo2.a = foo1.a; + WRITE_ONCE(foo2.b, READ_ONCE(foo1.b)); + foo2.c = foo1.c; + +그렇지만, volatile 로 마크된 변수에 대해서는 READ_ONCE() 와 WRITE_ONCE() 가 +필요치 않습니다. 예를 들어, 'jiffies' 는 volatile 로 마크되어 있기 때문에, +READ_ONCE(jiffies) 라고 할 필요가 없습니다. READ_ONCE() 와 WRITE_ONCE() 가 +실은 volatile 캐스팅으로 구현되어 있어서 인자가 이미 volatile 로 마크되어 +있다면 또다른 효과를 내지는 않기 때문입니다. + +이 컴파일러 배리어들은 CPU 에는 직접적 효과를 전혀 만들지 않기 때문에, 결국은 +재배치가 일어날 수도 있음을 부디 기억해 두십시오. + + +CPU 메모리 배리어 +----------------- + +리눅스 커널은 다음의 여덟개 기본 CPU 메모리 배리어를 가지고 있습니다: + + TYPE MANDATORY SMP CONDITIONAL + =============== ======================= =========================== + 범용 mb() smp_mb() + 쓰기 wmb() smp_wmb() + 읽기 rmb() smp_rmb() + 데이터 의존성 READ_ONCE() + + +데이터 의존성 배리어를 제외한 모든 메모리 배리어는 컴파일러 배리어를 +포함합니다. 데이터 의존성은 컴파일러에의 추가적인 순서 보장을 포함하지 +않습니다. + +방백: 데이터 의존성이 있는 경우, 컴파일러는 해당 로드를 올바른 순서로 일으킬 +것으로 (예: `a[b]` 는 a[b] 를 로드 하기 전에 b 의 값을 먼저 로드한다) +기대되지만, C 언어 사양에는 컴파일러가 b 의 값을 추측 (예: 1 과 같음) 해서 +b 로드 전에 a 로드를 하는 코드 (예: tmp = a[1]; if (b != 1) tmp = a[b]; ) 를 +만들지 않아야 한다는 내용 같은 건 없습니다. 또한 컴파일러는 a[b] 를 로드한 +후에 b 를 또다시 로드할 수도 있어서, a[b] 보다 최신 버전의 b 값을 가질 수도 +있습니다. 이런 문제들의 해결책에 대한 의견 일치는 아직 없습니다만, 일단 +READ_ONCE() 매크로부터 보기 시작하는게 좋은 시작이 될겁니다. + +SMP 메모리 배리어들은 유니프로세서로 컴파일된 시스템에서는 컴파일러 배리어로 +바뀌는데, 하나의 CPU 는 스스로 일관성을 유지하고, 겹치는 액세스들 역시 올바른 +순서로 행해질 것으로 생각되기 때문입니다. 하지만, 아래의 "Virtual Machine +Guests" 서브섹션을 참고하십시오. + +[!] SMP 시스템에서 공유메모리로의 접근들을 순서 세워야 할 때, SMP 메모리 +배리어는 _반드시_ 사용되어야 함을 기억하세요, 그대신 락을 사용하는 것으로도 +충분하긴 하지만 말이죠. + +Mandatory 배리어들은 SMP 시스템에서도 UP 시스템에서도 SMP 효과만 통제하기에는 +불필요한 오버헤드를 갖기 때문에 SMP 효과만 통제하면 되는 곳에는 사용되지 않아야 +합니다. 하지만, 느슨한 순서 규칙의 메모리 I/O 윈도우를 통한 MMIO 의 효과를 +통제할 때에는 mandatory 배리어들이 사용될 수 있습니다. 이 배리어들은 +컴파일러와 CPU 모두 재배치를 못하도록 함으로써 메모리 오퍼레이션들이 디바이스에 +보여지는 순서에도 영향을 주기 때문에, SMP 가 아닌 시스템이라 할지라도 필요할 수 +있습니다. + + +일부 고급 배리어 함수들도 있습니다: + + (*) smp_store_mb(var, value) + + 이 함수는 특정 변수에 특정 값을 대입하고 범용 메모리 배리어를 칩니다. + UP 컴파일에서는 컴파일러 배리어보다 더한 것을 친다고는 보장되지 않습니다. + + + (*) smp_mb__before_atomic(); + (*) smp_mb__after_atomic(); + + 이것들은 메모리 배리어를 내포하지 않는 어토믹 RMW 함수를 사용하지만 코드에 + 메모리 배리어가 필요한 경우를 위한 것들입니다. 메모리 배리어를 내포하지 + 않는 어토믹 RMW 함수들의 예로는 더하기, 빼기, (실패한) 조건적 + 오퍼레이션들, _relaxed 함수들이 있으며, atomic_read 나 atomic_set 은 이에 + 해당되지 않습니다. 메모리 배리어가 필요해지는 흔한 예로는 어토믹 + 오퍼레이션을 사용해 레퍼런스 카운트를 수정하는 경우를 들 수 있습니다. + + 이것들은 또한 (set_bit 과 clear_bit 같은) 메모리 배리어를 내포하지 않는 + 어토믹 RMW bitop 함수들을 위해서도 사용될 수 있습니다. + + 한 예로, 객체 하나를 무효한 것으로 표시하고 그 객체의 레퍼런스 카운트를 + 감소시키는 다음 코드를 보세요: + + obj->dead = 1; + smp_mb__before_atomic(); + atomic_dec(&obj->ref_count); + + 이 코드는 객체의 업데이트된 death 마크가 레퍼런스 카운터 감소 동작 + *전에* 보일 것을 보장합니다. + + 더 많은 정보를 위해선 Documentation/atomic_{t,bitops}.txt 문서를 + 참고하세요. + + + (*) dma_wmb(); + (*) dma_rmb(); + + 이것들은 CPU 와 DMA 가능한 디바이스에서 모두 액세스 가능한 공유 메모리의 + 읽기, 쓰기 작업들의 순서를 보장하기 위해 consistent memory 에서 사용하기 + 위한 것들입니다. + + 예를 들어, 디바이스와 메모리를 공유하며, 디스크립터 상태 값을 사용해 + 디스크립터가 디바이스에 속해 있는지 아니면 CPU 에 속해 있는지 표시하고, + 공지용 초인종(doorbell) 을 사용해 업데이트된 디스크립터가 디바이스에 사용 + 가능해졌음을 공지하는 디바이스 드라이버를 생각해 봅시다: + + if (desc->status != DEVICE_OWN) { + /* 디스크립터를 소유하기 전에는 데이터를 읽지 않음 */ + dma_rmb(); + + /* 데이터를 읽고 씀 */ + read_data = desc->data; + desc->data = write_data; + + /* 상태 업데이트 전 수정사항을 반영 */ + dma_wmb(); + + /* 소유권을 수정 */ + desc->status = DEVICE_OWN; + + /* 업데이트된 디스크립터의 디바이스에 공지 */ + writel(DESC_NOTIFY, doorbell); + } + + dma_rmb() 는 디스크립터로부터 데이터를 읽어오기 전에 디바이스가 소유권을 + 내려놓았을 것을 보장하고, dma_wmb() 는 디바이스가 자신이 소유권을 다시 + 가졌음을 보기 전에 디스크립터에 데이터가 쓰였을 것을 보장합니다. 참고로, + writel() 을 사용하면 캐시 일관성이 있는 메모리 (cache coherent memory) + 쓰기가 MMIO 영역에의 쓰기 전에 완료되었을 것을 보장하므로 writel() 앞에 + wmb() 를 실행할 필요가 없음을 알아두시기 바랍니다. writel() 보다 비용이 + 저렴한 writel_relaxed() 는 이런 보장을 제공하지 않으므로 여기선 사용되지 + 않아야 합니다. + + writel_relaxed() 와 같은 완화된 I/O 접근자들에 대한 자세한 내용을 위해서는 + "커널 I/O 배리어의 효과" 섹션을, consistent memory 에 대한 자세한 내용을 + 위해선 Documentation/core-api/dma-api.rst 문서를 참고하세요. + + (*) pmem_wmb(); + + 이것은 persistent memory 를 위한 것으로, persistent 저장소에 가해진 변경 + 사항이 플랫폼 연속성 도메인에 도달했을 것을 보장하기 위한 것입니다. + + 예를 들어, 임시적이지 않은 pmem 영역으로의 쓰기 후, 우리는 쓰기가 플랫폼 + 연속성 도메인에 도달했을 것을 보장하기 위해 pmem_wmb() 를 사용합니다. + 이는 쓰기가 뒤따르는 instruction 들이 유발하는 어떠한 데이터 액세스나 + 데이터 전송의 시작 전에 persistent 저장소를 업데이트 했을 것을 보장합니다. + 이는 wmb() 에 의해 이뤄지는 순서 규칙을 포함합니다. + + Persistent memory 에서의 로드를 위해선 현재의 읽기 메모리 배리어로도 읽기 + 순서를 보장하는데 충분합니다. + +========================= +암묵적 커널 메모리 배리어 +========================= + +리눅스 커널의 일부 함수들은 메모리 배리어를 내장하고 있는데, 락(lock)과 +스케쥴링 관련 함수들이 대부분입니다. + +여기선 _최소한의_ 보장을 설명합니다; 특정 아키텍쳐에서는 이 설명보다 더 많은 +보장을 제공할 수도 있습니다만 해당 아키텍쳐에 종속적인 코드 외의 부분에서는 +그런 보장을 기대해선 안될겁니다. + + +락 ACQUISITION 함수 +------------------- + +리눅스 커널은 다양한 락 구성체를 가지고 있습니다: + + (*) 스핀 락 + (*) R/W 스핀 락 + (*) 뮤텍스 + (*) 세마포어 + (*) R/W 세마포어 + +각 구성체마다 모든 경우에 "ACQUIRE" 오퍼레이션과 "RELEASE" 오퍼레이션의 변종이 +존재합니다. 