diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/vm/page_migration.rst | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/vm/page_migration.rst')
-rw-r--r-- | Documentation/vm/page_migration.rst | 288 |
1 files changed, 288 insertions, 0 deletions
diff --git a/Documentation/vm/page_migration.rst b/Documentation/vm/page_migration.rst new file mode 100644 index 000000000..db9d7e553 --- /dev/null +++ b/Documentation/vm/page_migration.rst @@ -0,0 +1,288 @@ +.. _page_migration: + +============== +Page migration +============== + +Page migration allows moving the physical location of pages between +nodes in a NUMA system while the process is running. This means that the +virtual addresses that the process sees do not change. However, the +system rearranges the physical location of those pages. + +Also see :ref:`Heterogeneous Memory Management (HMM) <hmm>` +for migrating pages to or from device private memory. + +The main intent of page migration is to reduce the latency of memory accesses +by moving pages near to the processor where the process accessing that memory +is running. + +Page migration allows a process to manually relocate the node on which its +pages are located through the MF_MOVE and MF_MOVE_ALL options while setting +a new memory policy via mbind(). The pages of a process can also be relocated +from another process using the sys_migrate_pages() function call. The +migrate_pages() function call takes two sets of nodes and moves pages of a +process that are located on the from nodes to the destination nodes. +Page migration functions are provided by the numactl package by Andi Kleen +(a version later than 0.9.3 is required. Get it from +https://github.com/numactl/numactl.git). numactl provides libnuma +which provides an interface similar to other NUMA functionality for page +migration. cat ``/proc/<pid>/numa_maps`` allows an easy review of where the +pages of a process are located. See also the numa_maps documentation in the +proc(5) man page. + +Manual migration is useful if for example the scheduler has relocated +a process to a processor on a distant node. A batch scheduler or an +administrator may detect the situation and move the pages of the process +nearer to the new processor. The kernel itself only provides +manual page migration support. Automatic page migration may be implemented +through user space processes that move pages. A special function call +"move_pages" allows the moving of individual pages within a process. +For example, A NUMA profiler may obtain a log showing frequent off-node +accesses and may use the result to move pages to more advantageous +locations. + +Larger installations usually partition the system using cpusets into +sections of nodes. Paul Jackson has equipped cpusets with the ability to +move pages when a task is moved to another cpuset (See +:ref:`CPUSETS <cpusets>`). +Cpusets allow the automation of process locality. If a task is moved to +a new cpuset then also all its pages are moved with it so that the +performance of the process does not sink dramatically. Also the pages +of processes in a cpuset are moved if the allowed memory nodes of a +cpuset are changed. + +Page migration allows the preservation of the relative location of pages +within a group of nodes for all migration techniques which will preserve a +particular memory allocation pattern generated even after migrating a +process. This is necessary in order to preserve the memory latencies. +Processes will run with similar performance after migration. + +Page migration occurs in several steps. First a high level +description for those trying to use migrate_pages() from the kernel +(for userspace usage see the Andi Kleen's numactl package mentioned above) +and then a low level description of how the low level details work. + +In kernel use of migrate_pages() +================================ + +1. Remove pages from the LRU. + + Lists of pages to be migrated are generated by scanning over + pages and moving them into lists. This is done by + calling isolate_lru_page(). + Calling isolate_lru_page() increases the references to the page + so that it cannot vanish while the page migration occurs. + It also prevents the swapper or other scans from encountering + the page. + +2. We need to have a function of type new_page_t that can be + passed to migrate_pages(). This function should figure out + how to allocate the correct new page given the old page. + +3. The migrate_pages() function is called which attempts + to do the migration. It will call the function to allocate + the new page for each page that is considered for + moving. + +How migrate_pages() works +========================= + +migrate_pages() does several passes over its list of pages. A page is moved +if all references to a page are removable at the time. The page has +already been removed from the LRU via isolate_lru_page() and the refcount +is increased so that the page cannot be freed while page migration occurs. + +Steps: + +1. Lock the page to be migrated. + +2. Ensure that writeback is complete. + +3. Lock the new page that we want to move to. It is locked so that accesses to + this (not yet up-to-date) page immediately block while the move is in progress. + +4. All the page table references to the page are converted to migration + entries. This decreases the mapcount of a page. If the resulting + mapcount is not zero then we do not migrate the page. All user space + processes that attempt to access the page will now wait on the page lock + or wait for the migration page table entry to be removed. + +5. The i_pages lock is taken. This will cause all processes trying + to access the page via the mapping to block on the spinlock. + +6. The refcount of the page is examined and we back out if references remain. + Otherwise, we know that we are the only one referencing this page. + +7. The radix tree is checked and if it does not contain the pointer to this + page then we back out because someone else modified the radix tree. + +8. The new page is prepped with some settings from the old page so that + accesses to the new page will discover a page with the correct settings. + +9. The radix tree is changed to point to the new page. + +10. The reference count of the old page is dropped because the address space + reference is gone. A reference to the new page is established because + the new page is referenced by the address space. + +11. The i_pages lock is dropped. With that lookups in the mapping + become possible again. Processes will move from spinning on the lock + to sleeping on the locked new page. + +12. The page contents are copied to the new page. + +13. The remaining page flags are copied to the new page. + +14. The old page flags are cleared to indicate that the page does + not provide any information anymore. + +15. Queued up writeback on the new page is triggered. + +16. If migration entries were inserted into the page table, then