이 오퍼레이션들은 모두 적절한 배리어를 내포하고 있습니다: + + (1) ACQUIRE 오퍼레이션의 영향: + + ACQUIRE 뒤에서 요청된 메모리 오퍼레이션은 ACQUIRE 오퍼레이션이 완료된 + 뒤에 완료됩니다. + + ACQUIRE 앞에서 요청된 메모리 오퍼레이션은 ACQUIRE 오퍼레이션이 완료된 후에 + 완료될 수 있습니다. + + (2) RELEASE 오퍼레이션의 영향: + + RELEASE 앞에서 요청된 메모리 오퍼레이션은 RELEASE 오퍼레이션이 완료되기 + 전에 완료됩니다. + + RELEASE 뒤에서 요청된 메모리 오퍼레이션은 RELEASE 오퍼레이션 완료 전에 + 완료될 수 있습니다. + + (3) ACQUIRE vs ACQUIRE 영향: + + 어떤 ACQUIRE 오퍼레이션보다 앞에서 요청된 모든 ACQUIRE 오퍼레이션은 그 + ACQUIRE 오퍼레이션 전에 완료됩니다. + + (4) ACQUIRE vs RELEASE implication: + + 어떤 RELEASE 오퍼레이션보다 앞서 요청된 ACQUIRE 오퍼레이션은 그 RELEASE + 오퍼레이션보다 먼저 완료됩니다. + + (5) 실패한 조건적 ACQUIRE 영향: + + ACQUIRE 오퍼레이션의 일부 락(lock) 변종은 락이 곧바로 획득하기에는 + 불가능한 상태이거나 락이 획득 가능해지도록 기다리는 도중 시그널을 받거나 + 해서 실패할 수 있습니다. 실패한 락은 어떤 배리어도 내포하지 않습니다. + +[!] 참고: 락 ACQUIRE 와 RELEASE 가 단방향 배리어여서 나타나는 현상 중 하나는 +크리티컬 섹션 바깥의 인스트럭션의 영향이 크리티컬 섹션 내부로도 들어올 수 +있다는 것입니다. + +RELEASE 후에 요청되는 ACQUIRE 는 전체 메모리 배리어라 여겨지면 안되는데, +ACQUIRE 앞의 액세스가 ACQUIRE 후에 수행될 수 있고, RELEASE 후의 액세스가 +RELEASE 전에 수행될 수도 있으며, 그 두개의 액세스가 서로를 지나칠 수도 있기 +때문입니다: + + *A = a; + ACQUIRE M + RELEASE M + *B = b; + +는 다음과 같이 될 수도 있습니다: + + ACQUIRE M, STORE *B, STORE *A, RELEASE M + +ACQUIRE 와 RELEASE 가 락 획득과 해제라면, 그리고 락의 ACQUIRE 와 RELEASE 가 +같은 락 변수에 대한 것이라면, 해당 락을 쥐고 있지 않은 다른 CPU 의 시야에는 +이와 같은 재배치가 일어나는 것으로 보일 수 있습니다. 요약하자면, ACQUIRE 에 +이어 RELEASE 오퍼레이션을 순차적으로 실행하는 행위가 전체 메모리 배리어로 +생각되어선 -안됩니다-. + +비슷하게, 앞의 반대 케이스인 RELEASE 와 ACQUIRE 두개 오퍼레이션의 순차적 실행 +역시 전체 메모리 배리어를 내포하지 않습니다. 따라서, RELEASE, ACQUIRE 로 +규정되는 크리티컬 섹션의 CPU 수행은 RELEASE 와 ACQUIRE 를 가로지를 수 있으므로, +다음과 같은 코드는: + + *A = a; + RELEASE M + ACQUIRE N + *B = b; + +다음과 같이 수행될 수 있습니다: + + ACQUIRE N, STORE *B, STORE *A, RELEASE M + +이런 재배치는 데드락을 일으킬 수도 있을 것처럼 보일 수 있습니다. 하지만, 그런 +데드락의 조짐이 있다면 RELEASE 는 단순히 완료될 것이므로 데드락은 존재할 수 +없습니다. + + 이게 어떻게 올바른 동작을 할 수 있을까요? + + 우리가 이야기 하고 있는건 재배치를 하는 CPU 에 대한 이야기이지, + 컴파일러에 대한 것이 아니란 점이 핵심입니다. 컴파일러 (또는, 개발자) + 가 오퍼레이션들을 이렇게 재배치하면, 데드락이 일어날 수 -있습-니다. + + 하지만 CPU 가 오퍼레이션들을 재배치 했다는걸 생각해 보세요. 이 예에서, + 어셈블리 코드 상으로는 언락이 락을 앞서게 되어 있습니다. CPU 가 이를 + 재배치해서 뒤의 락 오퍼레이션을 먼저 실행하게 됩니다. 만약 데드락이 + 존재한다면, 이 락 오퍼레이션은 그저 스핀을 하며 계속해서 락을 + 시도합니다 (또는, 한참 후에겠지만, 잠듭니다). CPU 는 언젠가는 + (어셈블리 코드에서는 락을 앞서는) 언락 오퍼레이션을 실행하는데, 이 언락 + 오퍼레이션이 잠재적 데드락을 해결하고, 락 오퍼레이션도 뒤이어 성공하게 + 됩니다. + + 하지만 만약 락이 잠을 자는 타입이었다면요? 그런 경우에 코드는 + 스케쥴러로 들어가려 할 거고, 여기서 결국은 메모리 배리어를 만나게 + 되는데, 이 메모리 배리어는 앞의 언락 오퍼레이션이 완료되도록 만들고, + 데드락은 이번에도 해결됩니다. 잠을 자는 행위와 언락 사이의 경주 상황 + (race) 도 있을 수 있겠습니다만, 락 관련 기능들은 그런 경주 상황을 모든 + 경우에 제대로 해결할 수 있어야 합니다. + +락과 세마포어는 UP 컴파일된 시스템에서의 순서에 대해 보장을 하지 않기 때문에, +그런 상황에서 인터럽트 비활성화 오퍼레이션과 함께가 아니라면 어떤 일에도 - 특히 +I/O 액세스와 관련해서는 - 제대로 사용될 수 없을 겁니다. + +"CPU 간 ACQUIRING 배리어 효과" 섹션도 참고하시기 바랍니다. + + +예를 들어, 다음과 같은 코드를 생각해 봅시다: + + *A = a; + *B = b; + ACQUIRE + *C = c; + *D = d; + RELEASE + *E = e; + *F = f; + +여기선 다음의 이벤트 시퀀스가 생길 수 있습니다: + + ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE + + [+] {*F,*A} 는 조합된 액세스를 의미합니다. + +하지만 다음과 같은 건 불가능하죠: + + {*F,*A}, *B, ACQUIRE, *C, *D, RELEASE, *E + *A, *B, *C, ACQUIRE, *D, RELEASE, *E, *F + *A, *B, ACQUIRE, *C, RELEASE, *D, *E, *F + *B, ACQUIRE, *C, *D, RELEASE, {*F,*A}, *E + + + +인터럽트 비활성화 함수 +---------------------- + +인터럽트를 비활성화 하는 함수 (ACQUIRE 와 동일) 와 인터럽트를 활성화 하는 함수 +(RELEASE 와 동일) 는 컴파일러 배리어처럼만 동작합니다. 따라서, 별도의 메모리 +배리어나 I/O 배리어가 필요한 상황이라면 그 배리어들은 인터럽트 비활성화 함수 +외의 방법으로 제공되어야만 합니다. + + +슬립과 웨이크업 함수 +-------------------- + +글로벌 데이터에 표시된 이벤트에 의해 프로세스를 잠에 빠트리는 것과 깨우는 것은 +해당 이벤트를 기다리는 태스크의 태스크 상태와 그 이벤트를 알리기 위해 사용되는 +글로벌 데이터, 두 데이터간의 상호작용으로 볼 수 있습니다. 이것이 옳은 순서대로 +일어남을 분명히 하기 위해, 프로세스를 잠에 들게 하는 기능과 깨우는 기능은 +몇가지 배리어를 내포합니다. + +먼저, 잠을 재우는 쪽은 일반적으로 다음과 같은 이벤트 시퀀스를 따릅니다: + + for (;;) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (event_indicated) + break; + schedule(); + } + +set_current_state() 에 의해, 태스크 상태가 바뀐 후 범용 메모리 배리어가 +자동으로 삽입됩니다: + + CPU 1 + =============================== + set_current_state(); + smp_store_mb(); + STORE current->state + <범용 배리어> + LOAD event_indicated + +set_current_state() 는 다음의 것들로 감싸질 수도 있습니다: + + prepare_to_wait(); + prepare_to_wait_exclusive(); + +이것들 역시 상태를 설정한 후 범용 메모리 배리어를 삽입합니다. +앞의 전체 시퀀스는 다음과 같은 함수들로 한번에 수행 가능한데, 이것들은 모두 +올바른 장소에 메모리 배리어를 삽입합니다: + + wait_event(); + wait_event_interruptible(); + wait_event_interruptible_exclusive(); + wait_event_interruptible_timeout(); + wait_event_killable(); + wait_event_timeout(); + wait_on_bit(); + wait_on_bit_lock(); + + +두번째로, 깨우기를 수행하는 코드는 일반적으로 다음과 같을 겁니다: + + event_indicated = 1; + wake_up(&event_wait_queue); + +또는: + + event_indicated = 1; + wake_up_process(event_daemon); + +wake_up() 이 무언가를 깨우게 되면, 이 함수는 범용 메모리 배리어를 수행합니다. +이 함수가 아무것도 깨우지 않는다면 메모리 배리어는 수행될 수도, 수행되지 않을 +수도 있습니다; 이 경우에 메모리 배리어를 수행할 거라 오해해선 안됩니다. 이 +배리어는 태스크 상태가 접근되기 전에 수행되는데, 자세히 말하면 이 이벤트를 +알리기 위한 STORE 와 TASK_RUNNING 으로 상태를 쓰는 STORE 사이에 수행됩니다: + + CPU 1 (Sleeper) CPU 2 (Waker) + =============================== =============================== + set_current_state(); STORE event_indicated + smp_store_mb(); wake_up(); + STORE current->state ... + <범용 배리어> <범용 배리어> + LOAD event_indicated if ((LOAD task->state) & TASK_NORMAL) + STORE task->state + +여기서 "task" 는 깨어나지는 쓰레드이고 CPU 1 의 "current" 와 같습니다. + +반복하지만, wake_up() 이 무언가를 정말 깨운다면 범용 메모리 배리어가 수행될 +것이 보장되지만, 그렇지 않다면 그런 보장이 없습니다. 이걸 이해하기 위해, X 와 +Y 는 모두 0 으로 초기화 되어 있다는 가정 하에 아래의 이벤트 시퀀스를 생각해 +봅시다: + + CPU 1 CPU 2 + =============================== =============================== + X = 1; Y = 1; + smp_mb(); wake_up(); + LOAD Y LOAD X + +정말로 깨우기가 행해졌다면, 두 로드 중 (최소한) 하나는 1 을 보게 됩니다. +반면에, 실제 깨우기가 행해지지 않았다면, 두 로드 모두 0을 볼 수도 있습니다. + +wake_up_process() 는 항상 범용 메모리 배리어를 수행합니다. 이 배리어 역시 +태스크 상태가 접근되기 전에 수행됩니다. 특히, 앞의 예제 코드에서 wake_up() 이 +wake_up_process() 로 대체된다면 두 로드 중 하나는 1을 볼 것이 보장됩니다. + +사용 가능한 깨우기류 함수들로 다음과 같은 것들이 있습니다: + + complete(); + wake_up(); + wake_up_all(); + wake_up_bit(); + wake_up_interruptible(); + wake_up_interruptible_all(); + wake_up_interruptible_nr(); + wake_up_interruptible_poll(); + wake_up_interruptible_sync(); + wake_up_interruptible_sync_poll(); + wake_up_locked(); + wake_up_locked_poll(); + wake_up_nr(); + wake_up_poll(); + wake_up_process(); + +메모리 순서규칙 관점에서, 이 함수들은 모두 wake_up() 과 같거나 보다 강한 순서 +보장을 제공합니다. + +[!] 잠재우는 코드와 깨우는 코드에 내포되는 메모리 배리어들은 깨우기 전에 +이루어진 스토어를 잠재우는 코드가 set_current_state() 를 호출한 후에 행하는 +로드에 대해 순서를 맞추지 _않는다는_ 점을 기억하세요. 예를 들어, 잠재우는 +코드가 다음과 같고: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) + break; + __set_current_state(TASK_RUNNING); + do_something(my_data); + +깨우는 코드는 다음과 같다면: + + my_data = value; + event_indicated = 1; + wake_up(&event_wait_queue); + +event_indecated 에의 변경이 잠재우는 코드에게 my_data 에의 변경 후에 이루어진 +것으로 인지될 것이라는 보장이 없습니다. 이런 경우에는 양쪽 코드 모두 각각의 +데이터 액세스 사이에 메모리 배리어를 직접 쳐야 합니다. 따라서 앞의 재우는 +코드는 다음과 같이: + + set_current_state(TASK_INTERRUPTIBLE); + if (event_indicated) { + smp_rmb(); + do_something(my_data); + } + +그리고 깨우는 코드는 다음과 같이 되어야 합니다: + + my_data = value; + smp_wmb(); + event_indicated = 1; + wake_up(&event_wait_queue); + + +그외의 함수들 +------------- + +그외의 배리어를 내포하는 함수들은 다음과 같습니다: + + (*) schedule() 과 그 유사한 것들이 완전한 메모리 배리어를 내포합니다. + + +============================== +CPU 간 ACQUIRING 배리어의 효과 +============================== + +SMP 시스템에서의 락 기능들은 더욱 강력한 형태의 배리어를 제공합니다: 이 +배리어는 동일한 락을 사용하는 다른 CPU 들의 메모리 액세스 순서에도 영향을 +끼칩니다. + + +ACQUIRE VS 메모리 액세스 +------------------------ + +다음의 예를 생각해 봅시다: 시스템은 두개의 스핀락 (M) 과 (Q), 그리고 세개의 CPU +를 가지고 있습니다; 여기에 다음의 이벤트 시퀀스가 발생합니다: + + CPU 1 CPU 2 + =============================== =============================== + WRITE_ONCE(*A, a); WRITE_ONCE(*E, e); + ACQUIRE M ACQUIRE Q + WRITE_ONCE(*B, b); WRITE_ONCE(*F, f); + WRITE_ONCE(*C, c); WRITE_ONCE(*G, g); + RELEASE M RELEASE Q + WRITE_ONCE(*D, d); WRITE_ONCE(*H, h); + +*A 로의 액세스부터 *H 로의 액세스까지가 어떤 순서로 CPU 3 에게 보여질지에 +대해서는 각 CPU 에서의 락 사용에 의해 내포되어 있는 제약을 제외하고는 어떤 +보장도 존재하지 않습니다. 예를 들어, CPU 3 에게 다음과 같은 순서로 보여지는 +것이 가능합니다: + + *E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M + +하지만 다음과 같이 보이지는 않을 겁니다: + + *B, *C or *D preceding ACQUIRE M + *A, *B or *C following RELEASE M + *F, *G or *H preceding ACQUIRE Q + *E, *F or *G following RELEASE Q + + +========================= +메모리 배리어가 필요한 곳 +========================= + +설령 SMP 커널을 사용하더라도 싱글 쓰레드로 동작하는 코드는 올바르게 동작하는 +것으로 보여질 것이기 때문에, 평범한 시스템 운영중에 메모리 오퍼레이션 재배치는 +일반적으로 문제가 되지 않습니다. 하지만, 재배치가 문제가 _될 수 있는_ 네가지 +환경이 있습니다: + + (*) 프로세서간 상호 작용. + + (*) 어토믹 오퍼레이션. + + (*) 디바이스 액세스. + + (*) 인터럽트. + + +프로세서간 상호 작용 +-------------------- + +두개 이상의 프로세서를 가진 시스템이 있다면, 시스템의 두개 이상의 CPU 는 동시에 +같은 데이터에 대한 작업을 할 수 있습니다. 이는 동기화 문제를 일으킬 수 있고, +이 문제를 해결하는 일반적 방법은 락을 사용하는 것입니다. 하지만, 락은 상당히 +비용이 비싸서 가능하면 락을 사용하지 않고 일을 처리하는 것이 낫습니다. 