replace them + with real ptes. Doing so will enable access for user space processes not + already waiting for the page lock. + +17. The page locks are dropped from the old and new page. + Processes waiting on the page lock will redo their page faults + and will reach the new page. + +18. The new page is moved to the LRU and can be scanned by the swapper, + etc. again. + +Non-LRU page migration +====================== + +Although migration originally aimed for reducing the latency of memory accesses +for NUMA, compaction also uses migration to create high-order pages. + +Current problem of the implementation is that it is designed to migrate only +*LRU* pages. However, there are potential non-LRU pages which can be migrated +in drivers, for example, zsmalloc, virtio-balloon pages. + +For virtio-balloon pages, some parts of migration code path have been hooked +up and added virtio-balloon specific functions to intercept migration logics. +It's too specific to a driver so other drivers who want to make their pages +movable would have to add their own specific hooks in the migration path. + +To overcome the problem, VM supports non-LRU page migration which provides +generic functions for non-LRU movable pages without driver specific hooks +in the migration path. + +If a driver wants to make its pages movable, it should define three functions +which are function pointers of struct address_space_operations. + +1. ``bool (*isolate_page) (struct page *page, isolate_mode_t mode);`` + + What VM expects from isolate_page() function of driver is to return *true* + if driver isolates the page successfully. On returning true, VM marks the page + as PG_isolated so concurrent isolation in several CPUs skip the page + for isolation. If a driver cannot isolate the page, it should return *false*. + + Once page is successfully isolated, VM uses page.lru fields so driver + shouldn't expect to preserve values in those fields. + +2. ``int (*migratepage) (struct address_space *mapping,`` +| ``struct page *newpage, struct page *oldpage, enum migrate_mode);`` + + After isolation, VM calls migratepage() of driver with the isolated page. + The function of migratepage() is to move the contents of the old page to the + new page + and set up fields of struct page newpage. Keep in mind that you should + indicate to the VM the oldpage is no longer movable via __ClearPageMovable() + under page_lock if you migrated the oldpage successfully and returned + MIGRATEPAGE_SUCCESS. If driver cannot migrate the page at the moment, driver + can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time + because VM interprets -EAGAIN as "temporary migration failure". On returning + any error except -EAGAIN, VM will give up the page migration without + retrying. + + Driver shouldn't touch the page.lru field while in the migratepage() function. + +3. ``void (*putback_page)(struct page *);`` + + If migration fails on the isolated page, VM should return the isolated page + to the driver so VM calls the driver's putback_page() with the isolated page. + In this function, the driver should put the isolated page back into its own data + structure. + +4. non-LRU movable page flags + + There are two page flags for supporting non-LRU movable page. + + * PG_movable + + Driver should use the function below to make page movable under page_lock:: + + void __SetPageMovable(struct page *page, struct address_space *mapping) + + It needs argument of address_space for registering migration + family functions which will be called by VM. Exactly speaking, + PG_movable is not a real flag of struct page. Rather, VM + reuses the page->mapping's lower bits to represent it:: + + #define PAGE_MAPPING_MOVABLE 0x2 + page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; + + so driver shouldn't access page->mapping directly. Instead, driver should + use page_mapping() which masks off the low two bits of page->mapping under + page lock so it can get the right struct address_space. + + For testing of non-LRU movable pages, VM supports __PageMovable() function. + However, it doesn't guarantee to identify non-LRU movable pages because + the page->mapping field is unified with other variables in struct page. + If the driver releases the page after isolation by VM, page->mapping + doesn't have a stable value although it has PAGE_MAPPING_MOVABLE set + (look at __ClearPageMovable). But __PageMovable() is cheap to call whether + page is LRU or non-LRU movable once the page has been isolated because LRU + pages can never have PAGE_MAPPING_MOVABLE set in page->mapping. It is also + good for just peeking to test non-LRU movable pages before more expensive + checking with lock_page() in pfn scanning to select a victim. + + For guaranteeing non-LRU movable page, VM provides PageMovable() function. + Unlike __PageMovable(), PageMovable() validates page->mapping and + mapping->a_ops->isolate_page under lock_page(). The lock_page() prevents + sudden destroying of page->mapping. + + Drivers using __SetPageMovable() should clear the flag via + __ClearMovablePage() under page_lock() before the releasing the page. + + * PG_isolated + + To prevent concurrent isolation among several CPUs, VM marks isolated page + as PG_isolated under lock_page(). So if a CPU encounters PG_isolated + non-LRU movable page, it can skip it. Driver doesn't need to manipulate the + flag because VM will set/clear it automatically. Keep in mind that if the + driver sees a PG_isolated page, it means the page has been isolated by the + VM so it shouldn't touch the page.lru field. + The PG_isolated flag is aliased with the PG_reclaim flag so drivers + shouldn't use PG_isolated for its own purposes. + +Monitoring Migration +===================== + +The following events (counters) can be used to monitor page migration. + +1. PGMIGRATE_SUCCESS: Normal page migration success. Each count means that a + page was migrated. If the page was a non-THP page, then this counter is + increased by one. If the page was a THP, then this counter is increased by + the number of THP subpages. For example, migration of a single 2MB THP that + has 4KB-size base pages (subpages) will cause this counter to increase by + 512. + +2. PGMIGRATE_FAIL: Normal page migration failure. Same counting rules as for + PGMIGRATE_SUCCESS, above: this will be increased by the number of subpages, + if it was a THP. + +3. THP_MIGRATION_SUCCESS: A THP was migrated without being split. + +4. THP_MIGRATION_FAIL: A THP could not be migrated nor it could be split. + +5. THP_MIGRATION_SPLIT: A THP was migrated, but not as such: first, the THP had + to be split. After splitting, a migration retry was used for it's sub-pages. + +THP_MIGRATION_* events also update the appropriate PGMIGRATE_SUCCESS or +PGMIGRATE_FAIL events. For example, a THP migration failure will cause both +THP_MIGRATION_FAIL and PGMIGRATE_FAIL to increase. + +Christoph Lameter, May 8, 2006. +Minchan Kim, Mar 28, 2016. |