이런 +경우, 두 CPU 모두에 영향을 끼치는 오퍼레이션들은 오동작을 막기 위해 신중하게 +순서가 맞춰져야 합니다. + +예를 들어, R/W 세마포어의 느린 수행경로 (slow path) 를 생각해 봅시다. +세마포어를 위해 대기를 하는 하나의 프로세스가 자신의 스택 중 일부를 이 +세마포어의 대기 프로세스 리스트에 링크한 채로 있습니다: + + struct rw_semaphore { + ... + spinlock_t lock; + struct list_head waiters; + }; + + struct rwsem_waiter { + struct list_head list; + struct task_struct *task; + }; + +특정 대기 상태 프로세스를 깨우기 위해, up_read() 나 up_write() 함수는 다음과 +같은 일을 합니다: + + (1) 다음 대기 상태 프로세스 레코드는 어디있는지 알기 위해 이 대기 상태 + 프로세스 레코드의 next 포인터를 읽습니다; + + (2) 이 대기 상태 프로세스의 task 구조체로의 포인터를 읽습니다; + + (3) 이 대기 상태 프로세스가 세마포어를 획득했음을 알리기 위해 task + 포인터를 초기화 합니다; + + (4) 해당 태스크에 대해 wake_up_process() 를 호출합니다; 그리고 + + (5) 해당 대기 상태 프로세스의 task 구조체를 잡고 있던 레퍼런스를 해제합니다. + +달리 말하자면, 다음 이벤트 시퀀스를 수행해야 합니다: + + LOAD waiter->list.next; + LOAD waiter->task; + STORE waiter->task; + CALL wakeup + RELEASE task + +그리고 이 이벤트들이 다른 순서로 수행된다면, 오동작이 일어날 수 있습니다. + +한번 세마포어의 대기줄에 들어갔고 세마포어 락을 놓았다면, 해당 대기 프로세스는 +락을 다시는 잡지 않습니다; 대신 자신의 task 포인터가 초기화 되길 기다립니다. +그 레코드는 대기 프로세스의 스택에 있기 때문에, 리스트의 next 포인터가 읽혀지기 +_전에_ task 포인터가 지워진다면, 다른 CPU 는 해당 대기 프로세스를 시작해 버리고 +up*() 함수가 next 포인터를 읽기 전에 대기 프로세스의 스택을 마구 건드릴 수 +있습니다. + +그렇게 되면 위의 이벤트 시퀀스에 어떤 일이 일어나는지 생각해 보죠: + + CPU 1 CPU 2 + =============================== =============================== + down_xxx() + Queue waiter + Sleep + up_yyy() + LOAD waiter->task; + STORE waiter->task; + Woken up by other event + <preempt> + Resume processing + down_xxx() returns + call foo() + foo() clobbers *waiter + </preempt> + LOAD waiter->list.next; + --- OOPS --- + +이 문제는 세마포어 락의 사용으로 해결될 수도 있겠지만, 그렇게 되면 깨어난 후에 +down_xxx() 함수가 불필요하게 스핀락을 또다시 얻어야만 합니다. + +이 문제를 해결하는 방법은 범용 SMP 메모리 배리어를 추가하는 겁니다: + + LOAD waiter->list.next; + LOAD waiter->task; + smp_mb(); + STORE waiter->task; + CALL wakeup + RELEASE task + +이 경우에, 배리어는 시스템의 나머지 CPU 들에게 모든 배리어 앞의 메모리 액세스가 +배리어 뒤의 메모리 액세스보다 앞서 일어난 것으로 보이게 만듭니다. 배리어 앞의 +메모리 액세스들이 배리어 명령 자체가 완료되는 시점까지 완료된다고는 보장하지 +_않습니다_. + +(이게 문제가 되지 않을) 단일 프로세서 시스템에서 smp_mb() 는 실제로는 그저 +컴파일러가 CPU 안에서의 순서를 바꾸거나 하지 않고 주어진 순서대로 명령을 +내리도록 하는 컴파일러 배리어일 뿐입니다. 오직 하나의 CPU 만 있으니, CPU 의 +의존성 순서 로직이 그 외의 모든것을 알아서 처리할 겁니다. + + +어토믹 오퍼레이션 +----------------- + +어토믹 오퍼레이션은 기술적으로 프로세서간 상호작용으로 분류되며 그 중 일부는 +전체 메모리 배리어를 내포하고 또 일부는 내포하지 않지만, 커널에서 상당히 +의존적으로 사용하는 기능 중 하나입니다. + +더 많은 내용을 위해선 Documentation/atomic_t.txt 를 참고하세요. + + +디바이스 액세스 +--------------- + +많은 디바이스가 메모리 매핑 기법으로 제어될 수 있는데, 그렇게 제어되는 +디바이스는 CPU 에는 단지 특정 메모리 영역의 집합처럼 보이게 됩니다. 드라이버는 +그런 디바이스를 제어하기 위해 정확히 올바른 순서로 올바른 메모리 액세스를 +만들어야 합니다. + +하지만, 액세스들을 재배치 하거나 조합하거나 병합하는게 더 효율적이라 판단하는 +영리한 CPU 나 컴파일러들을 사용하면 드라이버 코드의 조심스럽게 순서 맞춰진 +액세스들이 디바이스에는 요청된 순서대로 도착하지 못하게 할 수 있는 - 디바이스가 +오동작을 하게 할 - 잠재적 문제가 생길 수 있습니다. + +리눅스 커널 내부에서, I/O 는 어떻게 액세스들을 적절히 순차적이게 만들 수 있는지 +알고 있는, - inb() 나 writel() 과 같은 - 적절한 액세스 루틴을 통해 이루어져야만 +합니다. 이것들은 대부분의 경우에는 명시적 메모리 배리어 와 함께 사용될 필요가 +없습니다만, 완화된 메모리 액세스 속성으로 I/O 메모리 윈도우로의 참조를 위해 +액세스 함수가 사용된다면 순서를 강제하기 위해 _mandatory_ 메모리 배리어가 +필요합니다. + +더 많은 정보를 위해선 Documentation/driver-api/device-io.rst 를 참고하십시오. + + +인터럽트 +-------- + +드라이버는 자신의 인터럽트 서비스 루틴에 의해 인터럽트 당할 수 있기 때문에 +드라이버의 이 두 부분은 서로의 디바이스 제어 또는 액세스 부분과 상호 간섭할 수 +있습니다. + +스스로에게 인터럽트 당하는 걸 불가능하게 하고, 드라이버의 크리티컬한 +오퍼레이션들을 모두 인터럽트가 불가능하게 된 영역에 집어넣거나 하는 방법 (락의 +한 형태) 으로 이런 상호 간섭을 - 최소한 부분적으로라도 - 줄일 수 있습니다. +드라이버의 인터럽트 루틴이 실행 중인 동안, 해당 드라이버의 코어는 같은 CPU 에서 +수행되지 않을 것이며, 현재의 인터럽트가 처리되는 중에는 또다시 인터럽트가 +일어나지 못하도록 되어 있으니 인터럽트 핸들러는 그에 대해서는 락을 잡지 않아도 +됩니다. + +하지만, 어드레스 레지스터와 데이터 레지스터를 갖는 이더넷 카드를 다루는 +드라이버를 생각해 봅시다. 만약 이 드라이버의 코어가 인터럽트를 비활성화시킨 +채로 이더넷 카드와 대화하고 드라이버의 인터럽트 핸들러가 호출되었다면: + + LOCAL IRQ DISABLE + writew(ADDR, 3); + writew(DATA, y); + LOCAL IRQ ENABLE + <interrupt> + writew(ADDR, 4); + q = readw(DATA); + </interrupt> + +만약 순서 규칙이 충분히 완화되어 있다면 데이터 레지스터에의 스토어는 어드레스 +레지스터에 두번째로 행해지는 스토어 뒤에 일어날 수도 있습니다: + + STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA + + +만약 순서 규칙이 충분히 완화되어 있고 묵시적으로든 명시적으로든 배리어가 +사용되지 않았다면 인터럽트 비활성화 섹션에서 일어난 액세스가 바깥으로 새어서 +인터럽트 내에서 일어난 액세스와 섞일 수 있다고 - 그리고 그 반대도 - 가정해야만 +합니다. + +그런 영역 안에서 일어나는 I/O 액세스는 묵시적 I/O 배리어를 형성하는, 엄격한 +순서 규칙의 I/O 레지스터로의 로드 오퍼레이션을 포함하기 때문에 일반적으로는 +문제가 되지 않습니다. + + +하나의 인터럽트 루틴과 별도의 CPU 에서 수행중이며 서로 통신을 하는 두 루틴 +사이에도 비슷한 상황이 일어날 수 있습니다. 만약 그런 경우가 발생할 가능성이 +있다면, 순서를 보장하기 위해 인터럽트 비활성화 락이 사용되어져야만 합니다. + + +====================== +커널 I/O 배리어의 효과 +====================== + +I/O 액세스를 통한 주변장치와의 통신은 아키텍쳐와 기기에 매우 종속적입니다. +따라서, 본질적으로 이식성이 없는 드라이버는 가능한 가장 적은 오버헤드로 +동기화를 하기 위해 각자의 타겟 시스템의 특정 동작에 의존할 겁니다. 다양한 +아키텍쳐와 버스 구현에 이식성을 가지려 하는 드라이버를 위해, 커널은 다양한 +정도의 순서 보장을 제공하는 일련의 액세스 함수를 제공합니다. + + (*) readX(), writeX(): + + readX() 와 writeX() MMIO 액세스 함수는 접근되는 주변장치로의 포인터를 + __iomem * 패러미터로 받습니다. 디폴트 I/O 기능으로 매핑되는 포인터 + (예: ioremap() 으로 반환되는 것) 의 순서 보장은 다음과 같습니다: + + 1. 같은 주변장치로의 모든 readX() 와 writeX() 액세스는 각자에 대해 + 순서지어집니다. 이는 같은 CPU 쓰레드에 의한 특정 디바이스로의 MMIO + 레지스터 액세스가 프로그램 순서대로 도착할 것을 보장합니다. + + 2. 한 스핀락을 잡은 CPU 쓰레드에 의한 writeX() 는 같은 스핀락을 나중에 + 잡은 다른 CPU 쓰레드에 의해 같은 주변장치를 향해 호출된 writeX() + 앞으로 순서지어집니다. 이는 스핀락을 잡은 채 특정 디바이스를 향해 + 호출된 MMIO 레지스터 쓰기는 해당 락의 획득에 일관적인 순서로 도달할 + 것을 보장합니다. + + 3. 특정 주변장치를 향한 특정 CPU 쓰레드의 writeX() 는 먼저 해당 + 쓰레드로 전파되는, 또는 해당 쓰레드에 의해 요청된 모든 앞선 메모리 + 쓰기가 완료되기 전까지 먼저 기다립니다. 이는 dma_alloc_coherent() + 를 통해 할당된 전송용 DMA 버퍼로의 해당 CPU 의 쓰기가 이 CPU 가 이 + 전송을 시작시키기 위해 MMIO 컨트롤 레지스터에 쓰기를 할 때 DMA + 엔진에 보여질 것을 보장합니다. + + 4. 특정 CPU 쓰레드에 의한 주변장치로의 readX() 는 같은 쓰레드에 의한 + 모든 뒤따르는 메모리 읽기가 시작되기 전에 완료됩니다. 이는 + dma_alloc_coherent() 를 통해 할당된 수신용 DMA 버퍼로부터의 CPU 의 + 읽기는 이 DMA 수신의 완료를 표시하는 DMA 엔진의 MMIO 상태 레지스터 + 읽기 후에는 오염된 데이터를 읽지 않을 것을 보장합니다. + + 5. CPU 에 의한 주변장치로의 readX() 는 모든 뒤따르는 delay() 루프가 + 수행을 시작하기 전에 완료됩니다. 이는 CPU 의 특정 + 주변장치로의 두개의 MMIO 레지스터 쓰기가 행해지는데 첫번째 쓰기가 + readX() 를 통해 곧바로 읽어졌고 이어 두번째 writeX() 전에 udelay(1) + 이 호출되었다면 이 두개의 쓰기는 최소 1us 의 간격을 두고 행해질 것을 + 보장합니다: + + writel(42, DEVICE_REGISTER_0); // 디바이스에 도착함... + readl(DEVICE_REGISTER_0); + udelay(1); + writel(42, DEVICE_REGISTER_1); // ...이것보다 최소 1us 전에. + + 디폴트가 아닌 기능을 통해 얻어지는 __iomem 포인터 (예: ioremap_wc() 를 + 통해 리턴되는 것) 의 순서 속성은 실제 아키텍쳐에 의존적이어서 이런 + 종류의 매핑으로의 액세스는 앞서 설명된 보장사항에 의존할 수 없습니다. + + (*) readX_relaxed(), writeX_relaxed() + + 이것들은 readX() 와 writeX() 랑 비슷하지만, 더 완화된 메모리 순서 + 보장을 제공합니다. 구체적으로, 이것들은 일반적 메모리 액세스나 delay() + 루프 (예:앞의 2-5 항목) 에 대해 순서를 보장하지 않습니다만 디폴트 I/O + 기능으로 매핑된 __iomem 포인터에 대해 동작할 때, 같은 CPU 쓰레드에 의한 + 같은 주변장치로의 액세스에는 순서가 맞춰질 것이 보장됩니다. + + (*) readsX(), writesX(): + + readsX() 와 writesX() MMIO 액세스 함수는 DMA 를 수행하는데 적절치 않은, + 주변장치 내의 메모리 매핑된 레지스터 기반 FIFO 로의 액세스를 위해 + 설계되었습니다. 따라서, 이 기능들은 앞서 설명된 readX_relaxed() 와 + writeX_relaxed() 의 순서 보장만을 제공합니다. + + (*) inX(), outX(): + + inX() 와 outX() 액세스 함수는 일부 아키텍쳐 (특히 x86) 에서는 특수한 + 명령어를 필요로 하며 포트에 매핑되는, 과거의 유산인 I/O 주변장치로의 + 접근을 위해 만들어졌습니다. + + 많은 CPU 아키텍쳐가 결국은 이런 주변장치를 내부의 가상 메모리 매핑을 + 통해 접근하기 때문에, inX() 와 outX() 가 제공하는 이식성 있는 순서 + 보장은 디폴트 I/O 기능을 통한 매핑을 접근할 때의 readX() 와 writeX() 에 + 의해 제공되는 것과 각각 동일합니다. + + 디바이스 드라이버는 outX() 가 리턴하기 전에 해당 I/O 주변장치로부터의 + 완료 응답을 기다리는 쓰기 트랜잭션을 만들어 낸다고 기대할 수도 + 있습니다. 이는 모든 아키텍쳐에서 보장되지는 않고, 따라서 이식성 있는 + 순서 규칙의 일부분이 아닙니다. + + (*) insX(), outsX(): + + 앞에서와 같이, insX() 와 outsX() 액세스 함수는 디폴트 I/O 기능을 통한 + 매핑을 접근할 때 각각 readX() 와 writeX() 와 같은 순서 보장을 + 제공합니다. + + (*) ioreadX(), iowriteX() + + 이것들은 inX()/outX() 나 readX()/writeX() 처럼 실제로 수행하는 액세스의 + 종류에 따라 적절하게 수행될 것입니다. + +String 액세스 함수 (insX(), outsX(), readsX() 그리고 writesX()) 의 예외를 +제외하고는, 앞의 모든 것이 아랫단의 주변장치가 little-endian 이라 가정하며, +따라서 big-endian 아키텍쳐에서는 byte-swapping 오퍼레이션을 수행합니다. + + +=================================== +가정되는 가장 완화된 실행 순서 모델 +=================================== + +컨셉적으로 CPU 는 주어진 프로그램에 대해 프로그램 그 자체에는 인과성 (program +causality) 을 지키는 것처럼 보이게 하지만 일반적으로는 순서를 거의 지켜주지 +않는다고 가정되어야만 합니다. (i386 이나 x86_64 같은) 일부 CPU 들은 코드 +재배치에 (powerpc 나 frv 와 같은) 다른 것들에 비해 강한 제약을 갖지만, 아키텍쳐 +종속적 코드 이외의 코드에서는 순서에 대한 제약이 가장 완화된 경우 (DEC Alpha) +를 가정해야 합니다. + +이 말은, CPU 에게 주어지는 인스트럭션 스트림 내의 한 인스트럭션이 앞의 +인스트럭션에 종속적이라면 앞의 인스트럭션은 뒤의 종속적 인스트럭션이 실행되기 +전에 완료[*]될 수 있어야 한다는 제약 (달리 말해서, 인과성이 지켜지는 것으로 +보이게 함) 외에는 자신이 원하는 순서대로 - 심지어 병렬적으로도 - 그 스트림을 +실행할 수 있음을 의미합니다 + + [*] 일부 인스트럭션은 하나 이상의 영향 - 조건 코드를 바꾼다던지, 레지스터나 + 메모리를 바꾼다던지 - 을 만들어내며, 다른 인스트럭션은 다른 효과에 + 종속적일 수 있습니다. + +CPU 는 최종적으로 아무 효과도 만들지 않는 인스트럭션 시퀀스는 없애버릴 수도 +있습니다. 예를 들어, 만약 두개의 연속되는 인스트럭션이 둘 다 같은 레지스터에 +직접적인 값 (immediate value) 을 집어넣는다면, 첫번째 인스트럭션은 버려질 수도 +있습니다. + + +비슷하게, 컴파일러 역시 프로그램의 인과성만 지켜준다면 인스트럭션 스트림을 +자신이 보기에 올바르다 생각되는대로 재배치 할 수 있습니다. + + +=============== +CPU 캐시의 영향 +=============== + +캐시된 메모리 오퍼레이션들이 시스템 전체에 어떻게 인지되는지는 CPU 와 메모리 +사이에 존재하는 캐시들, 그리고 시스템 상태의 일관성을 관리하는 메모리 일관성 +시스템에 상당 부분 영향을 받습니다. + +한 CPU 가 시스템의 다른 부분들과 캐시를 통해 상호작용한다면, 메모리 시스템은 +CPU 의 캐시들을 포함해야 하며, CPU 와 CPU 자신의 캐시 사이에서의 동작을 위한 +메모리 배리어를 가져야 합니다. (메모리 배리어는 논리적으로는 다음 그림의 +점선에서 동작합니다): + + <--- CPU ---> : <----------- Memory -----------> + : + +--------+ +--------+ : +--------+ +-----------+ + | | | | : | | | | +--------+ + | CPU | | Memory | : | CPU | | | | | + | Core |--->| Access |----->| Cache |<-->| | | | + | | | Queue | : | | | |--->| Memory | + | | | | : | | | | | | + +--------+ +--------+ : +--------+ | | | | + : | Cache | +--------+ + : | Coherency | + : | Mechanism | +--------+ + +--------+ +--------+ : +--------+ | | | | + | | | | : | | | | | | + | CPU | | Memory | : | CPU | | |--->| Device | + | Core |--->| Access |----->| Cache |<-->| | | | + | | | Queue | : | | | | | | + | | | | : | | | | +--------+ + +--------+ +--------+ : +--------+ +-----------+ + : + : + +특정 로드나 스토어는 해당 오퍼레이션을 요청한 CPU 의 캐시 내에서 동작을 완료할 +수도 있기 때문에 해당 CPU 의 바깥에는 보이지 않을 수 있지만, 다른 CPU 가 관심을 +갖는다면 캐시 일관성 메커니즘이 해당 캐시라인을 해당 CPU 에게 전달하고, 해당 +메모리 영역에 대한 오퍼레이션이 발생할 때마다 그 영향을 전파시키기 때문에, 해당 +오퍼레이션은 메모리에 실제로 액세스를 한것처럼 나타날 것입니다. + +CPU 코어는 프로그램의 인과성이 유지된다고만 여겨진다면 인스트럭션들을 어떤 +순서로든 재배치해서 수행할 수 있습니다. 일부 인스트럭션들은 로드나 스토어 +오퍼레이션을 만드는데 이 오퍼레이션들은 이후 수행될 메모리 액세스 큐에 들어가게 +됩니다. 코어는 이 오퍼레이션들을 해당 큐에 어떤 순서로든 원하는대로 넣을 수 +있고, 다른 인스트럭션의 완료를 기다리도록 강제되기 전까지는 수행을 계속합니다. + +메모리 배리어가 하는 일은 CPU 쪽에서 메모리 쪽으로 넘어가는 액세스들의 순서, +그리고 그 액세스의 결과가 시스템의 다른 관찰자들에게 인지되는 순서를 제어하는 +것입니다. + +[!] CPU 들은 항상 그들 자신의 로드와 스토어는 프로그램 순서대로 일어난 것으로 +보기 때문에, 주어진 CPU 내에서는 메모리 배리어를 사용할 필요가 _없습니다_. + +[!] MMIO 나 다른 디바이스 액세스들은 캐시 시스템을 우회할 수도 있습니다. 우회 +여부는 디바이스가 액세스 되는 메모리 윈도우의 특성에 의해 결정될 수도 있고, CPU +가 가지고 있을 수 있는 특수한 디바이스 통신 인스트럭션의 사용에 의해서 결정될 +수도 있습니다. + + +캐시 일관성 VS DMA +------------------ + +모든 시스템이 DMA 를 하는 디바이스에 대해서까지 캐시 일관성을 유지하지는 +않습니다. 그런 경우, DMA 를 시도하는 디바이스는 RAM 으로부터 잘못된 데이터를 +읽을 수 있는데, 더티 캐시 라인이 CPU 의 캐시에 머무르고 있고, 바뀐 값이 아직 +RAM 에 써지지 않았을 수 있기 때문입니다. 이 문제를 해결하기 위해선, 커널의 +적절한 부분에서 각 CPU 캐시의 문제되는 비트들을 플러시 (flush) 시켜야만 합니다 +(그리고 그것들을 무효화 - invalidation - 시킬 수도 있겠죠). + +또한, 디바이스에 의해 RAM 에 DMA 로 쓰여진 값은 디바이스가 쓰기를 완료한 후에 +CPU 의 캐시에서 RAM 으로 쓰여지는 더티 캐시 라인에 의해 덮어써질 수도 있고, CPU +의 캐시에 존재하는 캐시 라인이 해당 캐시에서 삭제되고 다시 값을 읽어들이기 +전까지는 RAM 이 업데이트 되었다는 사실 자체가 숨겨져 버릴 수도 있습니다. 이 +문제를 해결하기 위해선, 커널의 적절한 부분에서 각 CPU 의 캐시 안의 문제가 되는 +비트들을 무효화 시켜야 합니다. + +캐시 관리에 대한 더 많은 정보를 위해선 Documentation/core-api/cachetlb.rst 를 +참고하세요. + + +캐시 일관성 VS MMIO +------------------- + +Memory mapped I/O 는 일반적으로 CPU 의 메모리 공간 내의 한 윈도우의 특정 부분 +내의 메모리 지역에 이루어지는데, 이 윈도우는 일반적인, RAM 으로 향하는 +윈도우와는 다른 특성을 갖습니다. + +그런 특성 가운데 하나는, 일반적으로 그런 액세스는 캐시를 완전히 우회하고 +디바이스 버스로 곧바로 향한다는 것입니다. 이 말은 MMIO 액세스는 먼저 +시작되어서 캐시에서 완료된 메모리 액세스를 추월할 수 있다는 뜻입니다. 이런 +경우엔 메모리 배리어만으로는 충분치 않고, 만약 캐시된 메모리 쓰기 오퍼레이션과 +MMIO 액세스가 어떤 방식으로든 의존적이라면 해당 캐시는 두 오퍼레이션 사이에 +비워져(flush)야만 합니다. + + +====================== +CPU 들이 저지르는 일들 +====================== + +프로그래머는 CPU 가 메모리 오퍼레이션들을 정확히 요청한대로 수행해 줄 것이라고 +생각하는데, 예를 들어 다음과 같은 코드를 CPU 에게 넘긴다면: + + a = READ_ONCE(*A); + WRITE_ONCE(*B, b); + c = READ_ONCE(*C); + d = READ_ONCE(*D); + WRITE_ONCE(*E, e); + +CPU 는 다음 인스트럭션을 처리하기 전에 현재의 인스트럭션을 위한 메모리 +오퍼레이션을 완료할 것이라 생각하고, 따라서 시스템 외부에서 관찰하기에도 정해진 +순서대로 오퍼레이션이 수행될 것으로 예상합니다: + + LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E. + + +당연하지만, 실제로는 훨씬 엉망입니다. 많은 CPU 와 컴파일러에서 앞의 가정은 +성립하지 못하는데 그 이유는 다음과 같습니다: + + (*) 로드 오퍼레이션들은 실행을 계속 해나가기 위해 곧바로 완료될 필요가 있는 + 경우가 많은 반면, 스토어 오퍼레이션들은 종종 별다른 문제 없이 유예될 수 + 있습니다; + + (*) 로드 오퍼레이션들은 예측적으로 수행될 수 있으며, 필요없는 로드였다고 + 증명된 예측적 로드의 결과는 버려집니다; + + (*) 로드 오퍼레이션들은 예측적으로 수행될 수 있으므로, 예상된 이벤트의 + 시퀀스와 다른 시간에 로드가 이뤄질 수 있습니다; + + (*) 메모리 액세스 순서는 CPU 버스와 캐시를 좀 더 잘 사용할 수 있도록 재배치 + 될 수 있습니다; + + (*) 로드와 스토어는 인접한 위치에의 액세스들을 일괄적으로 처리할 수 있는 + 메모리나 I/O 하드웨어 (메모리와 PCI 디바이스 둘 다 이게 가능할 수 + 있습니다) 에 대해 요청되는 경우, 개별 오퍼레이션을 위한 트랜잭션 설정 + 비용을 아끼기 위해 조합되어 실행될 수 있습니다; 그리고 + + (*) 해당 CPU 의 데이터 캐시가 순서에 영향을 끼칠 수도 있고, 캐시 일관성 + 메커니즘이 - 스토어가 실제로 캐시에 도달한다면 - 이 문제를 완화시킬 수는 + 있지만 이 일관성 관리가 다른 CPU 들에도 같은 순서로 전달된다는 보장은 + 없습니다. + +따라서, 앞의 코드에 대해 다른 CPU 가 보는 결과는 다음과 같을 수 있습니다: + + LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B + + ("LOAD {*C,*D}" 는 조합된 로드입니다) + + +하지만, CPU 는 스스로는 일관적일 것을 보장합니다: CPU _자신_ 의 액세스들은 +자신에게는 메모리 배리어가 없음에도 불구하고 정확히 순서 세워진 것으로 보여질 +것입니다. 예를 들어 다음의 코드가 주어졌다면: + + U = READ_ONCE(*A); + WRITE_ONCE(*A, V); + WRITE_ONCE(*A, W); + X = READ_ONCE(*A); + WRITE_ONCE(*A, Y); + Z = READ_ONCE(*A); + +그리고 외부의 영향에 의한 간섭이 없다고 가정하면, 최종 결과는 다음과 같이 +나타날 것이라고 예상될 수 있습니다: + + U == *A 의 최초 값 + X == W + Z == Y + *A == Y + +앞의 코드는 CPU 가 다음의 메모리 액세스 시퀀스를 만들도록 할겁니다: + + U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A + +하지만, 별다른 개입이 없고 프로그램의 시야에 이 세상이 여전히 일관적이라고 +보인다는 보장만 지켜진다면 이 시퀀스는 어떤 조합으로든 재구성될 수 있으며, 각 +액세스들은 합쳐지거나 버려질 수 있습니다. 일부 아키텍쳐에서 CPU 는 같은 위치에 +대한 연속적인 로드 오퍼레이션들을 재배치 할 수 있기 때문에 앞의 예에서의 +READ_ONCE() 와 WRITE_ONCE() 는 반드시 존재해야 함을 알아두세요. 그런 종류의 +아키텍쳐에서 READ_ONCE() 와 WRITE_ONCE() 는 이 문제를 막기 위해 필요한 일을 +뭐가 됐든지 하게 되는데, 예를 들어 Itanium 에서는 READ_ONCE() 와 WRITE_ONCE() +가 사용하는 volatile 캐스팅은 GCC 가 그런 재배치를 방지하는 특수 인스트럭션인 +ld.acq 와 stl.rel 인스트럭션을 각각 만들어 내도록 합니다. + +컴파일러 역시 이 시퀀스의 액세스들을 CPU 가 보기도 전에 합치거나 버리거나 뒤로 +미뤄버릴 수 있습니다. + +예를 들어: + + *A = V; + *A = W; + +는 다음과 같이 변형될 수 있습니다: + + *A = W; + +따라서, 쓰기 배리어나 WRITE_ONCE() 가 없다면 *A 로의 V 값의 저장의 효과는 +사라진다고 가정될 수 있습니다. 비슷하게: + + *A = Y; + Z = *A; + +는, 메모리 배리어나 READ_ONCE() 와 WRITE_ONCE() 없이는 다음과 같이 변형될 수 +있습니다: + + *A = Y; + Z = Y; + +그리고 이 LOAD 오퍼레이션은 CPU 바깥에는 아예 보이지 않습니다. + + +그리고, ALPHA 가 있다 +--------------------- + +DEC Alpha CPU 는 가장 완화된 메모리 순서의 CPU 중 하나입니다. 뿐만 아니라, +Alpha CPU 의 일부 버전은 분할된 데이터 캐시를 가지고 있어서, 의미적으로 +관계되어 있는 두개의 캐시 라인이 서로 다른 시간에 업데이트 되는게 가능합니다. +이게 데이터 의존성 배리어가 정말 필요해지는 부분인데, 데이터 의존성 배리어는 +메모리 일관성 시스템과 함께 두개의 캐시를 동기화 시켜서, 포인터 변경과 새로운 +데이터의 발견을 올바른 순서로 일어나게 하기 때문입니다. + +리눅스 커널의 메모리 배리어 모델은 Alpha 에 기초해서 정의되었습니다만, v4.15 +부터는 Alpha 용 READ_ONCE() 코드 내에 smp_mb() 가 추가되어서 메모리 모델로의 +Alpha 의 영향력이 크게 줄어들었습니다. + + +가상 머신 게스트 +---------------- + +가상 머신에서 동작하는 게스트들은 게스트 자체는 SMP 지원 없이 컴파일 되었다 +해도 SMP 영향을 받을 수 있습니다. 이건 UP 커널을 사용하면서 SMP 호스트와 +결부되어 발생하는 부작용입니다. 이 경우에는 mandatory 배리어를 사용해서 문제를 +해결할 수 있겠지만 그런 해결은 대부분의 경우 최적의 해결책이 아닙니다. + +이 문제를 완벽하게 해결하기 위해, 로우 레벨의 virt_mb() 등의 매크로를 사용할 수 +있습니다. 이것들은 SMP 가 활성화 되어 있다면 smp_mb() 등과 동일한 효과를 +갖습니다만, SMP 와 SMP 아닌 시스템 모두에 대해 동일한 코드를 만들어냅니다. +예를 들어, 가상 머신 게스트들은 (SMP 일 수 있는) 호스트와 동기화를 할 때에는 +smp_mb() 가 아니라 virt_mb() 를 사용해야 합니다. + +이것들은 smp_mb() 류의 것들과 모든 부분에서 동일하며, 특히, MMIO 의 영향에 +대해서는 간여하지 않습니다: MMIO 의 영향을 제어하려면, mandatory 배리어를 +사용하시기 바랍니다. + + +======= +사용 예 +======= + +순환식 버퍼 +----------- + +메모리 배리어는 순환식 버퍼를 생성자(producer)와 소비자(consumer) 사이의 +동기화에 락을 사용하지 않고 구현하는데에 사용될 수 있습니다. 더 자세한 내용을 +위해선 다음을 참고하세요: + + Documentation/core-api/circular-buffers.rst + + +========= +참고 문헌 +========= + +Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek, +Digital Press) + Chapter 5.2: Physical Address Space Characteristics + Chapter 5.4: Caches and Write Buffers + Chapter 5.5: Data Sharing + Chapter 5.6: Read/Write Ordering + +AMD64 Architecture Programmer's Manual Volume 2: System Programming + Chapter 7.1: Memory-Access Ordering + Chapter 7.4: Buffering and Combining Memory Writes + +ARM Architecture Reference Manual (ARMv8, for ARMv8-A architecture profile) + Chapter B2: The AArch64 Application Level Memory Model + +IA-32 Intel Architecture Software Developer's Manual, Volume 3: +System Programming Guide + Chapter 7.1: Locked Atomic Operations + Chapter 7.2: Memory Ordering + Chapter 7.4: Serializing Instructions + +The SPARC Architecture Manual, Version 9 + Chapter 8: Memory Models + Appendix D: Formal Specification of the Memory Models + Appendix J: Programming with the Memory Models + +Storage in the PowerPC (Stone and Fitzgerald) + +UltraSPARC Programmer Reference Manual + Chapter 5: Memory Accesses and Cacheability + Chapter 15: Sparc-V9 Memory Models + +UltraSPARC III Cu User's Manual + Chapter 9: Memory Models + +UltraSPARC IIIi Processor User's Manual + Chapter 8: Memory Models + +UltraSPARC Architecture 2005 + Chapter 9: Memory + Appendix D: Formal Specifications of the Memory Models + +UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005 + Chapter 8: Memory Models + Appendix F: Caches and Cache Coherency + +Solaris Internals, Core Kernel Architecture, p63-68: + Chapter 3.3: Hardware Considerations for Locks and + Synchronization + +Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching +for Kernel Programmers: + Chapter 13: Other Memory Models + +Intel Itanium Architecture Software Developer's Manual: Volume 1: + Section 2.6: Speculation + Section 4.4: Memory Access diff --git a/Documentation/translations/ko_KR/stable_api_nonsense.txt b/Documentation/translations/ko_KR/stable_api_nonsense.txt new file mode 100644 index 000000000..4d93af1ef --- /dev/null +++ b/Documentation/translations/ko_KR/stable_api_nonsense.txt @@ -0,0 +1,195 @@ +NOTE: +This is a version of Documentation/process/stable-api-nonsense.rst translated +into korean +This document is maintained by Minchan Kim <minchan@kernel.org> +If you find any difference between this document and the original file or +a problem with the translation, please contact the maintainer of this file. + +Please also note that the purpose of this file is to be easier to +read for non English (read: korean) speakers and is not intended as +a fork. So if you have any comments or updates for this file please +try to update the original English file first. + +================================== +이 문서는 +Documentation/process/stable-api-nonsense.rst +의 한글 번역입니다. + +역자: 김민찬 <minchan@kernel.org> +감수: 이제이미 <jamee.lee@samsung.com> +================================== + +리눅스 커널 드라이버 인터페이스 +(여러분들의 모든 질문에 대한 답 그리고 다른 몇가지) + +Greg Kroah-Hartman <greg@kroah.com> + +이 문서는 리눅스가 왜 바이너리 커널 인터페이스를 갖지 않는지, 왜 변하지 +않는(stable) 커널 인터페이스를 갖지 않는지를 설명하기 위해 쓰여졌다. +이 문서는 커널과 유저공간 사이의 인터페이스가 아니라 커널 내부의 +인터페이스들을 설명하고 있다는 것을 유념하라. 커널과 유저공간 사이의 +인터페이스는 응용프로그램이 사용하는 syscall 인터페이스이다. 그 인터페이스는 +오랫동안 거의 변하지 않았고 앞으로도 변하지 않을 것이다. 나는 pre 0.9에서 +만들어졌지만 최신의 2.6 커널 배포에서도 잘 동작하는 프로그램을 가지고 +있다. 이 인터페이스는 사용자와 응용프로그램 개발자들이 변하지 않을 것이라고 +여길수 있는 것이다. + + +초록 +---- +여러분은 변하지 않는 커널 인터페이스를 원한다고 생각하지만 실제로는 +그렇지 않으며 심지어는 그것을 알아채지 못한다. 여러분이 원하는 것은 +안정되게 실행되는 드라이버이며 드라이버가 메인 커널 트리에 있을 때 +그런 안정적인 드라이버를 얻을 수 있게 된다. 또한 여러분의 드라이버가 +메인 커널 트리에 있다면 다른 많은 좋은 이점들을 얻게 된다. 그러한 것들이 +리눅스를 강건하고, 안정적이며, 성숙한 운영체제로 만들어 놓음으로써 +여러분들로 하여금 바로 리눅스를 사용하게 만드는 이유이다. + + +소개 +---- + +커널 내부의 인터페이스가 바뀌는 것을 걱정하며 커널 드라이버를 작성하고 +싶어하는 사람은 정말 이상한 사람이다. 세상의 대다수의 사람들은 이 인터페이스를 +보지못할 것이며 전혀 걱정하지도 않는다. + +먼저, 나는 closed 소스, hidden 소스, binary blobs, 소스 wrappers, 또는 GPL로 +배포되었지만 소스 코드를 갖고 있지 않은 커널 드라이버들을 설명하는 어떤 다른 +용어들에 관한 어떤 법적인 문제에 관해서는 언급하지 않을 것이다. 어떤 법적인 +질문들을 가지고 있다면 변호사와 연락하라. 나는 프로그래머이므로 여기서 기술적인 +문제들만을 설명하려고 한다. (법적인 문제를 경시하는 것은 아니다. 그런 문제들은 +엄연히 현실에 있고 여러분들은 항상 그 문제들을 인식하고 있을 필요는 있다.) + +자, 두가지의 주요 주제가 있다. 바이너리 커널 인터페이스들과 변하지 않는 +커널 소스 인터페이들. 그것들은 서로 의존성을 가지고 있지만 바이너리 +문제를 먼저 풀고 넘어갈 것이다. + + + +바이너리 커널 인터페이스 +------------------------ +우리가 변하지 않는 커널 소스 인터페이스를 가지고 있다고 가정하자. 그러면 +바이너리 인터페이스 또한 자연적으로 변하지 않을까? 틀렸다. 리눅스 커널에 +관한 다음 사실들을 생각해보라. + - 여러분들이 사용하는 C 컴파일러의 버젼에 따라 다른 커널 자료 구조들은 + 다른 alignmnet들을 갖게 될것이고 다른 방법으로(함수들을 inline으로 + 했느냐, 아니냐) 다른 함수들을 포함하는 것도 가능한다. 중요한 것은 + 개별적인 함수 구성이 아니라 자료 구조 패딩이 달라진다는 점이다. + - 여러분이 선택한 커널 빌드 옵션에 따라서 커널은 다양한 것들을 가정할 + 수 있다. + - 다른 구조체들은 다른 필드들을 포함할 수 있다. + - 몇몇 함수들은 전혀 구현되지 않을 수도 있다(즉, 몇몇 lock들은 + non-SMP 빌드에서는 사라져 버릴수도 있다). + - 커널내에 메모리는 build optoin들에 따라 다른 방법으로 align될수 + 있다. + - 리눅스는 많은 다양한 프로세서 아키텍쳐에서 실행된다. 한 아키텍쳐의 + 바이너리 드라이버를 다른 아키텍쳐에서 정상적으로 실행시킬 방법은 + 없다. + +커널을 빌드했던 C 컴파일러와 정확하게 같은 것을 사용하고 정확하게 같은 +커널 구성(configuration)을 사용하여 여러분들의 모듈을 빌드하면 간단히 +많은 문제들을 해결할 수 있다. 이렇게 하는 것은 여러분들이 하나의 리눅스 +배포판의 하나의 배포 버젼을 위한 모듈만을 제공한다면 별일 아닐 것이다. +그러나 각기 다른 리눅스 배포판마다 한번씩 빌드하는 수를 각 리눅스 배포판마다 +제공하는 다른 릴리즈의 수와 곱하게 되면 이번에는 각 릴리즈들의 다른 빌드 +옵션의 악몽과 마주하게 것이다. 또한 각 리눅스 배포판들은 다른 하드웨어 +종류에(다른 프로세서 타입과 다른 옵션들) 맞춰져 있는 많은 다른 커널들을 +배포한다. 그러므로 한번의 배포에서조차 여러분들의 모듈은 여러 버젼을 +만들 필요가 있다. + +나를 믿어라. 여러분들은 이러한 종류의 배포를 지원하려고 시도한다면 시간이 +지나면 미칠지경이 될 것이다. 난 이러한 것을 오래전에 아주 어렵게 배웠다... + + + +변하지않는 커널 소스 인터페이스들 +--------------------------------- + +리눅스 커널 드라이버를 계속해서 메인 커널 트리에 반영하지 않고 +유지보수하려고 하는 사람들과 이 문제를 논의하게 되면 훨씬 더 +"논란의 여지가 많은" 주제가 될 것이다. + +리눅스 커널 개발은 끊임없이 빠른 속도로 이루어지고 있으며 결코 +느슨해진 적이 없다. 커널 개발자들이 현재 인터페이스들에서 버그를 +발견하거나 무엇인가 할 수 있는 더 좋은 방법을 찾게 되었다고 하자. +그들이 발견한 것을 실행한다면 아마도 더 잘 동작하도록 현재 인터페이스들을 +수정하게 될 것이다. 그들이 그런 일을 하게되면 함수 이름들은 변하게 되고, +구조체들은 늘어나거나 줄어들게 되고, 함수 파라미터들은 재작업될 것이다. +이러한 일이 발생되면 커널 내에 이 인터페이스를 사용했던 인스턴스들이 동시에 +수정될 것이며 이러한 과정은 모든 것이 계속해서 올바르게 동작할 것이라는 +것을 보장한다. + +이러한 것의 한 예로써, 커널 내부의 USB 인터페이스들은 이 서브시스템이 +생긴 이후로 적어도 3번의 다른 재작업을 겪었다. 이 재작업들은 많은 다른 +문제들을 풀었다. + - 데이터 스트림들의 동기적인 모델에서 비동기적인 모델로의 변화. 이것은 + 많은 드라이버들의 복잡성을 줄이고 처리량을 향상시켜 현재는 거의 모든 + USB 장치들의 거의 최대 속도로 실행되고 있다. + - USB 드라이버가 USB 코어로부터 데이터 패킷들을 할당받로록 한 변경으로 + 인해서 지금의 모든 드라이버들은 많은 문서화된 데드락을 수정하기 위하여 + USB 코어에게 더 많은 정보를 제공해야만 한다. + +이것은 오랫동안 자신의 오래된 USB 인터페이스들을 유지해야 하는 closed 운영체제들과는 +완전히 반대되는 것이다. closed된 운영체제들은 새로운 개발자들에게 우연히 낡은 +인터페이스를 사용하게 할 기회를 주게되며, 적절하지 못한 방법으로 처리하게 되어 +운영체제의 안정성을 해치는 문제를 야기하게 된다. + +이 두가지의 예들 모두, 모든 개발자들은 꼭 이루어져야 하는 중요한 변화들이라고 +동의를 하였고 비교적 적은 고통으로 변경되어졌다. 리눅스가 변하지 않는 소스 +인터페이스를 고집한다면, 새로운 인터페이스가 만들어지게 되며 반면 기존의 오래된 +것들, 그리고 깨진 것들은 계속해서 유지되어야 하며 이러한 일들은 USB 개발자들에게 +또 다른 일거리를 주게 된다. 모든 리눅스 USB 개발자들에게 자신의 그들의 업무를 +마친 후 시간을 투자하여 아무 득도 없는 무료 봉사를 해달라고 하는 것은 가능성이 +희박한 일이다. + +보안 문제 역시 리눅스에게는 매우 중요하다. 보안 문제가 발견되면 그것은 +매우 짧은 시간 안에 수정된다. 보안 문제는 그 문제를 해결하기 위하여 +여러번 내부 커널 인터페이스들을 재작업하게 만들었다. 이러한 문제가 +발생하였을 때 그 인터페이스들을 사용하는 모든 드라이버들도 동시에 +수정되어 보안 문제가 앞으로 갑작스럽게 생기지는 않을 것이라는 것을 +보장한다. 내부 인터페이스들의 변경이 허락되지 않으면 이러한 종류의 보안 +문제를 수정하고 그것이 다시 발생하지 않을 것이라고 보장하는 것은 가능하지 +않을 것이다. + +커널 인터페이스들은 계속해서 정리되고 있다. 현재 인터페이스를 사용하는 +사람이 한명도 없다면 그것은 삭제된다. 이것은 커널이 가능한한 가장 작게 +유지되며 존재하는 모든 가능성이 있는 인터페이스들이 테스트된다는 것을 +보장한다(사용되지 않는 인터페이스들은 유효성 검증을 하기가 거의 불가능하다). + + +무엇을 해야 하나 +--------------- +자, 여러분이 메인 커널 트리에 있지 않은 리눅스 커널 드라이버를 가지고 +있다면 여러분은 즉, 개발자는 무엇을 해야 하나? 모든 배포판마다 다른 +커널 버젼을 위한 바이너리 드라이버를 배포하는 것은 악몽이며 계속해서 +변하고 있는 커널 인터페이스들의 맞처 유지보수하려고 시도하는 것은 힘든 +일이다. + +간단하다. 여러분의 커널 드라이버를 메인 커널 트리에 반영하라(우리는 여기서 +GPL을 따르는 배포 드라이버에 관해 얘기하고 있다는 것을 상기하라. 여러분의 +코드가 이러한 분류에 해당되지 않는다면 행운을 빈다. 여러분 스스로 어떻게든 +해야만 한다). 여러분의 드라이버가 트리에 있게되면 커널 인터페이스가 +변경되더라도 가장 먼저 커널에 변경을 가했던 사람에 의해서 수정될 것이다. +이것은 여러분의 드라이버가 여러분의 별다른 노력없이 항상 빌드가 가능하며 +동작하는 것을 보장한다. + +메인 커널 트리에 여러분의 드라이버를 반영하면 얻게 되는 장점들은 다음과 같다. + - 관리에 드는 비용(원래 개발자의)은 줄어줄면서 드라이버의 질은 향상될 것이다. + - 다른 개발자들이 여러분의 드라이버에 기능들을 추가 할 것이다. + - 다른 사람들은 여러분의 드라이버에 버그를 발견하고 수정할 것이다. + - 다른 사람들은 여러분의 드라이버의 개선점을 찾을 줄 것이다. + - 외부 인터페이스 변경으로 인해 여러분의 드라이버의 수정이 필요하다면 다른 + 사람들이 드라이버를 업데이트할 것이다. + - 여러분의 드라이버는 별다른 노력 없이 모든 리눅스 배포판에 자동적으로 + 추가될 것이다. + +리눅스는 다른 운영 체제보다 "쉽게 쓸수 있는(out of the box)" 많은 다른 장치들을 +지원하고 어떤 다른 운영 체제보다 다양한 아키텍쳐위에서 이러한 장치들을 지원하기 때문에 +이러한 증명된 개발 모델은 틀림없이 바로 가고 있는 것이다. + + + +------ + +이 문서의 초안을 검토해주고 코멘트 해준 Randy Dunlap, Andrew Morton, David Brownell, +Hanna Linder, Robert Love, 그리고 Nishanth Aravamudan에게 감사한다. |